1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/lib/XYSampleData.cpp

375 lines
11 KiB
C++

/*
* XYSampleData.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2015 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/XYSampleData.hpp>
#include <LatAnalyze/Math.hpp>
#include <LatAnalyze/includes.hpp>
using namespace std;
using namespace Latan;
using namespace Math;
/******************************************************************************
* SampleFitResult implementation *
******************************************************************************/
double SampleFitResult::getChi2(const Index s) const
{
return chi2_[s];
}
const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const
{
return chi2_;
}
double SampleFitResult::getChi2PerDof(const Index s) const
{
return chi2_[s]/getNDof();
}
DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const
{
return chi2_/getNDof();
}
double SampleFitResult::getNDof(void) const
{
return static_cast<double>(nDof_);
}
double SampleFitResult::getPValue(const Index s) const
{
return chi2PValue(getChi2(s), getNDof());
}
const DoubleFunction & SampleFitResult::getModel(const Index s,
const Index j) const
{
return model_[static_cast<unsigned int>(j)][s];
}
const DoubleFunctionSample & SampleFitResult::getModel(
const PlaceHolder ph __dumb,
const Index j) const
{
return model_[static_cast<unsigned int>(j)];
}
FitResult SampleFitResult::getFitResult(const Index s) const
{
FitResult fit;
fit = (*this)[s];
fit.chi2_ = getChi2();
fit.nDof_ = static_cast<Index>(getNDof());
fit.model_.resize(model_.size());
for (unsigned int k = 0; k < model_.size(); ++k)
{
fit.model_[k] = model_[k][s];
}
return fit;
}
/******************************************************************************
* XYSampleData implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
XYSampleData::XYSampleData(const Index nData, const Index xDim,
const Index yDim, const Index nSample)
{
resize(nData, xDim, yDim, nSample);
}
// access //////////////////////////////////////////////////////////////////////
const XYStatData & XYSampleData::getData(const Index s)
{
setDataToSample(s);
return data_;
}
void XYSampleData::resize(const Index nData, const Index xDim,
const Index yDim, const Index nSample)
{
FitInterface::resize(nData, xDim, yDim);
x_.resize(nSample);
x_.resizeMat(nData, xDim);
y_.resize(nSample);
y_.resizeMat(nData, yDim);
data_.resize(nData, xDim, yDim);
isCovarianceInit_ = false;
}
XYSampleData::SampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
const PlaceHolder ph2 __dumb)
{
isCovarianceInit_ = false;
return x_.block(0, 0, getNData(), getXDim());
}
XYSampleData::ConstSampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
const PlaceHolder ph2 __dumb)
const
{
return x_.block(0, 0, getNData(), getXDim());
}
XYSampleData::SampleBlock XYSampleData::x(const Index i,
const PlaceHolder ph2 __dumb)
{
isCovarianceInit_ = false;
return x_.block(0, i, getNData(), 1);
}
XYSampleData::ConstSampleBlock XYSampleData::x(const Index i,
const PlaceHolder ph2 __dumb)
const
{
return x_.block(0, i, getNData(), 1);
}
XYSampleData::SampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
const Index k)
{
isCovarianceInit_ = false;
return x_.block(k, 0, 1, getXDim());
}
XYSampleData::ConstSampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
const Index k) const
{
return x_.block(k, 0, 1, getXDim());
}
XYSampleData::SampleBlock XYSampleData::x(const Index i, const Index k)
{
isCovarianceInit_ = false;
return x_.block(k, i, 1, 1);
}
XYSampleData::ConstSampleBlock XYSampleData::x(const Index i, const Index k)
const
{
return x_.block(k, i, 1, 1);
}
XYSampleData::SampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
const PlaceHolder ph2 __dumb)
{
isCovarianceInit_ = false;
return y_.block(0, 0, getNData(), getYDim());
}
XYSampleData::ConstSampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
const PlaceHolder ph2 __dumb)
const
{
return y_.block(0, 0, getNData(), getYDim());
}
XYSampleData::SampleBlock XYSampleData::y(const Index j,
const PlaceHolder ph2 __dumb)
{
isCovarianceInit_ = false;
return y_.block(0, j, getNData(), 1);
}
XYSampleData::ConstSampleBlock XYSampleData::y(const Index j,
const PlaceHolder ph2 __dumb)
const
{
return y_.block(0, j, getNData(), 1);
}
XYSampleData::SampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
const Index k)
{
isCovarianceInit_ = false;
return y_.block(k, 0, 1, getYDim());
}
XYSampleData::ConstSampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
const Index k) const
{
return y_.block(k, 0, 1, getYDim());
}
XYSampleData::SampleBlock XYSampleData::y(const Index j, const Index k)
{
isCovarianceInit_ = false;
return y_.block(k, j, 1, 1);
}
XYSampleData::ConstSampleBlock XYSampleData::y(const Index j, const Index k)
const
{
return y_.block(k, j, 1, 1);
}
// fit /////////////////////////////////////////////////////////////////////////
SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init,
const std::vector<const DoubleModel *> &modelVector)
{
const Index nSample = x_.size();
FitResult sampleResult;
SampleFitResult result;
DVec initBuf = init;
result.resize(nSample);
result.chi2_.resize(nSample);
FOR_STAT_ARRAY(x_, s)
{
// reinit chi^2 for central value only
if (s == central)
{
data_.reinitChi2(true);
}
else
{
data_.reinitChi2(false);
}
// set data
setDataToSample(s);
// fit
sampleResult = data_.fit(minimizer, initBuf, modelVector);
if (s == central)
{
initBuf = sampleResult;
}
// store result
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
result.nDof_ = sampleResult.getNDof();
result.model_.resize(modelVector.size());
for (unsigned int j = 0; j < modelVector.size(); ++j)
{
result.model_[j].resize(nSample);
result.model_[j][s] = sampleResult.getModel(j);
}
}
return result;
}
void XYSampleData::setDataToSample(const Index s)
{
// compute covariance matrices if necessary
if (!isCovarianceInit_)
{
DMatSample buf1, buf2;
for (Index i2 = 0; i2 < getXDim(); ++i2)
for (Index i1 = 0; i1 < getXDim(); ++i1)
{
buf1 = x(i1);
buf2 = x(i2);
data_.xxVar(i1, i2) = buf1.covarianceMatrix(buf2);
}
for (Index j2 = 0; j2 < getYDim(); ++j2)
for (Index j1 = 0; j1 < getYDim(); ++j1)
{
buf1 = y(j1);
buf2 = y(j2);
data_.yyVar(j1, j2) = buf1.covarianceMatrix(buf2);
}
for (Index i = 0; i < getXDim(); ++i)
for (Index j = 0; j < getYDim(); ++j)
{
buf1 = y(j);
buf2 = x(i);
data_.yxVar(j, i) = buf1.covarianceMatrix(buf2);
}
isCovarianceInit_ = true;
}
// copy interface to sample data
data_.setFitInterface(*this);
// set data
data_.x() = x_[s];
data_.y() = y_[s];
}
// residuals ///////////////////////////////////////////////////////////////////
XYSampleData XYSampleData::getResiduals(const SampleFitResult &fit) const
{
const Index nSample = x_.size();
XYSampleData res(*this);
DMatSample xBuf(nSample, getXDim(), 1), tmp(nSample, 1, 1);
for (Index j = 0; j < res.getYDim(); ++j)
{
const DoubleFunctionSample &f = fit.getModel(_, j);
for (Index k = 0; k < res.getNData(); ++k)
{
xBuf = this->x(_, k);
tmp = this->y(j, k);
FOR_STAT_ARRAY(xBuf, s)
{
tmp[s](0) -= f[s](xBuf[s].transpose());
}
res.y(j, k) = tmp;
}
}
return res;
}
XYSampleData XYSampleData::getPartialResiduals(const SampleFitResult &fit,
const DVec &x,
const Index i) const
{
const Index nSample = x_.size();
XYSampleData res(*this);
DMatSample xBuf(nSample, getXDim(), 1), tmp(nSample, 1, 1);
DVec buf(x);
for (Index j = 0; j < res.getYDim(); ++j)
{
const DoubleFunctionSample &f = fit.getModel(_, j);
for (Index k = 0; k < res.getNData(); ++k)
{
xBuf = this->x(_, k);
tmp = this->y(j, k);
FOR_STAT_ARRAY(xBuf, s)
{
buf(i) = xBuf[s](i);
tmp[s](0) -= f[s](xBuf[s].transpose()) - f[s](buf);
}
res.y(j, k) = tmp;
}
}
return res;
}