1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2025-06-22 08:52:01 +01:00

3 Commits

12 changed files with 58 additions and 177 deletions

View File

@ -1,6 +1,6 @@
name: Build macOS name: Build macOS
on: [push] on: [push, workflow_dispatch]
jobs: jobs:
build: build:

View File

@ -7,7 +7,7 @@
using namespace std; using namespace std;
using namespace Latan; using namespace Latan;
constexpr Index size = 8; constexpr Index n = 8;
constexpr Index nDraw = 20000; constexpr Index nDraw = 20000;
constexpr Index nSample = 2000; constexpr Index nSample = 2000;
const string stateFileName = "exRand.seed"; const string stateFileName = "exRand.seed";
@ -40,14 +40,14 @@ int main(void)
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.); p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);
p.display(); p.display();
DMat var(size, size); DMat var(n, n);
DVec mean(size); DVec mean(n);
DMatSample sample(nSample, size, 1); DMatSample sample(nSample, n, 1);
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl; cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
var = DMat::Random(size, size); var = DMat::Random(n, n);
var *= var.adjoint(); var *= var.adjoint();
mean = DVec::Random(size); mean = DVec::Random(n);
RandomNormal mgauss(mean, var, rd()); RandomNormal mgauss(mean, var, rd());
sample[central] = mgauss(); sample[central] = mgauss();
FOR_STAT_ARRAY(sample, s) FOR_STAT_ARRAY(sample, s)

View File

@ -108,23 +108,6 @@ inline std::string strFrom(const T x)
} }
// specialization for vectors // specialization for vectors
template<>
inline std::vector<Index> strTo<std::vector<Index>>(const std::string &str)
{
std::vector<Index> res;
std::vector<double> vbuf;
double buf;
std::istringstream stream(str);
while (!stream.eof())
{
stream >> buf;
res.push_back(buf);
}
return res;
}
template<> template<>
inline DVec strTo<DVec>(const std::string &str) inline DVec strTo<DVec>(const std::string &str)
{ {

View File

@ -253,39 +253,16 @@ DMatSample CorrelatorUtils::shift(const DMatSample &c, const Index ts)
} }
} }
DMatSample CorrelatorUtils::fold(const DMatSample &c, const CorrelatorModels::ModelPar &par) DMatSample CorrelatorUtils::fold(const DMatSample &c)
{ {
const Index nt = c[central].rows(); const Index nt = c[central].rows();
DMatSample buf = c; DMatSample buf = c;
int sign;
bool fold = false;
switch (par.type) FOR_STAT_ARRAY(buf, s)
{ {
case CorrelatorType::cosh: for (Index t = 0; t < nt; ++t)
case CorrelatorType::cst:
sign = 1;
fold = true;
break;
case CorrelatorType::sinh:
sign = -1;
fold = true;
break;
case CorrelatorType::linear:
cout << "Linear model is asymmetric: will not fold." << endl;
break;
default:
break;
}
if (fold)
{
FOR_STAT_ARRAY(buf, s)
{ {
for (Index t = 0; t < nt; ++t) buf[s](t) = 0.5*(c[s](t) + c[s]((nt - t) % nt));
{
buf[s](t) = 0.5*(c[s](t) + sign*c[s]((nt - t) % nt));
}
} }
} }

View File

@ -56,7 +56,7 @@ namespace CorrelatorModels
namespace CorrelatorUtils namespace CorrelatorUtils
{ {
DMatSample shift(const DMatSample &c, const Index ts); DMatSample shift(const DMatSample &c, const Index ts);
DMatSample fold(const DMatSample &c, const CorrelatorModels::ModelPar &par); DMatSample fold(const DMatSample &c);
DMatSample fourierTransform(const DMatSample &c, FFT &fft, DMatSample fourierTransform(const DMatSample &c, FFT &fft,
const unsigned int dir = FFT::Forward); const unsigned int dir = FFT::Forward);
}; };

View File

@ -146,16 +146,6 @@ double Histogram::getX(const Index i) const
return x_(i); return x_(i);
} }
double Histogram::getXMin(void) const
{
return xMin_;
}
double Histogram::getXMax(void) const
{
return xMax_;
}
double Histogram::operator[](const Index i) const double Histogram::operator[](const Index i) const
{ {
return bin_(i)*(isNormalized() ? norm_ : 1.); return bin_(i)*(isNormalized() ? norm_ : 1.);

View File

@ -52,8 +52,6 @@ public:
const StatArray<double> & getData(void) const; const StatArray<double> & getData(void) const;
const StatArray<double> & getWeight(void) const; const StatArray<double> & getWeight(void) const;
double getX(const Index i) const; double getX(const Index i) const;
double getXMin(void) const;
double getXMax(void) const;
double operator[](const Index i) const; double operator[](const Index i) const;
double operator()(const double x) const; double operator()(const double x) const;
// percentiles & confidence interval // percentiles & confidence interval

View File

@ -300,67 +300,6 @@ const XYStatData & XYSampleData::getData(void)
} }
// fit ///////////////////////////////////////////////////////////////////////// // fit /////////////////////////////////////////////////////////////////////////
void XYSampleData::fitSample(std::vector<Minimizer *> &minimizer,
const std::vector<const DoubleModel *> &v,
SampleFitResult &result,
DVec &init,
Index s)
{
result.resize(nSample_);
result.chi2_.resize(nSample_);
result.model_.resize(v.size());
FitResult sampleResult;
setDataToSample(s);
if (s == central)
{
sampleResult = data_.fit(minimizer, init, v);
init = sampleResult.segment(0, init.size());
result.nPar_ = sampleResult.getNPar();
result.nDof_ = sampleResult.nDof_;
result.parName_ = sampleResult.parName_;
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
}
else
{
sampleResult = data_.fit(*(minimizer.back()), init, v);
}
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
for (unsigned int j = 0; j < v.size(); ++j)
{
result.model_[j].resize(nSample_);
result.model_[j][s] = sampleResult.getModel(j);
}
}
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v,
Index s)
{
computeVarMat();
SampleFitResult result;
DVec initCopy = init;
fitSample(minimizer, v, result, initCopy, s);
return result;
}
SampleFitResult XYSampleData::fit(Minimizer &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v,
Index s)
{
vector<Minimizer *> mv{&minimizer};
return fit(mv, init, v, s);
}
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer, SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
const DVec &init, const DVec &init,
const std::vector<const DoubleModel *> &v) const std::vector<const DoubleModel *> &v)
@ -368,14 +307,43 @@ SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
computeVarMat(); computeVarMat();
SampleFitResult result; SampleFitResult result;
FitResult sampleResult;
DVec initCopy = init; DVec initCopy = init;
Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity(); Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity();
result.resize(nSample_);
result.chi2_.resize(nSample_);
result.model_.resize(v.size());
FOR_STAT_ARRAY(result, s) FOR_STAT_ARRAY(result, s)
{ {
fitSample(minimizer, v, result, initCopy, s); setDataToSample(s);
if (s == central)
{
sampleResult = data_.fit(minimizer, initCopy, v);
initCopy = sampleResult.segment(0, initCopy.size());
if (verbCopy != Minimizer::Verbosity::Debug)
{
minimizer.back()->setVerbosity(Minimizer::Verbosity::Silent);
}
}
else
{
sampleResult = data_.fit(*(minimizer.back()), initCopy, v);
}
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
for (unsigned int j = 0; j < v.size(); ++j)
{
result.model_[j].resize(nSample_);
result.model_[j][s] = sampleResult.getModel(j);
}
} }
minimizer.back()->setVerbosity(verbCopy); minimizer.back()->setVerbosity(verbCopy);
result.nPar_ = sampleResult.getNPar();
result.nDof_ = sampleResult.nDof_;
result.parName_ = sampleResult.parName_;
result.corrRangeDb_ = Math::svdDynamicRangeDb(getFitCorrMat());
return result; return result;
} }

View File

@ -103,13 +103,6 @@ public:
// get internal XYStatData // get internal XYStatData
const XYStatData & getData(void); const XYStatData & getData(void);
// fit // fit
void fitSample(std::vector<Minimizer *> &minimizer,
const std::vector<const DoubleModel *> &v,
SampleFitResult &sampleResult, DVec &init, Index s);
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v, Index s);
SampleFitResult fit(Minimizer &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v, Index s);
SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init, SampleFitResult fit(std::vector<Minimizer *> &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &v); const std::vector<const DoubleModel *> &v);
SampleFitResult fit(Minimizer &minimizer, const DVec &init, SampleFitResult fit(Minimizer &minimizer, const DVec &init,

View File

@ -24,7 +24,7 @@ int main(int argc, char *argv[])
{ {
// parse arguments ///////////////////////////////////////////////////////// // parse arguments /////////////////////////////////////////////////////////
OptParser opt; OptParser opt;
bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan; bool parsed, doLaplace, doPlot, doHeatmap, doCorr, fold, doScan, noGuess;
string corrFileName, model, outFileName, outFmt, savePlot; string corrFileName, model, outFileName, outFmt, savePlot;
Index ti, tf, shift, nPar, thinning; Index ti, tf, shift, nPar, thinning;
double svdTol; double svdTol;
@ -59,6 +59,8 @@ int main(int argc, char *argv[])
"show the fit plot"); "show the fit plot");
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true, opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
"show the fit correlation heatmap"); "show the fit correlation heatmap");
opt.addOption("", "no-guess" , OptParser::OptType::trigger, true,
"do not try to guess fit parameters");
opt.addOption("", "save-plot", OptParser::OptType::value, true, opt.addOption("", "save-plot", OptParser::OptType::value, true,
"saves the source and .pdf", ""); "saves the source and .pdf", "");
opt.addOption("", "scan", OptParser::OptType::trigger, true, opt.addOption("", "scan", OptParser::OptType::trigger, true,
@ -87,6 +89,7 @@ int main(int argc, char *argv[])
fold = opt.gotOption("fold"); fold = opt.gotOption("fold");
doPlot = opt.gotOption("p"); doPlot = opt.gotOption("p");
doHeatmap = opt.gotOption("h"); doHeatmap = opt.gotOption("h");
noGuess = opt.gotOption("no-guess");
savePlot = opt.optionValue("save-plot"); savePlot = opt.optionValue("save-plot");
doScan = opt.gotOption("scan"); doScan = opt.gotOption("scan");
switch (opt.optionValue<unsigned int>("v")) switch (opt.optionValue<unsigned int>("v"))
@ -114,7 +117,6 @@ int main(int argc, char *argv[])
nt = corr[central].rows(); nt = corr[central].rows();
corr = corr.block(0, 0, nt, 1); corr = corr.block(0, 0, nt, 1);
corr = CorrelatorUtils::shift(corr, shift); corr = CorrelatorUtils::shift(corr, shift);
if (doLaplace) if (doLaplace)
{ {
vector<double> filter = {1., -2., 1.}; vector<double> filter = {1., -2., 1.};
@ -156,11 +158,6 @@ int main(int argc, char *argv[])
} }
} }
if (fold)
{
corr = CorrelatorUtils::fold(corr,modelPar);
}
// fit ///////////////////////////////////////////////////////////////////// // fit /////////////////////////////////////////////////////////////////////
DVec init(nPar); DVec init(nPar);
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM); NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
@ -173,13 +170,14 @@ int main(int argc, char *argv[])
fitter.setThinning(thinning); fitter.setThinning(thinning);
// set initial values ****************************************************** // set initial values ******************************************************
if (modelPar.type != CorrelatorType::undefined) if ((modelPar.type != CorrelatorType::undefined) and !noGuess)
{ {
init = CorrelatorModels::parameterGuess(corr, modelPar); init = CorrelatorModels::parameterGuess(corr, modelPar);
} }
else else
{ {
init.fill(0.1); init.fill(1.);
init(0) = 0.2;
} }
// set limits for minimisers *********************************************** // set limits for minimisers ***********************************************

View File

@ -18,42 +18,30 @@
*/ */
#include <LatAnalyze/Io/Io.hpp> #include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Core/OptParser.hpp>
using namespace std; using namespace std;
using namespace Latan; using namespace Latan;
int main(int argc, char *argv[]) int main(int argc, char *argv[])
{ {
OptParser opt;
Index nSample; Index nSample;
double val, err; double val, err;
string outFileName; string outFileName;
opt.addOption("r", "seed" , OptParser::OptType::value, true, if (argc != 5)
"random generator seed (default: random)");
opt.addOption("", "help" , OptParser::OptType::trigger, true,
"show this help message and exit");
bool parsed = opt.parse(argc, argv);
if (!parsed or (opt.getArgs().size() != 4) or opt.gotOption("help"))
{ {
cerr << "usage: " << argv[0]; cerr << "usage: " << argv[0];
cerr << " <central value> <error> <nSample> <output file>" << endl; cerr << " <central value> <error> <nSample> <output file>" << endl;
cerr << endl << "Possible options:" << endl << opt << endl;
return EXIT_FAILURE; return EXIT_FAILURE;
} }
val = strTo<double>(argv[1]); val = strTo<double>(argv[1]);
err = strTo<double>(argv[2]); err = strTo<double>(argv[2]);
nSample = strTo<Index>(argv[3]); nSample = strTo<Index>(argv[3]);
outFileName = argv[4]; outFileName = argv[4];
random_device rd; random_device rd;
SeedType seed = (opt.gotOption("r")) ? opt.optionValue<SeedType>("r") : rd(); mt19937 gen(rd());
mt19937 gen(seed);
normal_distribution<> dis(val, err); normal_distribution<> dis(val, err);
DSample res(nSample); DSample res(nSample);

View File

@ -38,23 +38,9 @@ int main(int argc, char *argv[])
{ {
DMatSample s = Io::load<DMatSample>(fileName); DMatSample s = Io::load<DMatSample>(fileName);
string name = Io::getFirstName(fileName); string name = Io::getFirstName(fileName);
Index nRows = s[central].rows();
Index nCols = s[central].cols();
cout << scientific; cout << scientific;
cout << "central value +/- standard deviation\n" << endl; cout << "central value:\n" << s[central] << endl;
cout << "Re:" << endl; cout << "standard deviation:\n" << s.variance().cwiseSqrt() << endl;
for(Index i = 0; i < nRows; i++)
{
cout << s[central](i,0) << " +/- " << s.variance().cwiseSqrt()(i,0) << endl;
}
if(nCols == 2)
{
cout << "\nIm:" << endl;
for(Index i = 0; i < nRows; i++)
{
cout << s[central](i,1) << " +/- " << s.variance().cwiseSqrt()(i,1) << endl;
}
}
if (!copy.empty()) if (!copy.empty())
{ {
Io::save(s, copy, File::Mode::write, name); Io::save(s, copy, File::Mode::write, name);
@ -65,8 +51,8 @@ int main(int argc, char *argv[])
DSample s = Io::load<DSample>(fileName); DSample s = Io::load<DSample>(fileName);
string name = Io::getFirstName(fileName); string name = Io::getFirstName(fileName);
cout << scientific; cout << scientific;
cout << "central value +/- standard deviation\n" << endl; cout << "central value:\n" << s[central] << endl;
cout << s[central] << " +/- " << sqrt(s.variance()) << endl; cout << "standard deviation:\n" << sqrt(s.variance()) << endl;
if (!copy.empty()) if (!copy.empty())
{ {
Io::save(s, copy, File::Mode::write, name); Io::save(s, copy, File::Mode::write, name);