1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 00:45:36 +00:00
LatAnalyze/examples/exRand.cpp

64 lines
1.9 KiB
C++

#include <LatAnalyze/Io/Io.hpp>
#include <LatAnalyze/Functional/CompiledFunction.hpp>
#include <LatAnalyze/Core/Plot.hpp>
#include <LatAnalyze/Statistics/Random.hpp>
#include <LatAnalyze/Statistics/MatSample.hpp>
using namespace std;
using namespace Latan;
constexpr Index n = 8;
constexpr Index nDraw = 20000;
constexpr Index nSample = 2000;
const string stateFileName = "exRand.seed";
int main(void)
{
random_device rd;
mt19937 gen(rd());
normal_distribution<> dis;
DVec gauss(nDraw);
Plot p;
Histogram h;
cout << "-- generating " << nDraw << " Gaussian random numbers..." << endl;
FOR_VEC(gauss, i)
{
gauss(i) = dis(gen);
}
h.setFromData(gauss, -5., 5., 40);
h.normalize();
cout << " median= " << h.median() << endl;
for (double s = 1.; s < 5.; ++s)
{
auto ci = h.confidenceInterval(s);
cout << static_cast<int>(s) << " sigma(s) interval= [";
cout << ci.first << ", " << ci.second << "]" << endl;
}
p << PlotHistogram(h);
p << PlotFunction(compile("return exp(-x_0^2/2)/sqrt(2*pi);", 1), -5., 5.);
p.display();
DMat var(n, n);
DVec mean(n);
DMatSample sample(nSample, n, 1);
cout << "-- generating " << nSample << " Gaussian random vectors..." << endl;
var = DMat::Random(n, n);
var *= var.adjoint();
mean = DVec::Random(n);
RandomNormal mgauss(mean, var, rd());
sample[central] = mgauss();
FOR_STAT_ARRAY(sample, s)
{
sample[s] = mgauss();
}
cout << "* original variance matrix:\n" << var << endl;
cout << "* measured variance matrix:\n" << sample.varianceMatrix() << endl;
cout << "* original mean:\n" << mean << endl;
cout << "* measured mean:\n" << sample.mean() << endl;
return EXIT_SUCCESS;
}