mirror of
				https://github.com/aportelli/LatAnalyze.git
				synced 2025-11-04 00:04:31 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <iostream>
 | 
						|
#include <cmath>
 | 
						|
#include <LatAnalyze/CompiledModel.hpp>
 | 
						|
#include <LatAnalyze/Io.hpp>
 | 
						|
#include <LatAnalyze/GslMinimizer.hpp>
 | 
						|
#include <LatAnalyze/Plot.hpp>
 | 
						|
#include <LatAnalyze/XYStatData.hpp>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace Latan;
 | 
						|
 | 
						|
const Index  nPoint1 = 10, nPoint2 = 10;
 | 
						|
const double xErr = .1, yErr   = .3;
 | 
						|
const double exactPar[2] = {0.5,5.};
 | 
						|
const double dx1 = 10.0/static_cast<double>(nPoint1);
 | 
						|
const double dx2 = 5.0/static_cast<double>(nPoint2);
 | 
						|
 | 
						|
int main(void)
 | 
						|
{
 | 
						|
    // generate fake data
 | 
						|
    XYStatData            data;
 | 
						|
    random_device         rd;
 | 
						|
    mt19937               gen(rd());
 | 
						|
    normal_distribution<> dis;
 | 
						|
    double                xBuf[2];
 | 
						|
    DoubleModel           f([](const double *x, const double *p)
 | 
						|
                            {return p[1]*exp(-x[0]*p[0])+x[1];}, 2, 2);
 | 
						|
    
 | 
						|
    cout << "-- generating fake data..." << endl;
 | 
						|
    data.addXDim(nPoint1);
 | 
						|
    data.addXDim(nPoint2);
 | 
						|
    data.addYDim();
 | 
						|
    for (Index i1 = 0; i1 < nPoint1; ++i1)
 | 
						|
    {
 | 
						|
        xBuf[0]       = i1*dx1;
 | 
						|
        data.x(i1, 0) = xErr*dis(gen) + xBuf[0];
 | 
						|
        for (Index i2 = 0; i2 < nPoint2; ++i2)
 | 
						|
        {
 | 
						|
            xBuf[1]                           = i2*dx2;
 | 
						|
            data.x(i2, 1)                     = xBuf[1];
 | 
						|
            data.y(data.dataIndex(i1, i2), 0) = yErr*dis(gen)
 | 
						|
                                                + f(xBuf, exactPar);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    data.setXError(0, DVec::Constant(data.getXSize(0), xErr));
 | 
						|
    data.assumeXExact(true, 1);
 | 
						|
    data.setYError(0, DVec::Constant(data.getYSize(), yErr));
 | 
						|
    
 | 
						|
    // set minimizers
 | 
						|
    DVec         init = DVec::Constant(2, 0.1);
 | 
						|
    FitResult    p;
 | 
						|
    GslMinimizer min(GslMinimizer::Algorithm::bfgs2);
 | 
						|
    
 | 
						|
    // fit
 | 
						|
    min.setVerbosity(Minimizer::Verbosity::Debug);
 | 
						|
    cout << "-- fit..." << endl;
 | 
						|
    f.parName().setName(0, "m");
 | 
						|
    f.parName().setName(1, "A");
 | 
						|
    p = data.fit(min, init, f);
 | 
						|
    p.print();
 | 
						|
    
 | 
						|
    // plot
 | 
						|
    Plot       plot;
 | 
						|
    DVec       ref(2);
 | 
						|
    XYStatData res;
 | 
						|
    
 | 
						|
    cout << "-- generating plots..." << endl;
 | 
						|
    ref(1) = 0.;
 | 
						|
    res    = data.getPartialResiduals(p, ref, 0);
 | 
						|
    plot << PlotRange(Axis::x, 0., 10.);
 | 
						|
    plot << Color("rgb 'blue'");
 | 
						|
    plot << PlotFunction(p.getModel().bind(0, ref), 0., 10.);
 | 
						|
    plot << Color("rgb 'red'");
 | 
						|
    plot << PlotData(res);
 | 
						|
    plot.display();
 | 
						|
    
 | 
						|
    return EXIT_SUCCESS;
 | 
						|
}
 |