mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 00:45:36 +00:00
51 lines
1.4 KiB
C++
51 lines
1.4 KiB
C++
#include <iostream>
|
|
#include <cmath>
|
|
#include <LatAnalyze/CompiledModel.hpp>
|
|
#include <LatAnalyze/MinuitMinimizer.hpp>
|
|
#include <LatAnalyze/RandGen.hpp>
|
|
#include <LatAnalyze/XYStatData.hpp>
|
|
|
|
using namespace std;
|
|
using namespace Latan;
|
|
|
|
const Index nPoint = 30;
|
|
const double xErr = .01, yErr = .1;
|
|
const double exactPar[2] = {0.5,5.0}, dx = 10.0/static_cast<double>(nPoint);
|
|
|
|
int main(void)
|
|
{
|
|
// generate fake data
|
|
XYStatData data;
|
|
RandGen rg;
|
|
double x_k, y_k;
|
|
DoubleModel f([](const double *x, const double *p)
|
|
{return p[1]*exp(-x[0]*p[0]);}, 1, 2);
|
|
|
|
data.addXDim("x", nPoint);
|
|
data.addYDim("y");
|
|
for (Index k = 0; k < nPoint; ++k)
|
|
{
|
|
x_k = k*dx + rg.gaussian(0.0, xErr);
|
|
y_k = f(&x_k, exactPar) + rg.gaussian(0.0, yErr);
|
|
printf("% 8e % 8e % 8e % 8e\n", x_k, xErr, y_k, yErr);
|
|
data.x(k) = x_k;
|
|
data.y(k) = y_k;
|
|
}
|
|
cout << endl;
|
|
data.setXError(0, DVec::Constant(nPoint, xErr));
|
|
data.setYError(0, DVec::Constant(nPoint, yErr));
|
|
cout << data << endl;
|
|
|
|
// fit
|
|
DVec init = DVec::Constant(2, 0.5);
|
|
FitResult p;
|
|
MinuitMinimizer minimizer;
|
|
|
|
p = data.fit(minimizer, init, f);
|
|
cout << "a= " << p(0) << " b= " << p(1);
|
|
cout << " chi^2/ndof= " << p.getChi2PerDof();
|
|
cout << " p-value= " << p.getPValue() <<endl;
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|