/*
* FitInterface.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see .
*/
#include
#include
using namespace std;
using namespace Latan;
/******************************************************************************
* FitInterface implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
FitInterface::FitInterface(void)
: xName_("x")
, yName_("y")
{}
// copy object (not as a constructor to be accessed from derived class) ////////
void FitInterface::copyInterface(const FitInterface &d)
{
*this = d;
scheduleFitVarMatInit();
}
// add dimensions //////////////////////////////////////////////////////////////
void FitInterface::addXDim(const Index nData, const string name,
const bool isExact)
{
if (getYSize() != 0)
{
LATAN_ERROR(Logic, "cannot add an X dimension if fit data is "
"not empty");
}
else
{
xSize_.push_back(nData);
xIsExact_.push_back(isExact);
maxDataIndex_ *= nData;
createXData(name, nData);
scheduleLayoutInit();
scheduleDataCoordInit();
if (!name.empty())
{
xName().setName(getNXDim() - 1, name);
}
}
}
void FitInterface::addYDim(const string name)
{
yDataIndex_.push_back(map());
createYData(name);
scheduleLayoutInit();
if (!name.empty())
{
yName().setName(getNYDim() - 1, name);
}
}
// access //////////////////////////////////////////////////////////////////////
Index FitInterface::getNXDim(void) const
{
return xSize_.size();
}
Index FitInterface::getNYDim(void) const
{
return yDataIndex_.size();
}
Index FitInterface::getXSize(void) const
{
Index size = 0;
for (Index i = 0; i < getNXDim(); ++i)
{
size += getXSize(i);
}
return size;
}
Index FitInterface::getXSize(const Index i) const
{
checkXDim(i);
return xSize_[i];
}
Index FitInterface::getYSize(void) const
{
Index size = 0;
for (Index j = 0; j < getNYDim(); ++j)
{
size += getYSize(j);
}
return size;
}
Index FitInterface::getYSize(const Index j) const
{
checkYDim(j);
return static_cast(yDataIndex_[j].size());
}
Index FitInterface::getXFitSize(void) const
{
Index size = 0;
for (Index i = 0; i < getNXDim(); ++i)
{
size += getXFitSize(i);
}
return size;
}
Index FitInterface::getXFitSize(const Index i) const
{
set fitCoord;
vector v;
checkXDim(i);
for (Index j = 0; j < getNYDim(); ++j)
{
for (auto &p: yDataIndex_[j])
{
if (p.second)
{
v = dataCoord(p.first);
fitCoord.insert(v[i]);
}
}
}
return fitCoord.size();
}
Index FitInterface::getYFitSize(void) const
{
Index size = 0;
for (Index j = 0; j < getNYDim(); ++j)
{
size += getYFitSize(j);
}
return size;
}
Index FitInterface::getYFitSize(const Index j) const
{
Index size;
auto pred = [](const pair &p)
{
return p.second;
};
checkYDim(j);
size = count_if(yDataIndex_[j].begin(), yDataIndex_[j].end(), pred);
return size;
}
Index FitInterface::getMaxDataIndex(void) const
{
return maxDataIndex_;
}
const set & FitInterface::getDataIndexSet(void) const
{
return dataIndexSet_;
}
double FitInterface::getSvdTolerance(void) const
{
return svdTol_;
}
void FitInterface::setSvdTolerance(const double &tol)
{
svdTol_ = tol;
scheduleLayoutInit();
}
VarName & FitInterface::xName(void)
{
return xName_;
}
const VarName & FitInterface::xName(void) const
{
return xName_;
}
VarName & FitInterface::yName(void)
{
return yName_;
}
const VarName & FitInterface::yName(void) const
{
return yName_;
}
// Y dimension index helper ////////////////////////////////////////////////////
Index FitInterface::dataIndex(const vector &v) const
{
Index k, n = v.size();
checkDataCoord(v);
k = xSize_[1]*v[0];
for (unsigned int d = 1; d < n-1; ++d)
{
k = xSize_[d+1]*(v[d] + k);
}
k += v[n-1];
return k;
}
const vector & FitInterface::dataCoord(const Index k) const
{
checkDataIndex(k);
updateDataCoord();
return dataCoord_.at(k);
}
// enable fit points ///////////////////////////////////////////////////////////
void FitInterface::fitPoint(const bool isFitPoint, const Index k, const Index j)
{
checkPoint(k, j);
yDataIndex_[j][k] = isFitPoint;
scheduleLayoutInit();
}
// variance interface //////////////////////////////////////////////////////////
void FitInterface::assumeXExact(const bool isExact, const Index i)
{
checkXDim(i);
xIsExact_[i] = isExact;
scheduleLayoutInit();
}
void FitInterface::addCorr(set> &s, const bool isCorr,
const array &c)
{
if (isCorr)
{
s.insert(c);
}
else
{
auto it = s.find(c);
if (it != s.end())
{
s.erase(it);
}
}
}
void FitInterface::assumeXXCorrelated(const bool isCorr, const Index r1,
const Index i1, const Index r2,
const Index i2)
{
array c{{r1, i1, r2, i2}};
checkXIndex(r1, i1);
checkXIndex(r2, i2);
if ((i1 != i2) or (r1 != r2))
{
addCorr(xxCorr_, isCorr, c);
}
scheduleFitVarMatInit();
}
void FitInterface::assumeXXCorrelated(const bool isCorr, const Index i1,
const Index i2)
{
for (Index r1 = 0; r1 < getXSize(i1); ++r1)
for (Index r2 = 0; r2 < getXSize(i2); ++r2)
{
assumeXXCorrelated(isCorr, r1, i1, r2, i2);
}
}
void FitInterface::assumeYYCorrelated(const bool isCorr, const Index k1,
const Index j1, const Index k2,
const Index j2)
{
array c{{k1, j1, k2, j2}};
checkPoint(k1, j1);
checkPoint(k2, j2);
if ((j1 != j2) or (k1 != k2))
{
addCorr(yyCorr_, isCorr, c);
}
scheduleFitVarMatInit();
}
void FitInterface::assumeYYCorrelated(const bool isCorr, const Index j1,
const Index j2)
{
checkYDim(j1);
checkYDim(j2);
for (auto &p1: yDataIndex_[j1])
for (auto &p2: yDataIndex_[j2])
{
assumeYYCorrelated(isCorr, p1.first, j1, p2.first, j2);
}
}
void FitInterface::assumeXYCorrelated(const bool isCorr, const Index r,
const Index i, const Index k,
const Index j)
{
array c{{r, i, k, j}};
checkXIndex(r, i);
checkPoint(k, j);
addCorr(xyCorr_, isCorr, c);
scheduleFitVarMatInit();
}
void FitInterface::assumeXYCorrelated(const bool isCorr, const Index i,
const Index j)
{
checkYDim(j);
for (Index r = 0; r < getXSize(i); ++r)
for (auto &p: yDataIndex_[j])
{
assumeXYCorrelated(isCorr, r, i, p.first, j);
}
}
// tests ///////////////////////////////////////////////////////////////////////
bool FitInterface::pointExists(const Index k) const
{
bool isUsed = false;
for (Index j = 0; j < getNYDim(); ++j)
{
isUsed = isUsed or pointExists(k, j);
}
return isUsed;
}
bool FitInterface::pointExists(const Index k, const Index j) const
{
checkDataIndex(k);
checkYDim(j);
return !(yDataIndex_[j].find(k) == yDataIndex_[j].end());
}
bool FitInterface::isXExact(const Index i) const
{
checkXDim(i);
return xIsExact_[i];
}
bool FitInterface::isXUsed(const Index r, const Index i, const bool inFit) const
{
vector v;
checkXDim(i);
for (Index j = 0; j < getNYDim(); ++j)
{
for (auto &p: yDataIndex_[j])
{
if (p.second or !inFit)
{
v = dataCoord(p.first);
if (v[i] == r)
{
return true;
}
}
}
}
return false;
}
bool FitInterface::isFitPoint(const Index k, const Index j) const
{
checkPoint(k, j);
return yDataIndex_[j].at(k);
}
bool FitInterface::isXXCorrelated(const Index r1, const Index i1,
const Index r2, const Index i2) const
{
array c{{r1, i1, r2, i2}};
auto it = xxCorr_.find(c);
return (it != xxCorr_.end());
}
bool FitInterface::isYYCorrelated(const Index k1, const Index j1,
const Index k2, const Index j2) const
{
array c{{k1, j1, k2, j2}};
auto it = yyCorr_.find(c);
return (it != yyCorr_.end());
}
bool FitInterface::isXYCorrelated(const Index r, const Index i,
const Index k, const Index j) const
{
array c{{r, i, k, j}};
auto it = xyCorr_.find(c);
return (it != xyCorr_.end());
}
bool FitInterface::hasCorrelations(void) const
{
return ((xxCorr_.size() != 0) or (yyCorr_.size() != 0)
or (xyCorr_.size() != 0));
}
// make correlation filter for fit variance matrix /////////////////////////////
DMat FitInterface::makeCorrFilter(void)
{
updateLayout();
DMat f = DMat::Identity(layout.totalSize, layout.totalSize);
Index row, col;
for (auto &c: xxCorr_)
{
row = indX(c[0], c[1]);
col = indX(c[2], c[3]);
if ((row != -1) and (col != -1))
{
f(row, col) = 1.;
f(col, row) = 1.;
}
}
for (auto &c: yyCorr_)
{
row = indY(c[0], c[1]);
col = indY(c[2], c[3]);
if ((row != -1) and (col != -1))
{
f(row, col) = 1.;
f(col, row) = 1.;
}
}
for (auto &c: xyCorr_)
{
row = indX(c[0], c[1]);
col = indY(c[2], c[3]);
if ((row != -1) and (col != -1))
{
f(row, col) = 1.;
f(col, row) = 1.;
}
}
return f;
}
// schedule variance matrix initialization /////////////////////////////////////
void FitInterface::scheduleFitVarMatInit(const bool init)
{
initVarMat_ = init;
}
// register a data point ///////////////////////////////////////////////////////
void FitInterface::registerDataPoint(const Index k, const Index j)
{
checkYDim(j);
yDataIndex_[j][k] = true;
dataIndexSet_.insert(k);
scheduleLayoutInit();
}
// coordinate buffering ////////////////////////////////////////////////////////
void FitInterface::scheduleDataCoordInit(void)
{
initDataCoord_ = true;
scheduleFitVarMatInit();
}
void FitInterface::updateDataCoord(void) const
{
FitInterface * modThis = const_cast(this);
if (initDataCoord_)
{
modThis->dataCoord_.clear();
for (auto k: getDataIndexSet())
{
modThis->dataCoord_[k] = rowMajToCoord(k);
}
modThis->initDataCoord_ = false;
}
}
// global layout management ////////////////////////////////////////////////////
void FitInterface::scheduleLayoutInit(void)
{
initLayout_ = true;
scheduleFitVarMatInit();
}
bool FitInterface::initVarMat(void) const
{
return initVarMat_;
}
void FitInterface::updateLayout(void) const
{
if (initLayout_)
{
FitInterface * modThis = const_cast(this);
Layout & l = modThis->layout;
Index size, ifit;
vector v;
l.nXFitDim = 0;
l.nYFitDim = 0;
l.totalSize = 0;
l.totalXSize = 0;
l.totalYSize = 0;
l.xSize.clear();
l.ySize.clear();
l.dataIndexSet.clear();
l.xDim.clear();
l.yDim.clear();
l.xFitDim.clear();
l.yFitDim.clear();
l.x.clear();
l.y.clear();
l.xFit.clear();
l.yFit.clear();
ifit = 0;
for (Index i = 0; i < getNXDim(); ++i)
{
if (!xIsExact_[i])
{
l.nXFitDim++;
size = getXFitSize(i);
l.xSize.push_back(size);
l.totalXSize += size;
l.xDim.push_back(i);
l.xFitDim.push_back(layout.xDim.size() - 1);
l.x.push_back(vector());
l.xFit.push_back(vector());
for (Index r = 0; r < getXSize(i); ++r)
{
if (isXUsed(r, i))
{
l.x[ifit].push_back(r);
l.xFit[i].push_back(layout.x[ifit].size() - 1);
}
else
{
l.xFit[i].push_back(-1);
}
}
ifit++;
}
else
{
l.xFitDim.push_back(-1);
l.xFit.push_back(vector());
for (Index r = 0; r < getXSize(i); ++r)
{
l.xFit[i].push_back(-1);
}
}
}
for (Index j = 0; j < getNYDim(); ++j)
{
Index s = 0;
l.nYFitDim++;
size = getYFitSize(j);
l.ySize.push_back(size);
l.totalYSize += size;
l.yDim.push_back(j);
l.yFitDim.push_back(layout.yDim.size() - 1);
l.y.push_back(vector());
l.yFit.push_back(vector());
l.data.push_back(vector());
l.yFitFromData.push_back(map());
for (auto &p: yDataIndex_[j])
{
if (p.second)
{
l.dataIndexSet.insert(p.first);
l.y[j].push_back(s);
l.yFit[j].push_back(layout.y[j].size() - 1);
l.data[j].push_back(p.first);
l.yFitFromData[j][p.first] = layout.y[j].size() - 1;
}
else
{
l.yFit[j].push_back(-1);
l.yFitFromData[j][p.first] = -1;
}
s++;
}
}
l.totalSize = layout.totalXSize + layout.totalYSize;
l.nXFitDim = static_cast(layout.xSize.size());
l.nYFitDim = static_cast(layout.ySize.size());
l.xIndFromData.resize(getMaxDataIndex());
for (Index k: layout.dataIndexSet)
{
v = dataCoord(k);
for (Index i = 0; i < getNXDim(); ++i)
{
l.xIndFromData[k].push_back(indX(v[i], i));
}
}
modThis->initLayout_ = false;
}
}
Index FitInterface::indX(const Index r, const Index i) const
{
Index ind = -1;
if (layout.xFit[i][r] != -1)
{
Index ifit = layout.xFitDim[i], rfit = layout.xFit[i][r];
ind = layout.totalYSize;
for (Index a = 0; a < ifit; ++a)
{
ind += layout.xSize[a];
}
ind += rfit;
}
return ind;
}
Index FitInterface::indY(const Index k, const Index j) const
{
Index ind = -1;
if (layout.yFitFromData[j].at(k) != -1)
{
Index jfit = layout.yFitDim[j], sfit = layout.yFitFromData[j].at(k);
ind = 0;
for (Index b = 0; b < jfit; ++b)
{
ind += layout.ySize[b];
}
ind += sfit;
}
return ind;
}
// function to convert an row-major index into coordinates /////////////////////
vector FitInterface::rowMajToCoord(const Index k) const
{
vector v(getNXDim());
Index buf, dimProd;
checkDataIndex(k);
buf = k;
dimProd = 1;
for (Index d = getNXDim() - 1; d >= 0; --d)
{
v[d] = (buf/dimProd)%xSize_[d];
buf -= dimProd*v[d];
dimProd *= xSize_[d];
}
return v;
}
// IO //////////////////////////////////////////////////////////////////////////
ostream & Latan::operator<<(ostream &out, FitInterface &f)
{
out << "X dimensions: " << f.getNXDim() << endl;
for (Index i = 0; i < f.getNXDim(); ++i)
{
out << " * " << i << " \"" << f.xName().getName(i) << "\": ";
out << f.getXSize(i) << " value(s)";
if (f.isXExact(i))
{
out << " (assumed exact)";
}
out << endl;
}
out << "Y dimensions: " << f.getNYDim() << endl;
for (Index j = 0; j < f.getNYDim(); ++j)
{
out << " * " << j << " \"" << f.yName().getName(j) << "\": ";
out << f.getYSize(j) << " value(s)" << endl;
for (auto &p: f.yDataIndex_[j])
{
out << " " << setw(3) << p.first << " (";
for (auto vi: f.dataCoord(p.first))
{
out << vi << ",";
}
out << "\b) fit: " << (p.second ? "true" : "false") << endl;
}
}
out << "X/X correlations (r1 i1 r2 i2): ";
if (f.xxCorr_.empty())
{
out << "no" << endl;
}
else
{
out << endl;
for (auto &c: f.xxCorr_)
{
out << " * ";
for (auto i: c)
{
out << i << " ";
}
out << endl;
}
}
out << "Y/Y correlations (k1 j1 k2 j2): ";
if (f.yyCorr_.empty())
{
out << "no" << endl;
}
else
{
out << endl;
for (auto &c: f.yyCorr_)
{
out << " * ";
for (auto i: c)
{
out << i << " ";
}
out << endl;
}
}
out << "X/Y correlations (r i k j): ";
if (f.xyCorr_.empty())
{
out << "no";
}
else
{
out << endl;
for (auto &c: f.xyCorr_)
{
out << " * ";
for (auto i: c)
{
out << i << " ";
}
out << endl;
}
}
return out;
}