/* * sample-noise-analysis.cpp, part of LatAnalyze 3 * * Copyright (C) 2013 - 2020 Antonin Portelli * * LatAnalyze 3 is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * LatAnalyze 3 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LatAnalyze 3. If not, see . */ #include #include #include #include #include #include #include using namespace std; using namespace Latan; using namespace Math; int main(int argc, char *argv[]) { // argument parsing //////////////////////////////////////////////////////// OptParser opt; bool parsed; string filename; opt.addOption("" , "help" , OptParser::OptType::trigger, true, "show this help message and exit"); parsed = opt.parse(argc, argv); if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help")) { cerr << "usage: " << argv[0]; cerr << " " << endl; cerr << endl << "Possible options:" << endl << opt << endl; return EXIT_FAILURE; } filename = opt.getArgs()[0]; // load data /////////////////////////////////////////////////////////////// DMatSample sample; cout << "-- load data" << endl; sample = Io::load(filename); // compute power spectrum ////////////////////////////////////////////////// DMat av, err; double l0; Index nSample = sample.size(), n = sample[central].rows(); DMatSample noise(nSample), pow(nSample, n, 1); CMatSample ftBuf(nSample, n, 1); GslFFT fft(n); cout << "-- compute power spectrum" << endl; FOR_STAT_ARRAY(sample, s) { sample[s].conservativeResize(n, 1); } av = sample.mean(); err = sample.variance().cwiseSqrt(); FOR_STAT_ARRAY(sample, s) { noise[s] = sample[s] - av; ftBuf[s].real() = noise[s]; ftBuf[s].imag().fill(0.); fft(ftBuf[s]); pow[s] = ftBuf[s].cwiseAbs2().unaryExpr([](const double x){return 10.*log10(x);}); //pow[s] = ftBuf[s].cwiseAbs2(); pow[s].conservativeResize(n/2, 1); } pow[central] = pow.mean(); // { // Plot p; // DVec x; // x.setLinSpaced(n/2, 0., n/2 - 1.); // p << LogScale(Axis::x); // p << PlotData(x, pow); // p.display(); // } // l0 = pow.mean()(1); // FOR_STAT_ARRAY(sample, s) // { // pow[s] = pow[s].unaryExpr([l0](const double x){return x - l0;}); // } // fit decay /////////////////////////////////////////////////////////////// DVec x, init(2); DMat fitErr; DMatSample xs(nSample, n/2, 1); DSample beta(nSample); XYSampleData data(nSample); MinuitMinimizer min; DoubleModel lin([](const double *x, const double *p){return x[0]*p[0] + p[1];}, 1, 2); cout << "-- fit decay" << endl; x.setLinSpaced(n/2, 0., n/2 - 1.); FOR_VEC(x, i) { x(i) = log2(x(i)); } xs.fill(x); data.addXDim(n/2, "f", true); data.addYDim("pow"); data.setUnidimData(xs, pow); data.assumeYYCorrelated(true, 0, 0); for (unsigned int i = 0; i < n/2; ++i) { data.fitPoint((x(i) >= 2.) and (x(i) <= log2(n/2) - 0.5), i); } init(0) = -0.1; init(1) = -0.1; auto fit = data.fit(min, init, lin); fitErr = fit.variance().cwiseSqrt(); FOR_STAT_ARRAY(beta, s) { beta[s] = fit[s](0)/(10.*log10(2.)); } printf("chi^2/dof = %.1e/%d= %.2e -- chi^2 CCDF = %.2e -- p-value = %.2e -- CDR = %.1f dB\n", fit.getChi2(), static_cast(fit.getNDof()), fit.getChi2PerDof(), fit.getCcdf(), fit.getPValue(), fit.getCorrRangeDb()); printf(" decay = %.2f +/- %.2f dB/oct\n", fit[central](0), fitErr(0)); printf(" exponent = %.2f +/- %.2f\n", beta[central], sqrt(beta.variance())); Plot p; p << Caption("noise power spectrum"); p << PlotRange(Axis::x, -0.5, log2(n/2) + 0.5) << Label("frequency (oct)", Axis::x) << Label("power (dB)", Axis::y); p << Color("1") << PlotPredBand(fit.getModel(_), 0., log2(n/2) + 0.5); p << Color("1") << PlotFunction(fit.getModel(), 0., log2(n/2) + 0.5); p << Color("2") << PlotData(x, pow); p.display(); // p.reset(); // p << PlotCorrMatrix(data.getFitCorrMat()); // p.display(); // filter correlator /////////////////////////////////////////////////////// DVec filter(n); DMatSample fsample(nSample, n, 1); FOR_VEC(filter, i) { filter(i) = -std::pow(2.*sin(pi/n*i), 2);//-beta[central]*.5); } FOR_STAT_ARRAY(sample, s) { ftBuf[s].real() = sample[s].col(0); ftBuf[s].imag().fill(0.); fft(ftBuf[s], FFT::Forward); ftBuf[s] = ftBuf[s].cwiseProduct(filter); fft(ftBuf[s], FFT::Backward); fsample[s] = ftBuf[s].real(); } // p.reset(); x.setLinSpaced(n, 0., n - 1.); // p << PlotData(x, sample); // p << PlotData(x, fsample); // p.display(); p.reset(); FOR_VEC(x, i) { x(i) = log2(x(i)); } p << PlotRange(Axis::x, -0.5, log2(n/2) + 0.5); p << PlotPoints(x, -filter); p.display(); p.reset(); p << PlotCorrMatrix(sample.correlationMatrix()); p.display(); p.reset(); p << PlotCorrMatrix(fsample.correlationMatrix()); p.display(); Io::save(fsample, "test.h5"); return EXIT_SUCCESS; }