mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2025-06-23 01:02:02 +01:00
Compare commits
6 Commits
andrew-pr
...
6739019c83
Author | SHA1 | Date | |
---|---|---|---|
6739019c83 | |||
13fddf4947 | |||
1604b4712f | |||
c73b609ac5 | |||
05138baa08 | |||
a0bdbfd9dd |
2
.github/workflows/build-macos.yml
vendored
2
.github/workflows/build-macos.yml
vendored
@ -1,6 +1,6 @@
|
||||
name: Build macOS
|
||||
|
||||
on: [push]
|
||||
on: [push, workflow_dispatch]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
@ -7,7 +7,7 @@
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
constexpr Index size = 8;
|
||||
constexpr Index n = 8;
|
||||
constexpr Index nDraw = 20000;
|
||||
constexpr Index nSample = 2000;
|
||||
const string stateFileName = "exRand.seed";
|
||||
@ -40,14 +40,14 @@ int main(void)
|
||||
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);
|
||||
p.display();
|
||||
|
||||
DMat var(size, size);
|
||||
DVec mean(size);
|
||||
DMatSample sample(nSample, size, 1);
|
||||
DMat var(n, n);
|
||||
DVec mean(n);
|
||||
DMatSample sample(nSample, n, 1);
|
||||
|
||||
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
|
||||
var = DMat::Random(size, size);
|
||||
var = DMat::Random(n, n);
|
||||
var *= var.adjoint();
|
||||
mean = DVec::Random(size);
|
||||
mean = DVec::Random(n);
|
||||
RandomNormal mgauss(mean, var, rd());
|
||||
sample[central] = mgauss();
|
||||
FOR_STAT_ARRAY(sample, s)
|
||||
|
@ -18,6 +18,7 @@
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Core/Math.hpp>
|
||||
#include <LatAnalyze/Numerical/GslFFT.hpp>
|
||||
#include <LatAnalyze/includes.hpp>
|
||||
#include <gsl/gsl_cdf.h>
|
||||
|
||||
@ -48,16 +49,42 @@ DMat MATH_NAMESPACE::corrToVar(const DMat &corr, const DVec &varDiag)
|
||||
return res;
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::svdDynamicRange(const DMat &mat)
|
||||
double MATH_NAMESPACE::conditionNumber(const DMat &mat)
|
||||
{
|
||||
DVec s = mat.singularValues();
|
||||
|
||||
return s.maxCoeff()/s.minCoeff();
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::svdDynamicRangeDb(const DMat &mat)
|
||||
double MATH_NAMESPACE::cdr(const DMat &mat)
|
||||
{
|
||||
return 10.*log10(svdDynamicRange(mat));
|
||||
return 10.*log10(conditionNumber(mat));
|
||||
}
|
||||
|
||||
template <typename FFT>
|
||||
double nsdr(const DMat &m)
|
||||
{
|
||||
Index n = m.rows();
|
||||
FFT fft(n);
|
||||
CMat buf(n, 1);
|
||||
|
||||
FOR_VEC(buf, i)
|
||||
{
|
||||
buf(i) = 0.;
|
||||
for (Index j = 0; j < n; ++j)
|
||||
{
|
||||
buf(i) += m(j, (i+j) % n);
|
||||
}
|
||||
buf(i) /= n;
|
||||
}
|
||||
fft(buf, FFT::Forward);
|
||||
|
||||
return 10.*log10(buf.real().maxCoeff()/buf.real().minCoeff());
|
||||
}
|
||||
|
||||
double MATH_NAMESPACE::nsdr(const DMat &mat)
|
||||
{
|
||||
return ::nsdr<GslFFT>(mat);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
|
@ -73,8 +73,9 @@ namespace MATH_NAMESPACE
|
||||
DMat corrToVar(const DMat &corr, const DVec &varDiag);
|
||||
|
||||
// matrix SVD dynamic range
|
||||
double svdDynamicRange(const DMat &mat);
|
||||
double svdDynamicRangeDb(const DMat &mat);
|
||||
double conditionNumber(const DMat &mat);
|
||||
double cdr(const DMat &mat);
|
||||
double nsdr(const DMat &mat);
|
||||
|
||||
// Constants
|
||||
constexpr double pi = 3.1415926535897932384626433832795028841970;
|
||||
|
@ -515,14 +515,16 @@ void Dash::operator()(PlotOptions &option) const
|
||||
}
|
||||
|
||||
// LogScale constructor ////////////////////////////////////////////////////////
|
||||
LogScale::LogScale(const Axis axis)
|
||||
LogScale::LogScale(const Axis axis, const double basis)
|
||||
: axis_(axis)
|
||||
, basis_(basis)
|
||||
{}
|
||||
|
||||
// Logscale modifier ///////////////////////////////////////////////////////////
|
||||
void LogScale::operator()(PlotOptions &option) const
|
||||
{
|
||||
option.scaleMode[static_cast<int>(axis_)] |= Plot::Scale::log;
|
||||
option.scaleMode[static_cast<int>(axis_)] |= Plot::Scale::log;
|
||||
option.logScaleBasis[static_cast<int>(axis_)] = basis_;
|
||||
}
|
||||
|
||||
// PlotRange constructors //////////////////////////////////////////////////////
|
||||
@ -915,11 +917,11 @@ ostream & Latan::operator<<(ostream &out, const Plot &plot)
|
||||
out << "unset log" << endl;
|
||||
if (plot.options_.scaleMode[x] & Plot::Scale::log)
|
||||
{
|
||||
out << "set log x" << endl;
|
||||
out << "set log x " << plot.options_.logScaleBasis[x] << endl;;
|
||||
}
|
||||
if (plot.options_.scaleMode[y] & Plot::Scale::log)
|
||||
{
|
||||
out << "set log y" << endl;
|
||||
out << "set log y " << plot.options_.logScaleBasis[y] << endl;
|
||||
}
|
||||
if (!plot.options_.label[x].empty())
|
||||
{
|
||||
|
@ -227,6 +227,7 @@ struct PlotOptions
|
||||
std::string caption;
|
||||
std::string title;
|
||||
unsigned int scaleMode[2];
|
||||
double logScaleBasis[2];
|
||||
Range scale[2];
|
||||
std::string label[2];
|
||||
std::string lineColor;
|
||||
@ -314,13 +315,14 @@ class LogScale: public PlotModifier
|
||||
{
|
||||
public:
|
||||
// constructor
|
||||
explicit LogScale(const Axis axis);
|
||||
explicit LogScale(const Axis axis, const double basis = 10);
|
||||
// destructor
|
||||
virtual ~LogScale(void) = default;
|
||||
// modifier
|
||||
virtual void operator()(PlotOptions &option) const;
|
||||
private:
|
||||
const Axis axis_;
|
||||
const double basis_;
|
||||
};
|
||||
|
||||
class PlotRange: public PlotModifier
|
||||
|
@ -108,23 +108,6 @@ inline std::string strFrom(const T x)
|
||||
}
|
||||
|
||||
// specialization for vectors
|
||||
template<>
|
||||
inline std::vector<Index> strTo<std::vector<Index>>(const std::string &str)
|
||||
{
|
||||
std::vector<Index> res;
|
||||
std::vector<double> vbuf;
|
||||
double buf;
|
||||
std::istringstream stream(str);
|
||||
|
||||
while (!stream.eof())
|
||||
{
|
||||
stream >> buf;
|
||||
res.push_back(buf);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline DVec strTo<DVec>(const std::string &str)
|
||||
{
|
||||
|
@ -135,3 +135,26 @@ DVec DWT::backward(const std::vector<DWTLevel>& dwt) const
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// concatenate levels //////////////////////////////////////////////////////////
|
||||
DVec DWT::concat(const std::vector<DWTLevel> &dwt, const int maxLevel, const bool dropLow)
|
||||
{
|
||||
unsigned int level = ((maxLevel >= 0) ? (maxLevel + 1) : dwt.size());
|
||||
Index nlast = dwt[level - 1].first.size();
|
||||
Index n = 2*dwt.front().first.size() - ((dropLow) ? nlast : 0);
|
||||
Index pt = n, nl;
|
||||
DVec res(n);
|
||||
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
nl = dwt[l].second.size();
|
||||
pt -= nl;
|
||||
res.segment(pt, nl) = dwt[l].second;
|
||||
}
|
||||
if (!dropLow)
|
||||
{
|
||||
res.segment(0, nl) = dwt[level-1].first;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
@ -46,6 +46,8 @@ public:
|
||||
// DWT
|
||||
std::vector<DWTLevel> forward(const DVec &data, const unsigned int level) const;
|
||||
DVec backward(const std::vector<DWTLevel>& dwt) const;
|
||||
// concatenate levels
|
||||
static DVec concat(const std::vector<DWTLevel>& dwt, const int maxLevel = -1, const bool dropLow = false);
|
||||
private:
|
||||
DWTFilter filter_;
|
||||
};
|
||||
|
@ -253,39 +253,16 @@ DMatSample CorrelatorUtils::shift(const DMatSample &c, const Index ts)
|
||||
}
|
||||
}
|
||||
|
||||
DMatSample CorrelatorUtils::fold(const DMatSample &c, const CorrelatorModels::ModelPar &par)
|
||||
DMatSample CorrelatorUtils::fold(const DMatSample &c)
|
||||
{
|
||||
const Index nt = c[central].rows();
|
||||
DMatSample buf = c;
|
||||
int sign;
|
||||
bool fold = false;
|
||||
|
||||
switch (par.type)
|
||||
FOR_STAT_ARRAY(buf, s)
|
||||
{
|
||||
case CorrelatorType::cosh:
|
||||
case CorrelatorType::cst:
|
||||
sign = 1;
|
||||
fold = true;
|
||||
break;
|
||||
case CorrelatorType::sinh:
|
||||
sign = -1;
|
||||
fold = true;
|
||||
break;
|
||||
case CorrelatorType::linear:
|
||||
cout << "Linear model is asymmetric: will not fold." << endl;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (fold)
|
||||
{
|
||||
FOR_STAT_ARRAY(buf, s)
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
for (Index t = 0; t < nt; ++t)
|
||||
{
|
||||
buf[s](t) = 0.5*(c[s](t) + sign*c[s]((nt - t) % nt));
|
||||
}
|
||||
buf[s](t) = 0.5*(c[s](t) + c[s]((nt - t) % nt));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -56,7 +56,7 @@ namespace CorrelatorModels
|
||||
namespace CorrelatorUtils
|
||||
{
|
||||
DMatSample shift(const DMatSample &c, const Index ts);
|
||||
DMatSample fold(const DMatSample &c, const CorrelatorModels::ModelPar &par);
|
||||
DMatSample fold(const DMatSample &c);
|
||||
DMatSample fourierTransform(const DMatSample &c, FFT &fft,
|
||||
const unsigned int dir = FFT::Forward);
|
||||
};
|
||||
|
@ -146,16 +146,6 @@ double Histogram::getX(const Index i) const
|
||||
return x_(i);
|
||||
}
|
||||
|
||||
double Histogram::getXMin(void) const
|
||||
{
|
||||
return xMin_;
|
||||
}
|
||||
|
||||
double Histogram::getXMax(void) const
|
||||
{
|
||||
return xMax_;
|
||||
}
|
||||
|
||||
double Histogram::operator[](const Index i) const
|
||||
{
|
||||
return bin_(i)*(isNormalized() ? norm_ : 1.);
|
||||
|
@ -52,8 +52,6 @@ public:
|
||||
const StatArray<double> & getData(void) const;
|
||||
const StatArray<double> & getWeight(void) const;
|
||||
double getX(const Index i) const;
|
||||
double getXMin(void) const;
|
||||
double getXMax(void) const;
|
||||
double operator[](const Index i) const;
|
||||
double operator()(const double x) const;
|
||||
// percentiles & confidence interval
|
||||
|
@ -300,67 +300,6 @@ const XYStatData & XYSampleData::getData(void)
|
||||
}
|
||||
|
||||
// fit /////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void XYSampleData::fitSample(std::vector<Minimizer *> &minimizer,
|
||||
const std::vector<const DoubleModel *> &v,
|
||||
SampleFitResult &result,
|
||||
DVec &init,
|
||||
Index s)
|
||||
{
|
||||
result.resize(nSample_);
|
||||
result.chi2_.resize(nSample_);
|
||||
result.model_.resize(v.size());
|
||||
FitResult sampleResult;
|
||||
setDataToSample(s);
|
||||
if (s == central)
|
||||
{
|
||||
sampleResult = data_.fit(minimizer, init, v);
|
||||
init = sampleResult.segment(0, init.size());
|
||||
result.nPar_ = sampleResult.getNPar();
|
||||
result.nDof_ = sampleResult.nDof_;
|
||||
result.parName_ = sampleResult.parName_;
|
||||
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
|
||||
}
|
||||
else
|
||||
{
|
||||
sampleResult = data_.fit(*(minimizer.back()), init, v);
|
||||
}
|
||||
result[s] = sampleResult;
|
||||
result.chi2_[s] = sampleResult.getChi2();
|
||||
for (unsigned int j = 0; j < v.size(); ++j)
|
||||
{
|
||||
result.model_[j].resize(nSample_);
|
||||
result.model_[j][s] = sampleResult.getModel(j);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
||||
const DVec &init,
|
||||
const std::vector<const DoubleModel *> &v,
|
||||
Index s)
|
||||
{
|
||||
computeVarMat();
|
||||
|
||||
SampleFitResult result;
|
||||
DVec initCopy = init;
|
||||
|
||||
fitSample(minimizer, v, result, initCopy, s);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
SampleFitResult XYSampleData::fit(Minimizer &minimizer,
|
||||
const DVec &init,
|
||||
const std::vector<const DoubleModel *> &v,
|
||||
Index s)
|
||||
{
|
||||
vector<Minimizer *> mv{&minimizer};
|
||||
|
||||
return fit(mv, init, v, s);
|
||||
}
|
||||
|
||||
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
||||
const DVec &init,
|
||||
const std::vector<const DoubleModel *> &v)
|
||||
@ -368,14 +307,43 @@ SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
||||
computeVarMat();
|
||||
|
||||
SampleFitResult result;
|
||||
FitResult sampleResult;
|
||||
DVec initCopy = init;
|
||||
Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity();
|
||||
|
||||
result.resize(nSample_);
|
||||
result.chi2_.resize(nSample_);
|
||||
result.model_.resize(v.size());
|
||||
FOR_STAT_ARRAY(result, s)
|
||||
{
|
||||
fitSample(minimizer, v, result, initCopy, s);
|
||||
setDataToSample(s);
|
||||
if (s == central)
|
||||
{
|
||||
sampleResult = data_.fit(minimizer, initCopy, v);
|
||||
initCopy = sampleResult.segment(0, initCopy.size());
|
||||
if (verbCopy != Minimizer::Verbosity::Debug)
|
||||
{
|
||||
minimizer.back()->setVerbosity(Minimizer::Verbosity::Silent);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
sampleResult = data_.fit(*(minimizer.back()), initCopy, v);
|
||||
}
|
||||
result[s] = sampleResult;
|
||||
result.chi2_[s] = sampleResult.getChi2();
|
||||
for (unsigned int j = 0; j < v.size(); ++j)
|
||||
{
|
||||
result.model_[j].resize(nSample_);
|
||||
result.model_[j][s] = sampleResult.getModel(j);
|
||||
}
|
||||
}
|
||||
minimizer.back()->setVerbosity(verbCopy);
|
||||
result.nPar_ = sampleResult.getNPar();
|
||||
result.nDof_ = sampleResult.nDof_;
|
||||
result.parName_ = sampleResult.parName_;
|
||||
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -103,13 +103,6 @@ public:
|
||||
// get internal XYStatData
|
||||
const XYStatData & getData(void);
|
||||
// fit
|
||||
void fitSample(std::vector<Minimizer *> &minimizer,
|
||||
const std::vector<const DoubleModel *> &v,
|
||||
SampleFitResult &sampleResult, DVec &init, Index s);
|
||||
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
|
||||
const std::vector<const DoubleModel *> &v, Index s);
|
||||
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
||||
const std::vector<const DoubleModel *> &v, Index s);
|
||||
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
|
||||
const std::vector<const DoubleModel *> &v);
|
||||
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
|
||||
|
@ -358,7 +358,7 @@ FitResult XYStatData::fit(vector<Minimizer *> &minimizer, const DVec &init,
|
||||
result = (*m)(chi2);
|
||||
totalInit = result;
|
||||
}
|
||||
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
|
||||
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
|
||||
result.chi2_ = chi2(result);
|
||||
result.nPar_ = nPar;
|
||||
result.nDof_ = layout.totalYSize - nPar;
|
||||
|
@ -24,7 +24,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
// parse arguments /////////////////////////////////////////////////////////
|
||||
OptParser opt;
|
||||
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan;
|
||||
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan, noGuess;
|
||||
string corrFileName, model, outFileName, outFmt, savePlot;
|
||||
Index ti, tf, shift, nPar, thinning;
|
||||
double svdTol;
|
||||
@ -59,6 +59,8 @@ int main(int argc, char *argv[])
|
||||
"show the fit plot");
|
||||
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
|
||||
"show the fit correlation heatmap");
|
||||
opt.addOption("", "no-guess" , OptParser::OptType::trigger, true,
|
||||
"do not try to guess fit parameters");
|
||||
opt.addOption("", "save-plot", OptParser::OptType::value, true,
|
||||
"saves the source and .pdf", "");
|
||||
opt.addOption("", "scan", OptParser::OptType::trigger, true,
|
||||
@ -87,6 +89,7 @@ int main(int argc, char *argv[])
|
||||
fold = opt.gotOption("fold");
|
||||
doPlot = opt.gotOption("p");
|
||||
doHeatmap = opt.gotOption("h");
|
||||
noGuess = opt.gotOption("no-guess");
|
||||
savePlot = opt.optionValue("save-plot");
|
||||
doScan = opt.gotOption("scan");
|
||||
switch (opt.optionValue<unsigned int>("v"))
|
||||
@ -114,7 +117,6 @@ int main(int argc, char *argv[])
|
||||
nt = corr[central].rows();
|
||||
corr = corr.block(0, 0, nt, 1);
|
||||
corr = CorrelatorUtils::shift(corr, shift);
|
||||
|
||||
if (doLaplace)
|
||||
{
|
||||
vector<double> filter = {1., -2., 1.};
|
||||
@ -156,11 +158,6 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
}
|
||||
|
||||
if (fold)
|
||||
{
|
||||
corr = CorrelatorUtils::fold(corr,modelPar);
|
||||
}
|
||||
|
||||
// fit /////////////////////////////////////////////////////////////////////
|
||||
DVec init(nPar);
|
||||
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
||||
@ -173,13 +170,14 @@ int main(int argc, char *argv[])
|
||||
fitter.setThinning(thinning);
|
||||
|
||||
// set initial values ******************************************************
|
||||
if (modelPar.type != CorrelatorType::undefined)
|
||||
if ((modelPar.type != CorrelatorType::undefined) and !noGuess)
|
||||
{
|
||||
init = CorrelatorModels::parameterGuess(corr, modelPar);
|
||||
}
|
||||
else
|
||||
{
|
||||
init.fill(0.1);
|
||||
init.fill(1.);
|
||||
init(0) = 0.2;
|
||||
}
|
||||
|
||||
// set limits for minimisers ***********************************************
|
||||
|
@ -17,6 +17,7 @@
|
||||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Core/Math.hpp>
|
||||
#include <LatAnalyze/Core/OptParser.hpp>
|
||||
#include <LatAnalyze/Core/Plot.hpp>
|
||||
#include <LatAnalyze/Io/Io.hpp>
|
||||
@ -53,6 +54,12 @@ int main(int argc, char *argv[])
|
||||
cerr << "usage: " << argv[0];
|
||||
cerr << " <options> <input file>" << endl;
|
||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||
cerr << "Available DWT filters:" << endl;
|
||||
for (auto &fv: DWTFilters::fromName)
|
||||
{
|
||||
cerr << fv.first << " ";
|
||||
}
|
||||
cerr << endl << endl;
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
@ -68,22 +75,45 @@ int main(int argc, char *argv[])
|
||||
DMatSample in = Io::load<DMatSample>(inFilename), res;
|
||||
Index nSample = in.size(), n = in[central].rows();
|
||||
vector<DMatSample> out(ss ? 1 : level, DMatSample(nSample)),
|
||||
outh(ss ? 0 : level, DMatSample(nSample));
|
||||
outh(ss ? 0 : level, DMatSample(nSample)),
|
||||
concath(ss ? 0 : level, DMatSample(nSample));
|
||||
DMatSample concat(nSample, n, 1);
|
||||
DWT dwt(*DWTFilters::fromName.at(filterName));
|
||||
vector<DWT::DWTLevel> dataDWT(level);
|
||||
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
in[s].conservativeResize(n, 1);
|
||||
}
|
||||
if (!ss)
|
||||
{
|
||||
DMatSample buf(nSample);
|
||||
|
||||
cout << "-- compute discrete wavelet transform" << endl;
|
||||
cout << "filter '" << filterName << "' / " << level << " level(s)" << endl;
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
dataDWT = dwt.forward(in[s].col(0), level);
|
||||
dataDWT = dwt.forward(in[s], level);
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
out[l][s] = dataDWT[l].first;
|
||||
outh[l][s] = dataDWT[l].second;
|
||||
out[l][s] = dataDWT[l].first;
|
||||
outh[l][s] = dataDWT[l].second;
|
||||
concath[l][s] = DWT::concat(dataDWT, l, true);
|
||||
}
|
||||
concat[s] = DWT::concat(dataDWT);
|
||||
}
|
||||
cout << "Data CDR " << Math::cdr(in.correlationMatrix()) << " dB" << endl;
|
||||
cout << "DWT CDR " << Math::cdr(concat.correlationMatrix()) << " dB" << endl;
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
cout << "DWT level " << l << " CDR: L= ";
|
||||
cout << Math::cdr(out[l].correlationMatrix()) << " dB / H= ";
|
||||
cout << Math::cdr(outh[l].correlationMatrix()) << " dB" << endl;
|
||||
}
|
||||
for (unsigned int l = 0; l < level; ++l)
|
||||
{
|
||||
cout << "DWT detail level " << l << " CDR: ";
|
||||
cout << Math::cdr(concath[l].correlationMatrix()) << " dB" << endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -102,7 +132,7 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
FOR_STAT_ARRAY(in, s)
|
||||
{
|
||||
dataDWT.back().first = in[s].col(0);
|
||||
dataDWT.back().first = in[s];
|
||||
out[0][s] = dwt.backward(dataDWT);
|
||||
}
|
||||
}
|
||||
@ -115,7 +145,9 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
Io::save<DMatSample>(out[l], outFilename + "/L" + strFrom(l) + ".h5");
|
||||
Io::save<DMatSample>(outh[l], outFilename + "/H" + strFrom(l) + ".h5");
|
||||
Io::save<DMatSample>(concath[l], outFilename + "/concatH" + strFrom(l) + ".h5");
|
||||
}
|
||||
Io::save<DMatSample>(concat, outFilename + "/concat.h5");
|
||||
}
|
||||
else
|
||||
{
|
||||
|
@ -18,42 +18,30 @@
|
||||
*/
|
||||
|
||||
#include <LatAnalyze/Io/Io.hpp>
|
||||
#include <LatAnalyze/Core/OptParser.hpp>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace Latan;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
OptParser opt;
|
||||
Index nSample;
|
||||
double val, err;
|
||||
string outFileName;
|
||||
|
||||
opt.addOption("r", "seed" , OptParser::OptType::value, true,
|
||||
"random generator seed (default: random)");
|
||||
opt.addOption("", "help" , OptParser::OptType::trigger, true,
|
||||
"show this help message and exit");
|
||||
|
||||
bool parsed = opt.parse(argc, argv);
|
||||
if (!parsed or (opt.getArgs().size() != 4) or opt.gotOption("help"))
|
||||
if (argc != 5)
|
||||
{
|
||||
cerr << "usage: " << argv[0];
|
||||
cerr << " <central value> <error> <nSample> <output file>" << endl;
|
||||
cerr << endl << "Possible options:" << endl << opt << endl;
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
val = strTo<double>(argv[1]);
|
||||
err = strTo<double>(argv[2]);
|
||||
nSample = strTo<Index>(argv[3]);
|
||||
outFileName = argv[4];
|
||||
|
||||
random_device rd;
|
||||
SeedType seed = (opt.gotOption("r")) ? opt.optionValue<SeedType>("r") : rd();
|
||||
mt19937 gen(seed);
|
||||
mt19937 gen(rd());
|
||||
normal_distribution<> dis(val, err);
|
||||
DSample res(nSample);
|
||||
|
||||
|
@ -68,7 +68,7 @@ int main(int argc, char *argv[])
|
||||
var = sample.varianceMatrix();
|
||||
corr = sample.correlationMatrix();
|
||||
|
||||
cout << "dynamic range " << Math::svdDynamicRangeDb(corr) << " dB" << endl;
|
||||
cout << "dynamic range " << Math::cdr(corr) << " dB" << endl;
|
||||
p << PlotCorrMatrix(corr);
|
||||
p.display();
|
||||
if (!outVarName.empty())
|
||||
|
@ -38,23 +38,9 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
DMatSample s = Io::load<DMatSample>(fileName);
|
||||
string name = Io::getFirstName(fileName);
|
||||
Index nRows = s[central].rows();
|
||||
Index nCols = s[central].cols();
|
||||
cout << scientific;
|
||||
cout << "central value +/- standard deviation\n" << endl;
|
||||
cout << "Re:" << endl;
|
||||
for(Index i = 0; i < nRows; i++)
|
||||
{
|
||||
cout << s[central](i,0) << " +/- " << s.variance().cwiseSqrt()(i,0) << endl;
|
||||
}
|
||||
if(nCols == 2)
|
||||
{
|
||||
cout << "\nIm:" << endl;
|
||||
for(Index i = 0; i < nRows; i++)
|
||||
{
|
||||
cout << s[central](i,1) << " +/- " << s.variance().cwiseSqrt()(i,1) << endl;
|
||||
}
|
||||
}
|
||||
cout << "central value:\n" << s[central] << endl;
|
||||
cout << "standard deviation:\n" << s.variance().cwiseSqrt() << endl;
|
||||
if (!copy.empty())
|
||||
{
|
||||
Io::save(s, copy, File::Mode::write, name);
|
||||
@ -65,8 +51,8 @@ int main(int argc, char *argv[])
|
||||
DSample s = Io::load<DSample>(fileName);
|
||||
string name = Io::getFirstName(fileName);
|
||||
cout << scientific;
|
||||
cout << "central value +/- standard deviation\n" << endl;
|
||||
cout << s[central] << " +/- " << sqrt(s.variance()) << endl;
|
||||
cout << "central value:\n" << s[central] << endl;
|
||||
cout << "standard deviation:\n" << sqrt(s.variance()) << endl;
|
||||
if (!copy.empty())
|
||||
{
|
||||
Io::save(s, copy, File::Mode::write, name);
|
||||
|
Reference in New Issue
Block a user