/* * Derivative.cpp, part of LatAnalyze 3 * * Copyright (C) 2013 - 2014 Antonin Portelli * * LatAnalyze 3 is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * LatAnalyze 3 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LatAnalyze 3. If not, see . */ #include #include #include #include using namespace std; using namespace Latan; using namespace Math; /****************************************************************************** * Derivative implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// Derivative::Derivative(const DoubleFunction &f, const Index dir, const double step) : DoubleFunction(f.getNArg()) , f_(f) , dir_(dir) , step_(step) , buffer_(new DVec(f.getNArg())) {} Derivative::Derivative(const DoubleFunction &f, const Index dir, const Index order, const DVec point, const double step) : Derivative(f, dir, step) { setOrderAndPoint(order, point); } // access ////////////////////////////////////////////////////////////////////// Index Derivative::getOrder(void) const { return order_; } Index Derivative::getNPoint(void) const { return point_.size(); } double Derivative::getStep(void) const { return step_; } void Derivative::setOrderAndPoint(const Index order, const DVec point) { if (order >= point.size()) { LATAN_ERROR(Size, "derivative order is superior or equal to the number of point"); } order_ = order; point_ = point; coefficient_.resize(point.size()); makeCoefficients(); } void Derivative::setStep(const double step) { step_ = step; } // coefficient generation ////////////////////////////////////////////////////// // from B. Fornberg, “Generation of finite difference formulas on arbitrarily // spaced grids,” Math. Comp., vol. 51, no. 184, pp. 699–706, 1988. // http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0 void Derivative::makeCoefficients(void) { double c[3]; const Index N = point_.size() - 1, M = order_; DMat curr(M + 1, N + 1), prev(M + 1, N + 1); curr.fill(0.); prev.fill(0.); prev(0, 0) = 1.; c[0] = 1.; for (Index n = 1; n <= N; ++n) { c[1] = 1.; for (Index nu = 0; nu <= n - 1; ++nu) { c[2] = point_(n) - point_(nu); c[1] *= c[2]; for (Index m = 0; m <= min(n, M); ++m) { curr(m, nu) = point_(n)*prev(m, nu); if (m) { curr(m, nu) -= m*prev(m-1, nu); } curr(m, nu) /= c[2]; } } for (Index m = 0; m <= min(n, M); ++m) { curr(m, n) = -point_(n-1)*prev(m, n-1); if (m) { curr(m, n) += m*prev(m-1, n-1); } curr(m, n) *= c[0]/c[1]; } c[0] = c[1]; prev = curr; } coefficient_ = curr.row(M); } // function call /////////////////////////////////////////////////////////////// double Derivative::operator()(const double *x) const { ConstMap xMap(x, f_.getNArg()); double res = 0.; *buffer_ = xMap; FOR_VEC(point_, i) { (*buffer_)(dir_) = x[dir_] + point_(i)*step_; res += coefficient_[i]*f_(*buffer_); } res /= pow(step_, order_); return res; } /****************************************************************************** * CentralDerivative implementation * ******************************************************************************/ // constructor ///////////////////////////////////////////////////////////////// CentralDerivative::CentralDerivative(const DoubleFunction &f, const Index dir, const Index order, const Index precOrder) : Derivative(f, dir) { setOrder(order, precOrder); } // access ////////////////////////////////////////////////////////////////////// Index CentralDerivative::getPrecOrder(void) const { return precOrder_; } void CentralDerivative::setOrder(const Index order, const Index precOrder) { const Index nPoint = 2*(precOrder + (order - 1)/2) + 1; DVec point(nPoint); precOrder_ = precOrder; FOR_VEC(point, i) { point(i) = static_cast(i - (nPoint - 1)/2); } setOrderAndPoint(order, point); tuneStep(); } // step tuning ///////////////////////////////////////////////////////////////// // the rounding error should be O(N*epsilon/h^order) // void CentralDerivative::tuneStep(void) { const Index nPoint = getNPoint(); const double epsilon = numeric_limits::epsilon(); const double step = pow(epsilon*nPoint, 1./(2.*precOrder_+getOrder())); setStep(step); }