mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 00:45:36 +00:00
52 lines
1.3 KiB
C++
52 lines
1.3 KiB
C++
#include <iostream>
|
|
#include <cmath>
|
|
#include <LatAnalyze/CompiledModel.hpp>
|
|
#include <LatAnalyze/MinuitMinimizer.hpp>
|
|
#include <LatAnalyze/Plot.hpp>
|
|
#include <LatAnalyze/RandGen.hpp>
|
|
#include <LatAnalyze/XYStatData.hpp>
|
|
|
|
using namespace std;
|
|
using namespace Latan;
|
|
|
|
const Index nPoint = 20;
|
|
const double exactPar[2] = {0.5,5.0}, dx = 10.0/static_cast<double>(nPoint);
|
|
|
|
int main(void)
|
|
{
|
|
// generate fake data
|
|
XYStatData data(nPoint, 1, 1);
|
|
RandGen rg;
|
|
double x_k;
|
|
CompiledDoubleModel f(1, 2, "return p_1*exp(-x_0*p_0);");
|
|
|
|
for (Index k = 0; k < nPoint; ++k)
|
|
{
|
|
x_k = k*dx;
|
|
data.x(0, k) = x_k;
|
|
data.y(0, k) = f(&x_k, exactPar) + rg.gaussian(0.0, 0.1);
|
|
}
|
|
data.yyVar(0, 0).diagonal() = DMat::Constant(nPoint, 1, 0.1*0.1);
|
|
data.assumeXExact(0);
|
|
|
|
// fit
|
|
DVec init = DVec::Constant(2, 0.5);
|
|
FitResult p;
|
|
MinuitMinimizer minimizer;
|
|
|
|
data.fitAllPoints();
|
|
p = data.fit(minimizer, init, f);
|
|
|
|
cout << "a= " << p(0) << " b= " << p(1)
|
|
<< " chi^2/ndof= " << p.getChi2PerDof() << endl;
|
|
|
|
// plot result
|
|
Plot plot;
|
|
|
|
plot << LogScale(Axis::y) << PlotData(data);
|
|
plot << Color("rgb 'blue'") << PlotFunction(p.getModel(), 0.0, 10.0);
|
|
plot.display();
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|