mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-14 01:45:35 +00:00
235 lines
6.7 KiB
C++
235 lines
6.7 KiB
C++
/*
|
||
* Derivative.cpp, part of LatAnalyze 3
|
||
*
|
||
* Copyright (C) 2013 - 2020 Antonin Portelli
|
||
*
|
||
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include <LatAnalyze/Numerical/Derivative.hpp>
|
||
#include <LatAnalyze/includes.hpp>
|
||
#include <LatAnalyze/Core/Math.hpp>
|
||
|
||
using namespace std;
|
||
using namespace Latan;
|
||
using namespace Math;
|
||
|
||
/******************************************************************************
|
||
* Derivative implementation *
|
||
******************************************************************************/
|
||
// constructor /////////////////////////////////////////////////////////////////
|
||
Derivative::Derivative(const DoubleFunction &f, const Index dir,
|
||
const double step)
|
||
: buffer_(new DVec(f.getNArg()))
|
||
{
|
||
setFunction(f);
|
||
setDir(dir);
|
||
setStep(step);
|
||
}
|
||
|
||
Derivative::Derivative(const DoubleFunction &f, const Index dir,
|
||
const Index order, const DVec &point, const double step)
|
||
: Derivative(f, dir, step)
|
||
{
|
||
setOrderAndPoint(order, point);
|
||
}
|
||
|
||
// access //////////////////////////////////////////////////////////////////////
|
||
Index Derivative::getDir(void) const
|
||
{
|
||
return dir_;
|
||
}
|
||
|
||
Index Derivative::getOrder(void) const
|
||
{
|
||
return order_;
|
||
}
|
||
|
||
Index Derivative::getNPoint(void) const
|
||
{
|
||
return point_.size();
|
||
}
|
||
|
||
double Derivative::getStep(void) const
|
||
{
|
||
return step_;
|
||
}
|
||
|
||
void Derivative::setDir(const Index dir)
|
||
{
|
||
dir_ = dir;
|
||
}
|
||
|
||
void Derivative::setFunction(const DoubleFunction &f)
|
||
{
|
||
f_ = f;
|
||
}
|
||
|
||
void Derivative::setOrderAndPoint(const Index order, const DVec &point)
|
||
{
|
||
if (order >= point.size())
|
||
{
|
||
LATAN_ERROR(Size, "derivative order is superior or equal to the number of point");
|
||
}
|
||
order_ = order;
|
||
point_ = point;
|
||
coefficient_.resize(point.size());
|
||
makeCoefficients();
|
||
}
|
||
|
||
void Derivative::setStep(const double step)
|
||
{
|
||
step_ = step;
|
||
}
|
||
// coefficient generation //////////////////////////////////////////////////////
|
||
// from B. Fornberg, “Generation of finite difference formulas on arbitrarily
|
||
// spaced grids,” Math. Comp., vol. 51, no. 184, pp. 699–706, 1988.
|
||
// http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
|
||
void Derivative::makeCoefficients(void)
|
||
{
|
||
double c[3];
|
||
const Index N = point_.size() - 1, M = order_;
|
||
DMat curr(M + 1, N + 1), prev(M + 1, N + 1);
|
||
|
||
curr.fill(0.);
|
||
prev.fill(0.);
|
||
prev(0, 0) = 1.;
|
||
c[0] = 1.;
|
||
for (Index n = 1; n <= N; ++n)
|
||
{
|
||
c[1] = 1.;
|
||
for (Index nu = 0; nu <= n - 1; ++nu)
|
||
{
|
||
c[2] = point_(n) - point_(nu);
|
||
c[1] *= c[2];
|
||
for (Index m = 0; m <= min(n, M); ++m)
|
||
{
|
||
curr(m, nu) = point_(n)*prev(m, nu);
|
||
if (m)
|
||
{
|
||
curr(m, nu) -= m*prev(m-1, nu);
|
||
}
|
||
curr(m, nu) /= c[2];
|
||
}
|
||
}
|
||
for (Index m = 0; m <= min(n, M); ++m)
|
||
{
|
||
curr(m, n) = -point_(n-1)*prev(m, n-1);
|
||
if (m)
|
||
{
|
||
curr(m, n) += m*prev(m-1, n-1);
|
||
}
|
||
curr(m, n) *= c[0]/c[1];
|
||
}
|
||
c[0] = c[1];
|
||
prev = curr;
|
||
}
|
||
coefficient_ = curr.row(M);
|
||
}
|
||
|
||
// function call ///////////////////////////////////////////////////////////////
|
||
double Derivative::operator()(const double *x) const
|
||
{
|
||
ConstMap<DVec> xMap(x, f_.getNArg());
|
||
double res = 0.;
|
||
|
||
*buffer_ = xMap;
|
||
FOR_VEC(point_, i)
|
||
{
|
||
(*buffer_)(dir_) = x[dir_] + point_(i)*step_;
|
||
res += coefficient_[i]*f_(*buffer_);
|
||
}
|
||
res /= pow(step_, order_);
|
||
|
||
return res;
|
||
}
|
||
|
||
// function factory ////////////////////////////////////////////////////////////
|
||
DoubleFunction Derivative::makeFunction(const bool makeHardCopy) const
|
||
{
|
||
DoubleFunction res;
|
||
|
||
if (makeHardCopy)
|
||
{
|
||
Derivative copy(*this);
|
||
|
||
res.setFunction([copy](const double *x){return copy(x);}, f_.getNArg());
|
||
}
|
||
else
|
||
{
|
||
res.setFunction([this](const double *x){return (*this)(x);},
|
||
f_.getNArg());
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
DoubleFunction Latan::derivative(const DoubleFunction &f, const Index dir,
|
||
const Index order, const DVec point,
|
||
const double step)
|
||
{
|
||
return Derivative(f, dir, order, point, step).makeFunction();
|
||
}
|
||
|
||
/******************************************************************************
|
||
* CentralDerivative implementation *
|
||
******************************************************************************/
|
||
// constructor /////////////////////////////////////////////////////////////////
|
||
CentralDerivative::CentralDerivative(const DoubleFunction &f, const Index dir,
|
||
const Index order, const Index precOrder)
|
||
: Derivative(f, dir)
|
||
{
|
||
setOrder(order, precOrder);
|
||
}
|
||
|
||
// access //////////////////////////////////////////////////////////////////////
|
||
Index CentralDerivative::getPrecOrder(void) const
|
||
{
|
||
return precOrder_;
|
||
}
|
||
|
||
void CentralDerivative::setOrder(const Index order, const Index precOrder)
|
||
{
|
||
const Index nPoint = 2*(precOrder + (order - 1)/2) + 1;
|
||
DVec point(nPoint);
|
||
|
||
precOrder_ = precOrder;
|
||
FOR_VEC(point, i)
|
||
{
|
||
point(i) = static_cast<double>(i - (nPoint - 1)/2);
|
||
}
|
||
setOrderAndPoint(order, point);
|
||
tuneStep();
|
||
}
|
||
|
||
// step tuning /////////////////////////////////////////////////////////////////
|
||
// the rounding error should be O(N*epsilon/h^order)
|
||
//
|
||
void CentralDerivative::tuneStep(void)
|
||
{
|
||
const Index nPoint = getNPoint();
|
||
const double epsilon = numeric_limits<double>::epsilon();
|
||
const double step = pow(epsilon*nPoint, 1./(2.*precOrder_+getOrder()));
|
||
|
||
setStep(step);
|
||
}
|
||
|
||
// function factory ////////////////////////////////////////////////////////////
|
||
DoubleFunction Latan::centralDerivative(const DoubleFunction &f,
|
||
const Index dir, const Index order,
|
||
const Index precOrder)
|
||
{
|
||
return CentralDerivative(f, dir, order, precOrder).makeFunction();
|
||
}
|