mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-14 01:45:35 +00:00
514 lines
13 KiB
C++
514 lines
13 KiB
C++
/*
|
|
* XYSampleData.cpp, part of LatAnalyze 3
|
|
*
|
|
* Copyright (C) 2013 - 2020 Antonin Portelli
|
|
*
|
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <LatAnalyze/Statistics/XYSampleData.hpp>
|
|
#include <LatAnalyze/includes.hpp>
|
|
#include <LatAnalyze/Core/Math.hpp>
|
|
|
|
using namespace std;
|
|
using namespace Latan;
|
|
|
|
/******************************************************************************
|
|
* SampleFitResult implementation *
|
|
******************************************************************************/
|
|
double SampleFitResult::getChi2(const Index s) const
|
|
{
|
|
return chi2_[s];
|
|
}
|
|
|
|
const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const
|
|
{
|
|
return chi2_;
|
|
}
|
|
|
|
double SampleFitResult::getChi2PerDof(const Index s) const
|
|
{
|
|
return chi2_[s]/getNDof();
|
|
}
|
|
|
|
DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const
|
|
{
|
|
return chi2_/getNDof();
|
|
}
|
|
|
|
double SampleFitResult::getNDof(void) const
|
|
{
|
|
return static_cast<double>(nDof_);
|
|
}
|
|
|
|
Index SampleFitResult::getNPar(void) const
|
|
{
|
|
return nPar_;
|
|
}
|
|
|
|
double SampleFitResult::getPValue(const Index s) const
|
|
{
|
|
return Math::chi2PValue(getChi2(s), getNDof());
|
|
}
|
|
|
|
double SampleFitResult::getCcdf(const Index s) const
|
|
{
|
|
return Math::chi2Ccdf(getChi2(s), getNDof());
|
|
}
|
|
|
|
const DoubleFunction & SampleFitResult::getModel(const Index s,
|
|
const Index j) const
|
|
{
|
|
return model_[j][s];
|
|
}
|
|
|
|
const DoubleFunctionSample & SampleFitResult::getModel(
|
|
const PlaceHolder ph __dumb,
|
|
const Index j) const
|
|
{
|
|
return model_[j];
|
|
}
|
|
|
|
FitResult SampleFitResult::getFitResult(const Index s) const
|
|
{
|
|
FitResult fit;
|
|
|
|
fit = (*this)[s];
|
|
fit.chi2_ = getChi2();
|
|
fit.nDof_ = static_cast<Index>(getNDof());
|
|
fit.model_.resize(model_.size());
|
|
for (unsigned int k = 0; k < model_.size(); ++k)
|
|
{
|
|
fit.model_[k] = model_[k][s];
|
|
}
|
|
|
|
return fit;
|
|
}
|
|
|
|
// IO //////////////////////////////////////////////////////////////////////////
|
|
void SampleFitResult::print(const bool printXsi, ostream &out) const
|
|
{
|
|
char buf[256];
|
|
Index pMax = printXsi ? size() : nPar_;
|
|
DMat err = this->variance().cwiseSqrt();
|
|
|
|
sprintf(buf, "chi^2/dof= %.1e/%d= %.2e -- chi^2 CCDF= %.2e -- p-value= %.2e",
|
|
getChi2(), static_cast<int>(getNDof()), getChi2PerDof(), getCcdf(),
|
|
getPValue());
|
|
out << buf << endl;
|
|
for (Index p = 0; p < pMax; ++p)
|
|
{
|
|
sprintf(buf, "%8s= % e +/- %e", parName_[p].c_str(),
|
|
(*this)[central](p), err(p));
|
|
out << buf << endl;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* XYSampleData implementation *
|
|
******************************************************************************/
|
|
// constructor /////////////////////////////////////////////////////////////////
|
|
XYSampleData::XYSampleData(const Index nSample)
|
|
: nSample_(nSample)
|
|
{}
|
|
|
|
// data access /////////////////////////////////////////////////////////////////
|
|
DSample & XYSampleData::x(const Index r, const Index i)
|
|
{
|
|
checkXIndex(r, i);
|
|
scheduleDataInit();
|
|
scheduleComputeVarMat();
|
|
if (xData_[i][r].size() == 0)
|
|
{
|
|
xData_[i][r].resize(nSample_);
|
|
}
|
|
|
|
return xData_[i][r];
|
|
}
|
|
|
|
const DSample & XYSampleData::x(const Index r, const Index i) const
|
|
{
|
|
checkXIndex(r, i);
|
|
|
|
return xData_[i][r];
|
|
}
|
|
|
|
const DMatSample & XYSampleData::x(const Index k)
|
|
{
|
|
checkDataIndex(k);
|
|
|
|
updateXMap();
|
|
|
|
return xMap_.at(k);
|
|
}
|
|
|
|
DSample & XYSampleData::y(const Index k, const Index j)
|
|
{
|
|
checkYDim(j);
|
|
if (!pointExists(k, j))
|
|
{
|
|
registerDataPoint(k, j);
|
|
}
|
|
scheduleDataInit();
|
|
scheduleComputeVarMat();
|
|
if (yData_[j][k].size() == 0)
|
|
{
|
|
yData_[j][k].resize(nSample_);
|
|
}
|
|
|
|
return yData_[j][k];
|
|
}
|
|
|
|
const DSample & XYSampleData::y(const Index k, const Index j) const
|
|
{
|
|
checkPoint(k, j);
|
|
|
|
return yData_[j].at(k);
|
|
}
|
|
|
|
void XYSampleData::setUnidimData(const DMatSample &xData,
|
|
const vector<const DMatSample *> &v)
|
|
{
|
|
FOR_STAT_ARRAY(xData, s)
|
|
FOR_VEC(xData[central], r)
|
|
{
|
|
x(r, 0)[s] = xData[s](r);
|
|
for (unsigned int j = 0; j < v.size(); ++j)
|
|
{
|
|
y(r, j)[s] = (*(v[j]))[s](r);
|
|
}
|
|
}
|
|
}
|
|
|
|
const DMat & XYSampleData::getXXVar(const Index i1, const Index i2)
|
|
{
|
|
checkXDim(i1);
|
|
checkXDim(i2);
|
|
computeVarMat();
|
|
|
|
return data_.getXXVar(i1, i2);
|
|
}
|
|
|
|
const DMat & XYSampleData::getYYVar(const Index j1, const Index j2)
|
|
{
|
|
checkYDim(j1);
|
|
checkYDim(j2);
|
|
computeVarMat();
|
|
|
|
return data_.getYYVar(j1, j2);
|
|
}
|
|
|
|
const DMat & XYSampleData::getXYVar(const Index i, const Index j)
|
|
{
|
|
checkXDim(i);
|
|
checkYDim(j);
|
|
computeVarMat();
|
|
|
|
return data_.getXYVar(i, j);
|
|
}
|
|
|
|
DVec XYSampleData::getXError(const Index i)
|
|
{
|
|
checkXDim(i);
|
|
computeVarMat();
|
|
|
|
return data_.getXError(i);
|
|
}
|
|
|
|
DVec XYSampleData::getYError(const Index j)
|
|
{
|
|
checkYDim(j);
|
|
computeVarMat();
|
|
|
|
return data_.getYError(j);
|
|
}
|
|
|
|
// get total fit variance matrix and its pseudo-inverse ////////////////////////
|
|
const DMat & XYSampleData::getFitVarMat(void)
|
|
{
|
|
computeVarMat();
|
|
|
|
return data_.getFitVarMat();
|
|
}
|
|
|
|
const DMat & XYSampleData::getFitVarMatPInv(void)
|
|
{
|
|
computeVarMat();
|
|
|
|
return data_.getFitVarMatPInv();
|
|
}
|
|
|
|
// set data to a particular sample /////////////////////////////////////////////
|
|
void XYSampleData::setDataToSample(const Index s)
|
|
{
|
|
if (initData_ or (s != dataSample_))
|
|
{
|
|
for (Index i = 0; i < getNXDim(); ++i)
|
|
for (Index r = 0; r < getXSize(i); ++r)
|
|
{
|
|
data_.x(r, i) = xData_[i][r][s];
|
|
}
|
|
for (Index j = 0; j < getNYDim(); ++j)
|
|
for (auto &p: yData_[j])
|
|
{
|
|
data_.y(p.first, j) = p.second[s];
|
|
}
|
|
dataSample_ = s;
|
|
initData_ = false;
|
|
}
|
|
}
|
|
|
|
// get internal XYStatData /////////////////////////////////////////////////////
|
|
const XYStatData & XYSampleData::getData(void)
|
|
{
|
|
setDataToSample(central);
|
|
computeVarMat();
|
|
|
|
return data_;
|
|
}
|
|
|
|
// fit /////////////////////////////////////////////////////////////////////////
|
|
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
|
|
const DVec &init,
|
|
const std::vector<const DoubleModel *> &v)
|
|
{
|
|
computeVarMat();
|
|
|
|
SampleFitResult result;
|
|
FitResult sampleResult;
|
|
DVec initCopy = init;
|
|
|
|
result.resize(nSample_);
|
|
result.chi2_.resize(nSample_);
|
|
result.model_.resize(v.size());
|
|
FOR_STAT_ARRAY(result, s)
|
|
{
|
|
setDataToSample(s);
|
|
if (s == central)
|
|
{
|
|
sampleResult = data_.fit(minimizer, initCopy, v);
|
|
initCopy = sampleResult.segment(0, initCopy.size());
|
|
}
|
|
else
|
|
{
|
|
sampleResult = data_.fit(*(minimizer.back()), initCopy, v);
|
|
}
|
|
result[s] = sampleResult;
|
|
result.chi2_[s] = sampleResult.getChi2();
|
|
for (unsigned int j = 0; j < v.size(); ++j)
|
|
{
|
|
result.model_[j].resize(nSample_);
|
|
result.model_[j][s] = sampleResult.getModel(j);
|
|
}
|
|
}
|
|
result.nPar_ = sampleResult.getNPar();
|
|
result.nDof_ = sampleResult.nDof_;
|
|
result.parName_ = sampleResult.parName_;
|
|
|
|
return result;
|
|
}
|
|
|
|
SampleFitResult XYSampleData::fit(Minimizer &minimizer,
|
|
const DVec &init,
|
|
const std::vector<const DoubleModel *> &v)
|
|
{
|
|
vector<Minimizer *> mv{&minimizer};
|
|
|
|
return fit(mv, init, v);
|
|
}
|
|
|
|
// residuals ///////////////////////////////////////////////////////////////////
|
|
XYSampleData XYSampleData::getResiduals(const SampleFitResult &fit)
|
|
{
|
|
XYSampleData res(*this);
|
|
|
|
for (Index j = 0; j < getNYDim(); ++j)
|
|
{
|
|
const DoubleFunctionSample &f = fit.getModel(_, j);
|
|
|
|
for (auto &p: yData_[j])
|
|
{
|
|
res.y(p.first, j) -= f(x(p.first));
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
XYSampleData XYSampleData::getPartialResiduals(const SampleFitResult &fit,
|
|
const DVec &ref, const Index i)
|
|
{
|
|
XYSampleData res(*this);
|
|
DMatSample buf(nSample_);
|
|
|
|
buf.fill(ref);
|
|
for (Index j = 0; j < getNYDim(); ++j)
|
|
{
|
|
const DoubleFunctionSample &f = fit.getModel(_, j);
|
|
|
|
for (auto &p: yData_[j])
|
|
{
|
|
FOR_STAT_ARRAY(buf, s)
|
|
{
|
|
buf[s](i) = x(p.first)[s](i);
|
|
}
|
|
res.y(p.first, j) -= f(x(p.first)) - f(buf);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// buffer list of x vectors ////////////////////////////////////////////////////
|
|
void XYSampleData::scheduleXMapInit(void)
|
|
{
|
|
initXMap_ = true;
|
|
}
|
|
|
|
void XYSampleData::updateXMap(void)
|
|
{
|
|
if (initXMap_)
|
|
{
|
|
for (Index s = central; s < nSample_; ++s)
|
|
{
|
|
setDataToSample(s);
|
|
for (auto k: getDataIndexSet())
|
|
{
|
|
if (s == central)
|
|
{
|
|
xMap_[k].resize(nSample_);
|
|
}
|
|
xMap_[k][s] = data_.x(k);
|
|
}
|
|
}
|
|
initXMap_ = false;
|
|
}
|
|
}
|
|
|
|
// schedule data initilization from samples ////////////////////////////////////
|
|
void XYSampleData::scheduleDataInit(void)
|
|
{
|
|
initData_ = true;
|
|
}
|
|
|
|
// variance matrix computation /////////////////////////////////////////////////
|
|
void XYSampleData::scheduleComputeVarMat(void)
|
|
{
|
|
computeVarMat_ = true;
|
|
}
|
|
|
|
void XYSampleData::computeVarMat(void)
|
|
{
|
|
if (computeVarMat_)
|
|
{
|
|
// initialize data if necessary
|
|
setDataToSample(central);
|
|
|
|
// compute relevant sizes
|
|
Index size = 0, ySize = 0;
|
|
|
|
for (Index j = 0; j < getNYDim(); ++j)
|
|
{
|
|
size += getYSize(j);
|
|
}
|
|
ySize = size;
|
|
for (Index i = 0; i < getNXDim(); ++i)
|
|
{
|
|
size += getXSize(i);
|
|
}
|
|
|
|
// compute total matrix
|
|
DMatSample z(nSample_, size, 1);
|
|
DMat var;
|
|
Index a;
|
|
|
|
FOR_STAT_ARRAY(z, s)
|
|
{
|
|
a = 0;
|
|
for (Index j = 0; j < getNYDim(); ++j)
|
|
for (auto &p: yData_[j])
|
|
{
|
|
z[s](a, 0) = p.second[s];
|
|
a++;
|
|
}
|
|
for (Index i = 0; i < getNXDim(); ++i)
|
|
for (Index r = 0; r < getXSize(i); ++r)
|
|
{
|
|
z[s](a, 0) = xData_[i][r][s];
|
|
a++;
|
|
}
|
|
}
|
|
var = z.varianceMatrix();
|
|
|
|
// assign blocks to data
|
|
Index a1, a2;
|
|
|
|
a1 = ySize;
|
|
for (Index i1 = 0; i1 < getNXDim(); ++i1)
|
|
{
|
|
a2 = ySize;
|
|
for (Index i2 = 0; i2 < getNXDim(); ++i2)
|
|
{
|
|
data_.setXXVar(i1, i2,
|
|
var.block(a1, a2, getXSize(i1), getXSize(i2)));
|
|
a2 += getXSize(i2);
|
|
}
|
|
a1 += getXSize(i1);
|
|
}
|
|
a1 = 0;
|
|
for (Index j1 = 0; j1 < getNYDim(); ++j1)
|
|
{
|
|
a2 = 0;
|
|
for (Index j2 = 0; j2 < getNYDim(); ++j2)
|
|
{
|
|
data_.setYYVar(j1, j2,
|
|
var.block(a1, a2, getYSize(j1), getYSize(j2)));
|
|
a2 += getYSize(j2);
|
|
}
|
|
a1 += getYSize(j1);
|
|
}
|
|
a1 = ySize;
|
|
for (Index i = 0; i < getNXDim(); ++i)
|
|
{
|
|
a2 = 0;
|
|
for (Index j = 0; j < getNYDim(); ++j)
|
|
{
|
|
data_.setXYVar(i, j,
|
|
var.block(a1, a2, getXSize(i), getYSize(j)));
|
|
a2 += getYSize(j);
|
|
}
|
|
a1 += getXSize(i);
|
|
}
|
|
computeVarMat_ = false;
|
|
}
|
|
if (initVarMat())
|
|
{
|
|
data_.copyInterface(*this);
|
|
scheduleFitVarMatInit(false);
|
|
}
|
|
}
|
|
|
|
// create data /////////////////////////////////////////////////////////////////
|
|
void XYSampleData::createXData(const string name, const Index nData)
|
|
{
|
|
data_.addXDim(nData, name);
|
|
xData_.push_back(vector<DSample>(nData));
|
|
}
|
|
|
|
void XYSampleData::createYData(const string name)
|
|
{
|
|
data_.addYDim(name);
|
|
yData_.push_back(map<Index, DSample>());
|
|
}
|