/* * XYSampleData.cpp, part of LatAnalyze 3 * * Copyright (C) 2013 - 2020 Antonin Portelli * * LatAnalyze 3 is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * LatAnalyze 3 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LatAnalyze 3. If not, see . */ #include #include #include using namespace std; using namespace Latan; /****************************************************************************** * SampleFitResult implementation * ******************************************************************************/ double SampleFitResult::getChi2(const Index s) const { return chi2_[s]; } const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const { return chi2_; } double SampleFitResult::getChi2PerDof(const Index s) const { return chi2_[s]/getNDof(); } DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const { return chi2_/getNDof(); } double SampleFitResult::getNDof(void) const { return static_cast(nDof_); } Index SampleFitResult::getNPar(void) const { return nPar_; } double SampleFitResult::getPValue(const Index s) const { return Math::chi2PValue(getChi2(s), getNDof()); } double SampleFitResult::getCcdf(const Index s) const { return Math::chi2Ccdf(getChi2(s), getNDof()); } const DoubleFunction & SampleFitResult::getModel(const Index s, const Index j) const { return model_[j][s]; } const DoubleFunctionSample & SampleFitResult::getModel( const PlaceHolder ph __dumb, const Index j) const { return model_[j]; } FitResult SampleFitResult::getFitResult(const Index s) const { FitResult fit; fit = (*this)[s]; fit.chi2_ = getChi2(); fit.nDof_ = static_cast(getNDof()); fit.model_.resize(model_.size()); for (unsigned int k = 0; k < model_.size(); ++k) { fit.model_[k] = model_[k][s]; } return fit; } // IO ////////////////////////////////////////////////////////////////////////// void SampleFitResult::print(const bool printXsi, ostream &out) const { char buf[256]; Index pMax = printXsi ? size() : nPar_; DMat err = this->variance().cwiseSqrt(); sprintf(buf, "chi^2/dof= %.1e/%d= %.2e -- chi^2 CCDF= %.2e -- p-value= %.2e", getChi2(), static_cast(getNDof()), getChi2PerDof(), getCcdf(), getPValue()); out << buf << endl; for (Index p = 0; p < pMax; ++p) { sprintf(buf, "%8s= % e +/- %e", parName_[p].c_str(), (*this)[central](p), err(p)); out << buf << endl; } } /****************************************************************************** * XYSampleData implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// XYSampleData::XYSampleData(const Index nSample) : nSample_(nSample) {} // data access ///////////////////////////////////////////////////////////////// DSample & XYSampleData::x(const Index r, const Index i) { checkXIndex(r, i); scheduleDataInit(); scheduleComputeVarMat(); if (xData_[i][r].size() == 0) { xData_[i][r].resize(nSample_); } return xData_[i][r]; } const DSample & XYSampleData::x(const Index r, const Index i) const { checkXIndex(r, i); return xData_[i][r]; } const DMatSample & XYSampleData::x(const Index k) { checkDataIndex(k); updateXMap(); return xMap_.at(k); } DSample & XYSampleData::y(const Index k, const Index j) { checkYDim(j); if (!pointExists(k, j)) { registerDataPoint(k, j); } scheduleDataInit(); scheduleComputeVarMat(); if (yData_[j][k].size() == 0) { yData_[j][k].resize(nSample_); } return yData_[j][k]; } const DSample & XYSampleData::y(const Index k, const Index j) const { checkPoint(k, j); return yData_[j].at(k); } void XYSampleData::setUnidimData(const DMatSample &xData, const vector &v) { FOR_STAT_ARRAY(xData, s) FOR_VEC(xData[central], r) { x(r, 0)[s] = xData[s](r); for (unsigned int j = 0; j < v.size(); ++j) { y(r, j)[s] = (*(v[j]))[s](r); } } } const DMat & XYSampleData::getXXVar(const Index i1, const Index i2) { checkXDim(i1); checkXDim(i2); computeVarMat(); return data_.getXXVar(i1, i2); } const DMat & XYSampleData::getYYVar(const Index j1, const Index j2) { checkYDim(j1); checkYDim(j2); computeVarMat(); return data_.getYYVar(j1, j2); } const DMat & XYSampleData::getXYVar(const Index i, const Index j) { checkXDim(i); checkYDim(j); computeVarMat(); return data_.getXYVar(i, j); } DVec XYSampleData::getXError(const Index i) { checkXDim(i); computeVarMat(); return data_.getXError(i); } DVec XYSampleData::getYError(const Index j) { checkYDim(j); computeVarMat(); return data_.getYError(j); } // get total fit variance matrix and its pseudo-inverse //////////////////////// const DMat & XYSampleData::getFitVarMat(void) { computeVarMat(); return data_.getFitVarMat(); } const DMat & XYSampleData::getFitVarMatPInv(void) { computeVarMat(); return data_.getFitVarMatPInv(); } // set data to a particular sample ///////////////////////////////////////////// void XYSampleData::setDataToSample(const Index s) { if (initData_ or (s != dataSample_)) { for (Index i = 0; i < getNXDim(); ++i) for (Index r = 0; r < getXSize(i); ++r) { data_.x(r, i) = xData_[i][r][s]; } for (Index j = 0; j < getNYDim(); ++j) for (auto &p: yData_[j]) { data_.y(p.first, j) = p.second[s]; } dataSample_ = s; initData_ = false; } } // get internal XYStatData ///////////////////////////////////////////////////// const XYStatData & XYSampleData::getData(void) { setDataToSample(central); computeVarMat(); return data_; } // fit ///////////////////////////////////////////////////////////////////////// SampleFitResult XYSampleData::fit(std::vector &minimizer, const DVec &init, const std::vector &v) { computeVarMat(); SampleFitResult result; FitResult sampleResult; DVec initCopy = init; result.resize(nSample_); result.chi2_.resize(nSample_); result.model_.resize(v.size()); FOR_STAT_ARRAY(result, s) { setDataToSample(s); if (s == central) { sampleResult = data_.fit(minimizer, initCopy, v); initCopy = sampleResult.segment(0, initCopy.size()); } else { sampleResult = data_.fit(*(minimizer.back()), initCopy, v); } result[s] = sampleResult; result.chi2_[s] = sampleResult.getChi2(); for (unsigned int j = 0; j < v.size(); ++j) { result.model_[j].resize(nSample_); result.model_[j][s] = sampleResult.getModel(j); } } result.nPar_ = sampleResult.getNPar(); result.nDof_ = sampleResult.nDof_; result.parName_ = sampleResult.parName_; return result; } SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init, const std::vector &v) { vector mv{&minimizer}; return fit(mv, init, v); } // residuals /////////////////////////////////////////////////////////////////// XYSampleData XYSampleData::getResiduals(const SampleFitResult &fit) { XYSampleData res(*this); for (Index j = 0; j < getNYDim(); ++j) { const DoubleFunctionSample &f = fit.getModel(_, j); for (auto &p: yData_[j]) { res.y(p.first, j) -= f(x(p.first)); } } return res; } XYSampleData XYSampleData::getPartialResiduals(const SampleFitResult &fit, const DVec &ref, const Index i) { XYSampleData res(*this); DMatSample buf(nSample_); buf.fill(ref); for (Index j = 0; j < getNYDim(); ++j) { const DoubleFunctionSample &f = fit.getModel(_, j); for (auto &p: yData_[j]) { FOR_STAT_ARRAY(buf, s) { buf[s](i) = x(p.first)[s](i); } res.y(p.first, j) -= f(x(p.first)) - f(buf); } } return res; } // buffer list of x vectors //////////////////////////////////////////////////// void XYSampleData::scheduleXMapInit(void) { initXMap_ = true; } void XYSampleData::updateXMap(void) { if (initXMap_) { for (Index s = central; s < nSample_; ++s) { setDataToSample(s); for (auto k: getDataIndexSet()) { if (s == central) { xMap_[k].resize(nSample_); } xMap_[k][s] = data_.x(k); } } initXMap_ = false; } } // schedule data initilization from samples //////////////////////////////////// void XYSampleData::scheduleDataInit(void) { initData_ = true; } // variance matrix computation ///////////////////////////////////////////////// void XYSampleData::scheduleComputeVarMat(void) { computeVarMat_ = true; } void XYSampleData::computeVarMat(void) { if (computeVarMat_) { // initialize data if necessary setDataToSample(central); // compute relevant sizes Index size = 0, ySize = 0; for (Index j = 0; j < getNYDim(); ++j) { size += getYSize(j); } ySize = size; for (Index i = 0; i < getNXDim(); ++i) { size += getXSize(i); } // compute total matrix DMatSample z(nSample_, size, 1); DMat var; Index a; FOR_STAT_ARRAY(z, s) { a = 0; for (Index j = 0; j < getNYDim(); ++j) for (auto &p: yData_[j]) { z[s](a, 0) = p.second[s]; a++; } for (Index i = 0; i < getNXDim(); ++i) for (Index r = 0; r < getXSize(i); ++r) { z[s](a, 0) = xData_[i][r][s]; a++; } } var = z.varianceMatrix(); // assign blocks to data Index a1, a2; a1 = ySize; for (Index i1 = 0; i1 < getNXDim(); ++i1) { a2 = ySize; for (Index i2 = 0; i2 < getNXDim(); ++i2) { data_.setXXVar(i1, i2, var.block(a1, a2, getXSize(i1), getXSize(i2))); a2 += getXSize(i2); } a1 += getXSize(i1); } a1 = 0; for (Index j1 = 0; j1 < getNYDim(); ++j1) { a2 = 0; for (Index j2 = 0; j2 < getNYDim(); ++j2) { data_.setYYVar(j1, j2, var.block(a1, a2, getYSize(j1), getYSize(j2))); a2 += getYSize(j2); } a1 += getYSize(j1); } a1 = ySize; for (Index i = 0; i < getNXDim(); ++i) { a2 = 0; for (Index j = 0; j < getNYDim(); ++j) { data_.setXYVar(i, j, var.block(a1, a2, getXSize(i), getYSize(j))); a2 += getYSize(j); } a1 += getXSize(i); } computeVarMat_ = false; } if (initVarMat()) { data_.copyInterface(*this); scheduleFitVarMatInit(false); } } // create data ///////////////////////////////////////////////////////////////// void XYSampleData::createXData(const string name, const Index nData) { data_.addXDim(nData, name); xData_.push_back(vector(nData)); } void XYSampleData::createYData(const string name) { data_.addYDim(name); yData_.push_back(map()); }