#include #include #include #include #include #include #include using namespace std; using namespace Latan; const Index nPoint1 = 10, nPoint2 = 10; const double xErr = .1, yErr = .1; const double exactPar[2] = {0.5,5.}; const double dx1 = 10.0/static_cast(nPoint1); const double dx2 = 5.0/static_cast(nPoint2); int main(void) { // generate fake data XYStatData data; RandGen rg; double xBuf[2]; DoubleModel f([](const double *x, const double *p) {return p[1]*exp(-x[0]*p[0])+x[1];}, 2, 2); data.addXDim("x", nPoint1); data.addXDim("off", nPoint2); data.addYDim("y"); for (Index i1 = 0; i1 < nPoint1; ++i1) { xBuf[0] = i1*dx1; data.x(i1, 0) = rg.gaussian(xBuf[0], xErr); for (Index i2 = 0; i2 < nPoint2; ++i2) { xBuf[1] = i2*dx2; data.x(i2, 1) = xBuf[1]; data.y(data.dataIndex(i1, i2)) = rg.gaussian(f(xBuf, exactPar), yErr); printf("% 8e % 8e % 8e % 8e % 8e\n", data.x(i1, 0), xErr, data.x(i2, 1), data.y(i1), yErr); } } cout << endl; data.setXError(0, DVec::Constant(data.getXSize(0), xErr)); data.assumeXExact(true, 1); data.setYError(0, DVec::Constant(data.getYSize(), yErr)); cout << data << endl; // fit DVec init = DVec::Constant(2, 0.1); FitResult p; MinuitMinimizer minimizer; minimizer.setVerbosity(Minimizer::Verbosity::Normal); p = data.fit(minimizer, init, f); cout << "a= " << p(0) << " b= " << p(1) << endl; cout << "chi^2/ndof= " << p.getChi2PerDof() << endl; cout << "p-value= " << p.getPValue() <