/* * XYSampleData.cpp, part of LatAnalyze 3 * * Copyright (C) 2013 - 2014 Antonin Portelli * * LatAnalyze 3 is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * LatAnalyze 3 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LatAnalyze 3. If not, see . */ #include #include using namespace std; using namespace Latan; /****************************************************************************** * SampleFitResult implementation * ******************************************************************************/ double SampleFitResult::getChi2(const Index s) const { return chi2_[s]; } const DSample & SampleFitResult::getChi2(const PlaceHolder ph __unused) const { return chi2_; } double SampleFitResult::getChi2PerDof(const Index s) const { return chi2_[s]/getNDof(); } DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __unused) const { return chi2_/getNDof(); } double SampleFitResult::getNDof(void) const { return static_cast(nDof_); } const DoubleFunction & SampleFitResult::getModel(const Index s, const Index j) const { return model_[static_cast(j)][s]; } const DoubleFunctionSample & SampleFitResult::getModel( const PlaceHolder ph __unused, const Index j) const { return model_[static_cast(j)]; } /****************************************************************************** * XYSampleData implementation * ******************************************************************************/ // constructors //////////////////////////////////////////////////////////////// XYSampleData::XYSampleData(const Index nData, const Index xDim, const Index yDim, const Index nSample) { resize(nData, xDim, yDim, nSample); } // access ////////////////////////////////////////////////////////////////////// const XYStatData & XYSampleData::getData(const Index s) { setDataToSample(s); return data_; } void XYSampleData::resize(const Index nData, const Index xDim, const Index yDim, const Index nSample) { FitInterface::resize(nData, xDim, yDim); x_.resize(nSample); x_.resizeMat(nData, xDim); y_.resize(nSample); y_.resizeMat(nData, yDim); data_.resize(nData, xDim, yDim); isCovarianceInit_ = false; } XYSampleData::SampleBlock XYSampleData::x(const PlaceHolder ph1 __unused, const PlaceHolder ph2 __unused) { isCovarianceInit_ = false; return x_.block(0, 0, getNData(), getXDim()); } XYSampleData::ConstSampleBlock XYSampleData::x(const PlaceHolder ph1 __unused, const PlaceHolder ph2 __unused) const { return x_.block(0, 0, getNData(), getXDim()); } XYSampleData::SampleBlock XYSampleData::x(const Index i, const PlaceHolder ph2 __unused) { isCovarianceInit_ = false; return x_.block(0, i, getNData(), 1); } XYSampleData::ConstSampleBlock XYSampleData::x(const Index i, const PlaceHolder ph2 __unused) const { return x_.block(0, i, getNData(), 1); } XYSampleData::SampleBlock XYSampleData::x(const PlaceHolder ph1 __unused, const Index k) { isCovarianceInit_ = false; return x_.block(k, 0, 1, getXDim()); } XYSampleData::ConstSampleBlock XYSampleData::x(const PlaceHolder ph1 __unused, const Index k) const { return x_.block(k, 0, 1, getXDim()); } XYSampleData::SampleBlock XYSampleData::x(const Index i, const Index k) { isCovarianceInit_ = false; return x_.block(k, i, 1, 1); } XYSampleData::ConstSampleBlock XYSampleData::x(const Index i, const Index k) const { return x_.block(k, i, 1, 1); } XYSampleData::SampleBlock XYSampleData::y(const PlaceHolder ph1 __unused, const PlaceHolder ph2 __unused) { isCovarianceInit_ = false; return y_.block(0, 0, getNData(), getYDim()); } XYSampleData::ConstSampleBlock XYSampleData::y(const PlaceHolder ph1 __unused, const PlaceHolder ph2 __unused) const { return y_.block(0, 0, getNData(), getYDim()); } XYSampleData::SampleBlock XYSampleData::y(const Index j, const PlaceHolder ph2 __unused) { isCovarianceInit_ = false; return y_.block(0, j, getNData(), 1); } XYSampleData::ConstSampleBlock XYSampleData::y(const Index j, const PlaceHolder ph2 __unused) const { return y_.block(0, j, getNData(), 1); } XYSampleData::SampleBlock XYSampleData::y(const PlaceHolder ph1 __unused, const Index k) { isCovarianceInit_ = false; return y_.block(k, 0, 1, getYDim()); } XYSampleData::ConstSampleBlock XYSampleData::y(const PlaceHolder ph1 __unused, const Index k) const { return y_.block(k, 0, 1, getYDim()); } XYSampleData::SampleBlock XYSampleData::y(const Index j, const Index k) { isCovarianceInit_ = false; return y_.block(k, j, 1, 1); } XYSampleData::ConstSampleBlock XYSampleData::y(const Index j, const Index k) const { return y_.block(k, j, 1, 1); } // fit ///////////////////////////////////////////////////////////////////////// SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init, const std::vector &modelVector) { const Index nSample = x_.size(); FitResult sampleResult; SampleFitResult result; bool initChi2; DVec initBuf = init; result.resize(nSample); result.chi2_.resize(nSample); FOR_STAT_ARRAY(x_, s) { // reinit chi^2 for central value only if (s == central) { data_.reinitChi2(true); } else { data_.reinitChi2(false); } // set data setDataToSample(s); // initialize chi^2 only once initChi2 = (s == central); // fit sampleResult = data_.fit(minimizer, initBuf, modelVector); if (s == central) { initBuf = sampleResult; } // store result result[s] = sampleResult; result.chi2_[s] = sampleResult.getChi2(); result.nDof_ = sampleResult.getNDof(); result.model_.resize(modelVector.size()); for (unsigned int j = 0; j < modelVector.size(); ++j) { result.model_[j].resize(nSample); result.model_[j][s] = sampleResult.getModel(j); } } return result; } void XYSampleData::setDataToSample(const Index s) { // compute covariance matrices if necessary if (!isCovarianceInit_) { DMatSample buf1, buf2; for (Index i2 = 0; i2 < getXDim(); ++i2) for (Index i1 = 0; i1 < getXDim(); ++i1) { buf1 = x(i1); buf2 = x(i2); data_.xxVar(i1, i2) = buf1.covarianceMatrix(buf2); } for (Index j2 = 0; j2 < getYDim(); ++j2) for (Index j1 = 0; j1 < getYDim(); ++j1) { buf1 = y(j1); buf2 = y(j2); data_.yyVar(j1, j2) = buf1.covarianceMatrix(buf2); } for (Index i = 0; i < getXDim(); ++i) for (Index j = 0; j < getYDim(); ++j) { buf1 = y(j); buf2 = x(i); data_.yxVar(j, i) = buf1.covarianceMatrix(buf2); } isCovarianceInit_ = true; } // copy interface to sample data data_.setFitInterface(*this); // set data data_.x() = x_[s]; data_.y() = y_[s]; }