mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-10 08:55:37 +00:00
55 lines
1.5 KiB
C++
55 lines
1.5 KiB
C++
#include <iostream>
|
|
#include <cmath>
|
|
#include <LatAnalyze/CompiledModel.hpp>
|
|
#include <LatAnalyze/MinuitMinimizer.hpp>
|
|
#include <LatAnalyze/RandGen.hpp>
|
|
#include <LatAnalyze/XYSampleData.hpp>
|
|
|
|
using namespace std;
|
|
using namespace Latan;
|
|
|
|
const Index nPoint = 30;
|
|
const Index nSample = 1000;
|
|
const double xErr = .2, yErr = .1;
|
|
const double exactPar[2] = {0.5,5.0}, dx = 10.0/static_cast<double>(nPoint);
|
|
|
|
int main(void)
|
|
{
|
|
// generate fake data
|
|
DMatSample x(nSample, nPoint, 1), y(nSample, nPoint, 1);
|
|
XYSampleData data(nSample);
|
|
RandGen rg;
|
|
double x1_k, x2_k;
|
|
DoubleModel f([](const double *t, const double *p)
|
|
{return p[1]*exp(-t[0]*p[0]);}, 1, 2);
|
|
|
|
data.addXDim("x", nPoint);
|
|
data.addYDim("y");
|
|
FOR_STAT_ARRAY(x, s)
|
|
{
|
|
for (Index k = 0; k < nPoint; ++k)
|
|
{
|
|
x1_k = rg.gaussian(k*dx, xErr);
|
|
x2_k = rg.gaussian(k*dx, xErr);
|
|
data.x(k)[s] = x1_k;
|
|
data.y(k)[s] = rg.gaussian(f(&x2_k, exactPar), yErr);
|
|
}
|
|
}
|
|
cout << data << endl;
|
|
|
|
// fit
|
|
DVec init = DVec::Constant(2, 0.5);
|
|
DMat err;
|
|
SampleFitResult p;
|
|
MinuitMinimizer minimizer;
|
|
|
|
p = data.fit(minimizer, init, f);
|
|
err = p.variance().cwiseSqrt();
|
|
cout << "a= " << p[central](0) << " +/- " << err(0) << endl;
|
|
cout << "b= " << p[central](1) << " +/- " << err(1) << endl;
|
|
cout << "chi^2/ndof= " << p.getChi2PerDof() << endl;
|
|
cout << "p-value= " << p.getPValue() << endl;
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|