1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/lib/Histogram.cpp

229 lines
6.0 KiB
C++

/*
* Histogram.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2016 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Histogram.hpp>
#include <LatAnalyze/includes.hpp>
#include <gsl/gsl_histogram.h>
#include <gsl/gsl_sf.h>
#include <gsl/gsl_sort.h>
using namespace std;
using namespace Latan;
#define DECL_GSL_HIST(h) \
gsl_histogram h{static_cast<size_t>(bin_.size()), x_.data(), bin_.data()}
#define DECL_CONST_GSL_HIST(h) \
const gsl_histogram h{static_cast<size_t>(bin_.size()),\
const_cast<double *>(x_.data()),\
const_cast<double *>(bin_.data())}
/******************************************************************************
* Histogram implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
Histogram::Histogram(const DVec &data, const double xMin, const double xMax,
const Index nBin)
: Histogram()
{
setFromData(data, xMin, xMax, nBin);
}
Histogram::Histogram(const DVec &data, const DVec &w, const double xMin,
const double xMax, const Index nBin)
: Histogram()
{
setFromData(data, w, xMin, xMax, nBin);
}
// resize //////////////////////////////////////////////////////////////////////
void Histogram::resize(const Index nBin)
{
x_.resize(nBin + 1);
bin_.resize(nBin);
}
// generate from data //////////////////////////////////////////////////////////
void Histogram::setFromData(const DVec &data, const DVec &w, const double xMin,
const double xMax, const Index nBin)
{
if (data.size() != w.size())
{
LATAN_ERROR(Size, "data vector and weight vector size mismatch");
}
resize(nBin);
data_ = data.array();
w_ = w.array();
xMax_ = xMax;
xMin_ = xMin;
makeHistogram();
}
void Histogram::setFromData(const DVec &data, const double xMin,
const double xMax, const Index nBin)
{
resize(nBin);
data_ = data.array();
xMax_ = xMax;
xMin_ = xMin;
w_.resize(data.size());
w_.fill(1.);
makeHistogram();
}
// histogram calculation ///////////////////////////////////////////////////////
void Histogram::makeHistogram(void)
{
DECL_GSL_HIST(h);
gsl_histogram_set_ranges_uniform(&h, xMin_, xMax_);
FOR_STAT_ARRAY(data_, i)
{
gsl_histogram_accumulate(&h, data_[i], w_[i]);
}
total_ = w_.sum();
sortIndices();
computeNorm();
}
// generate sorted indices /////////////////////////////////////////////////////
void Histogram::sortIndices(void)
{
sInd_.resize(data_.size());
gsl_sort_index(sInd_.data(), data_.data(), 1, data_.size());
}
// compute normalization factor ////////////////////////////////////////////////
void Histogram::computeNorm(void)
{
norm_ = static_cast<double>(bin_.size())/(total_*(xMax_ - xMin_));
}
// normalize as a probablility /////////////////////////////////////////////////
void Histogram::normalize(const bool n)
{
normalize_ = n;
}
bool Histogram::isNormalized(void) const
{
return normalize_;
}
// access //////////////////////////////////////////////////////////////////////
Index Histogram::size(void) const
{
return bin_.size();
}
const StatArray<double> & Histogram::getData(void) const
{
return data_;
}
const StatArray<double> & Histogram::getWeight(void) const
{
return w_;
}
double Histogram::getX(const Index i) const
{
return x_(i);
}
double Histogram::operator[](const Index i) const
{
return bin_(i)*(isNormalized() ? norm_ : 1.);
}
double Histogram::operator()(const double x) const
{
size_t i;
DECL_CONST_GSL_HIST(h);
gsl_histogram_find(&h, x, &i);
return (*this)[static_cast<Index>(i)];
}
// percentiles & confidence interval ///////////////////////////////////////////
double Histogram::percentile(const double p) const
{
if ((p < 0.0)||(p > 100.0))
{
LATAN_ERROR(Range, "percentile (" + strFrom(p) + ")"
" is outside the [0, 100] range");
}
// cf. http://en.wikipedia.org/wiki/Percentile
double wPSum, p_i, p_im1, w_i, res = 0.;
bool haveResult;
wPSum = w_[sInd_[0]];
p_i = (100./total_)*wPSum*0.5;
if (p < p_i)
{
res = data_[sInd_[0]];
}
else
{
haveResult = false;
p_im1 = p_i;
for (Index i = 1; i < data_.size(); ++i)
{
w_i = w_[sInd_[i]];
wPSum += w_i;
p_i = (100./total_)*(wPSum-0.5*w_i);
if ((p >= p_im1) and (p < p_i))
{
double d_i = data_[sInd_[i]], d_im1 = data_[sInd_[i-1]];
res = d_im1 + (p-p_im1)/(p_i-p_im1)*(d_i-d_im1);
haveResult = true;
break;
}
}
if (!haveResult)
{
res = data_[sInd_[data_.size()-1]];
}
}
return res;
}
double Histogram::median(void) const
{
return percentile(50.);
}
pair<double, double> Histogram::confidenceInterval(const double nSigma) const
{
pair<double, double> interval, p;
double cl;
cl = gsl_sf_erf(nSigma/sqrt(2.));
p.first = 50.*(1. - cl);
p.second = 50.*(1. + cl);
interval.first = percentile(p.first);
interval.second = percentile(p.second);
return interval;
}