/* * TabFunction.cpp, part of LatAnalyze 3 * * Copyright (C) 2013 - 2015 Antonin Portelli * * LatAnalyze 3 is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * LatAnalyze 3 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LatAnalyze 3. If not, see . */ #include #include using namespace std; using namespace Latan; /****************************************************************************** * TabFunction implementation * ******************************************************************************/ // constructors //////////////////////////////////////////////////////////////// TabFunction::TabFunction(const DVec &x, const DVec &y, const InterpType interpType) : interpType_(interpType) { setData(x, y); } //TabFunction::TabFunction(const XYStatData &data, const Index i, const Index j, // const InterpType interpType) //: interpType_(interpType) //{ // setData(data, i, j); //} // access ////////////////////////////////////////////////////////////////////// void TabFunction::setData(const DVec &x, const DVec &y) { if (x.size() != y.size()) { LATAN_ERROR(Size, "tabulated function x/y data size mismatch"); } FOR_VEC(x, i) { value_[x(i)] = y(i); } } //void TabFunction::setData(const XYStatData &data, const Index i, const Index j) //{ // setData(data.x(i), data.y(j)); //} // function call /////////////////////////////////////////////////////////////// double TabFunction::operator()(const double *arg) const { double result = 0.0, x = arg[0]; if ((x < value_.begin()->first) || (x >= value_.rbegin()->first)) { LATAN_ERROR(Range, "tabulated function variable out of range " "(x= " + strFrom(x) + " not in [" + strFrom(value_.begin()->first) + ", " + strFrom(value_.rbegin()->first) + "])"); } auto i = value_.equal_range(x); auto low = (x == i.first->first) ? i.first : prev(i.first); auto high = i.second; switch (interpType_) { case InterpType::LINEAR: { double x_a, x_b, y_a, y_b; x_a = low->first; x_b = high->first; y_a = low->second; y_b = high->second; result = y_a + (x - x_a) * (y_b - y_a) / (x_b - x_a); break; } case InterpType::NEAREST: { result = nearest(x)->second; break; } case InterpType::QUADRATIC: { double xs[3], ys[3], ds[3], d01, d02, d12; auto it = nearest(x); if (it == value_.begin()) { it = next(it); } else if (it == prev(value_.end())) { it = prev(it); } xs[0] = prev(it)->first; ys[0] = prev(it)->second; xs[1] = it->first; ys[1] = it->second; xs[2] = next(it)->first; ys[2] = next(it)->second; ds[0] = x - xs[0]; ds[1] = x - xs[1]; ds[2] = x - xs[2]; d01 = xs[0] - xs[1]; d02 = xs[0] - xs[2]; d12 = xs[1] - xs[2]; // Lagrange polynomial coefficient computation result = ds[1]/d01*ds[2]/d02*ys[0] -ds[0]/d01*ds[2]/d12*ys[1] +ds[0]/d02*ds[1]/d12*ys[2]; break; } default: int intType = static_cast(interpType_); LATAN_ERROR(Implementation, "unsupported interpolation type in " "tabulated function: " + strFrom(intType)); } return result; } // DoubleFunction factory ////////////////////////////////////////////////////// DoubleFunction TabFunction::makeFunction(const bool makeHardCopy) const { DoubleFunction res; if (makeHardCopy) { TabFunction copy(*this); res.setFunction([copy](const double *x){return copy(x);}, 1); } else { res.setFunction([this](const double *x){return (*this)(x);}, 1); } return res; } DoubleFunction Latan::interpolate(const DVec &x, const DVec &y, const InterpType interpType) { return TabFunction(x, y, interpType).makeFunction(); } //DoubleFunction Latan::interpolate(const XYStatData &data, const Index i, // const Index j, const InterpType interpType) //{ // return TabFunction(data, i, j, interpType).makeFunction(); //} map::const_iterator TabFunction::nearest(const double x) const { map::const_iterator ret; auto i = value_.equal_range(x); auto low = (x == i.first->first) ? i.first : prev(i.first); auto high = i.second; if (fabs(high->first - x) < fabs(low->first - x)) { ret = high; } else { ret = low; } return ret; }