1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/examples/exFitSample.cpp

74 lines
2.1 KiB
C++

#include <iostream>
#include <cmath>
#include <LatAnalyze/CompiledModel.hpp>
#include <LatAnalyze/MinuitMinimizer.hpp>
#include <LatAnalyze/NloptMinimizer.hpp>
#include <LatAnalyze/RandGen.hpp>
#include <LatAnalyze/XYSampleData.hpp>
using namespace std;
using namespace Latan;
const Index nPoint1 = 10, nPoint2 = 10;
const Index nSample = 1000;
const double xErr = .1, yErr = .1;
const double exactPar[2] = {0.5,5.};
const double dx1 = 10.0/static_cast<double>(nPoint1);
const double dx2 = 5.0/static_cast<double>(nPoint2);
int main(void)
{
// generate fake data
XYSampleData data(nSample);
RandGen rg;
double xBuf[2];
DoubleModel f([](const double *x, const double *p)
{return p[1]*exp(-x[0]*p[0])+x[1];}, 2, 2);
data.addXDim(nPoint1);
data.addXDim(nPoint2);
data.addYDim();
for (Index s = central; s < nSample; ++s)
{
for (Index i1 = 0; i1 < nPoint1; ++i1)
{
xBuf[0] = i1*dx1;
data.x(i1, 0)[s] = rg.gaussian(xBuf[0], xErr);
for (Index i2 = 0; i2 < nPoint2; ++i2)
{
xBuf[1] = i2*dx2;
data.x(i2, 1)[s] = xBuf[1];
data.y(data.dataIndex(i1, i2))[s] =
rg.gaussian(f(xBuf, exactPar), yErr);
}
}
}
data.assumeXExact(true, 1);
// set minimizers
DVec init = DVec::Constant(2, 0.1);
SampleFitResult p;
NloptMinimizer globalMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
MinuitMinimizer localMin;
vector<Minimizer *> min{&globalMin, &localMin};
globalMin.setPrecision(0.01);
globalMin.setMaxIteration(10000);
globalMin.useLowLimit(0);
globalMin.setLowLimit(0, 0.);
globalMin.useHighLimit(0);
globalMin.setHighLimit(0, 20.);
globalMin.useLowLimit(1);
globalMin.setLowLimit(1, 0.);
globalMin.useHighLimit(1);
globalMin.setHighLimit(1, 20.);
// fit
f.parName().setName(0, "m");
f.parName().setName(1, "A");
p = data.fit(min, init, f);
p.print();
return EXIT_SUCCESS;
}