/*
* Derivative.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2014 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see .
*/
#include
#include
#include
#include
using namespace std;
using namespace Latan;
using namespace Math;
/******************************************************************************
* Derivative implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
Derivative::Derivative(const DoubleFunction &f, const Index dir,
const double step)
: DoubleFunction(f.getNArg())
, f_(&f)
, dir_(dir)
, step_(step)
, buffer_(new DVec(f.getNArg()))
{}
Derivative::Derivative(const DoubleFunction &f, const Index dir,
const Index order, const DVec point, const double step)
: Derivative(f, dir, step)
{
setOrderAndPoint(order, point);
}
// access //////////////////////////////////////////////////////////////////////
Index Derivative::getOrder(void) const
{
return order_;
}
Index Derivative::getNPoint(void) const
{
return point_.size();
}
double Derivative::getStep(void) const
{
return step_;
}
void Derivative::setFunction(const DoubleFunction &f)
{
f_ = &f;
}
void Derivative::setOrderAndPoint(const Index order, const DVec point)
{
if (order >= point.size())
{
LATAN_ERROR(Size, "derivative order is superior or equal to the number of point");
}
order_ = order;
point_ = point;
coefficient_.resize(point.size());
makeCoefficients();
}
void Derivative::setStep(const double step)
{
step_ = step;
}
// coefficient generation //////////////////////////////////////////////////////
// from B. Fornberg, “Generation of finite difference formulas on arbitrarily
// spaced grids,” Math. Comp., vol. 51, no. 184, pp. 699–706, 1988.
// http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
void Derivative::makeCoefficients(void)
{
double c[3];
const Index N = point_.size() - 1, M = order_;
DMat curr(M + 1, N + 1), prev(M + 1, N + 1);
curr.fill(0.);
prev.fill(0.);
prev(0, 0) = 1.;
c[0] = 1.;
for (Index n = 1; n <= N; ++n)
{
c[1] = 1.;
for (Index nu = 0; nu <= n - 1; ++nu)
{
c[2] = point_(n) - point_(nu);
c[1] *= c[2];
for (Index m = 0; m <= min(n, M); ++m)
{
curr(m, nu) = point_(n)*prev(m, nu);
if (m)
{
curr(m, nu) -= m*prev(m-1, nu);
}
curr(m, nu) /= c[2];
}
}
for (Index m = 0; m <= min(n, M); ++m)
{
curr(m, n) = -point_(n-1)*prev(m, n-1);
if (m)
{
curr(m, n) += m*prev(m-1, n-1);
}
curr(m, n) *= c[0]/c[1];
}
c[0] = c[1];
prev = curr;
}
coefficient_ = curr.row(M);
}
// function call ///////////////////////////////////////////////////////////////
double Derivative::operator()(const double *x) const
{
ConstMap xMap(x, (*f_).getNArg());
double res = 0.;
*buffer_ = xMap;
FOR_VEC(point_, i)
{
(*buffer_)(dir_) = x[dir_] + point_(i)*step_;
res += coefficient_[i]*(*f_)(*buffer_);
}
res /= pow(step_, order_);
return res;
}
/******************************************************************************
* CentralDerivative implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
CentralDerivative::CentralDerivative(const DoubleFunction &f, const Index dir,
const Index order, const Index precOrder)
: Derivative(f, dir)
{
setOrder(order, precOrder);
}
// access //////////////////////////////////////////////////////////////////////
Index CentralDerivative::getPrecOrder(void) const
{
return precOrder_;
}
void CentralDerivative::setOrder(const Index order, const Index precOrder)
{
const Index nPoint = 2*(precOrder + (order - 1)/2) + 1;
DVec point(nPoint);
precOrder_ = precOrder;
FOR_VEC(point, i)
{
point(i) = static_cast(i - (nPoint - 1)/2);
}
setOrderAndPoint(order, point);
tuneStep();
}
// step tuning /////////////////////////////////////////////////////////////////
// the rounding error should be O(N*epsilon/h^order)
//
void CentralDerivative::tuneStep(void)
{
const Index nPoint = getNPoint();
const double epsilon = numeric_limits::epsilon();
const double step = pow(epsilon*nPoint, 1./(2.*precOrder_+getOrder()));
setStep(step);
}