1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-15 02:05:36 +00:00
LatAnalyze/lib/Statistics/StatArray.hpp

285 lines
8.1 KiB
C++

/*
* StatArray.hpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_StatArray_hpp_
#define Latan_StatArray_hpp_
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Core/Mat.hpp>
#define FOR_STAT_ARRAY(ar, i) \
for (Latan::Index i = -(ar).offset; i < (ar).size(); ++i)
BEGIN_LATAN_NAMESPACE
/******************************************************************************
* Array class with statistics *
******************************************************************************/
template <typename T, Index os = 0>
class StatArray: public Array<T, dynamic, 1>, public IoObject
{
protected:
typedef Array<T, dynamic, 1> Base;
public:
// constructors
StatArray(void);
explicit StatArray(const Index size);
EIGEN_EXPR_CTOR(StatArray, unique_arg(StatArray<T, os>), Base, ArrayExpr)
// destructor
virtual ~StatArray(void) = default;
// access
Index size(void) const;
void resize(const Index size);
// operators
T & operator[](const Index s);
const T & operator[](const Index s) const;
// statistics
void bin(Index binSize);
T mean(const Index pos = 0, const Index n = -1) const;
T covariance(const StatArray<T, os> &array, const Index pos = 0,
const Index n = -1) const;
T covarianceMatrix(const StatArray<T, os> &array, const Index pos = 0,
const Index n = -1) const;
T variance(const Index pos = 0, const Index n = -1) const;
T varianceMatrix(const Index pos = 0, const Index n = -1) const;
T correlationMatrix(const Index pos = 0, const Index n = -1) const;
// IO type
virtual IoType getType(void) const;
public:
static constexpr Index offset = os;
};
// reduction operations
namespace ReducOp
{
// general templates
template <typename T>
inline T prod(const T &a, const T &b);
template <typename T>
inline T tensProd(const T &v1, const T &v2);
template <typename T>
inline T sum(const T &a, const T &b);
}
// Sample types
const int central = -1;
template <typename T>
using Sample = StatArray<T, 1>;
typedef Sample<double> DSample;
typedef Sample<std::complex<double>> CSample;
/******************************************************************************
* StatArray class template implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
template <typename T, Index os>
StatArray<T, os>::StatArray(void)
: Base(static_cast<typename Base::Index>(os))
{}
template <typename T, Index os>
StatArray<T, os>::StatArray(const Index size)
: Base(static_cast<typename Base::Index>(size + os))
{}
// access //////////////////////////////////////////////////////////////////////
template <typename T, Index os>
Index StatArray<T, os>::size(void) const
{
return Base::size() - os;
}
template <typename T, Index os>
void StatArray<T, os>::resize(const Index size)
{
Base::resize(size + os);
}
// operators ///////////////////////////////////////////////////////////////////
template <typename T, Index os>
T & StatArray<T, os>::operator[](const Index s)
{
return Base::operator[](s + os);
}
template <typename T, Index os>
const T & StatArray<T, os>::operator[](const Index s) const
{
return Base::operator[](s + os);
}
// statistics //////////////////////////////////////////////////////////////////
template <typename T, Index os>
void StatArray<T, os>::bin(Index binSize)
{
Index q = size()/binSize, r = size()%binSize;
for (Index i = 0; i < q; ++i)
{
(*this)[i] = mean(i*binSize, binSize);
}
if (r != 0)
{
(*this)[q] = mean(q*binSize, r);
this->conservativeResize(os + q + 1);
}
else
{
this->conservativeResize(os + q);
}
}
template <typename T, Index os>
T StatArray<T, os>::mean(const Index pos, const Index n) const
{
T result = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
result = this->segment(pos+os, m).redux(&ReducOp::sum<T>);
}
return result/static_cast<double>(m);
}
template <typename T, Index os>
T StatArray<T, os>::covariance(const StatArray<T, os> &array, const Index pos,
const Index n) const
{
T s1, s2, prs, res = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&ReducOp::sum<T>);
s2 = arraySeg.redux(&ReducOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &ReducOp::prod<T>)
.redux(&ReducOp::sum<T>);
res = prs - ReducOp::prod(s1, s2)/static_cast<double>(m);
}
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::covarianceMatrix(const StatArray<T, os> &array,
const Index pos, const Index n) const
{
T s1, s2, prs, res = T();
const Index m = (n >= 0) ? n : size();
if (m)
{
auto arraySeg = array.segment(pos+os, m);
auto thisSeg = this->segment(pos+os, m);
s1 = thisSeg.redux(&ReducOp::sum<T>);
s2 = arraySeg.redux(&ReducOp::sum<T>);
prs = thisSeg.binaryExpr(arraySeg, &ReducOp::tensProd<T>)
.redux(&ReducOp::sum<T>);
res = prs - ReducOp::tensProd(s1, s2)/static_cast<double>(m);
}
return res/static_cast<double>(m - 1);
}
template <typename T, Index os>
T StatArray<T, os>::variance(const Index pos, const Index n) const
{
return covariance(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::varianceMatrix(const Index pos, const Index n) const
{
return covarianceMatrix(*this, pos, n);
}
template <typename T, Index os>
T StatArray<T, os>::correlationMatrix(const Index pos, const Index n) const
{
T res = varianceMatrix(pos, n);
T invDiag(res.rows(), 1);
invDiag = res.diagonal();
invDiag = invDiag.cwiseInverse().cwiseSqrt();
res = (invDiag*invDiag.transpose()).cwiseProduct(res);
return res;
}
// reduction operations ////////////////////////////////////////////////////////
namespace ReducOp
{
template <typename T>
inline T sum(const T &a, const T &b)
{
return a + b;
}
template <typename T>
inline T prod(const T &a, const T &b)
{
return a*b;
}
template <typename T>
inline T tensProd(const T &v1 __dumb, const T &v2 __dumb)
{
LATAN_ERROR(Implementation,
"tensorial product not implemented for this type");
}
template <>
inline Mat<double> prod(const Mat<double> &a, const Mat<double> &b)
{
return a.cwiseProduct(b);
}
template <>
inline Mat<double> tensProd(const Mat<double> &v1,
const Mat<double> &v2)
{
if ((v1.cols() != 1) or (v2.cols() != 1))
{
LATAN_ERROR(Size,
"tensorial product is only valid with column vectors");
}
return v1*v2.transpose();
}
}
// IO type /////////////////////////////////////////////////////////////////////
template <typename T, Index os>
IoObject::IoType StatArray<T, os>::getType(void) const
{
return IoType::noType;
}
END_LATAN_NAMESPACE
#endif // Latan_StatArray_hpp_