1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/lib/Statistics/XYSampleData.cpp
2024-01-12 14:21:39 +01:00

566 lines
14 KiB
C++

/*
* XYSampleData.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2020 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/Statistics/XYSampleData.hpp>
#include <LatAnalyze/includes.hpp>
#include <LatAnalyze/Core/Math.hpp>
using namespace std;
using namespace Latan;
/******************************************************************************
* SampleFitResult implementation *
******************************************************************************/
double SampleFitResult::getChi2(const Index s) const
{
return chi2_[s];
}
const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const
{
return chi2_;
}
double SampleFitResult::getChi2PerDof(const Index s) const
{
return chi2_[s]/getNDof();
}
DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const
{
return chi2_/getNDof();
}
double SampleFitResult::getNDof(void) const
{
return static_cast<double>(nDof_);
}
Index SampleFitResult::getNPar(void) const
{
return nPar_;
}
double SampleFitResult::getPValue(const Index s) const
{
return Math::chi2PValue(getChi2(s), getNDof());
}
double SampleFitResult::getCorrRangeDb(void) const
{
return corrRangeDb_;
}
double SampleFitResult::getCcdf(const Index s) const
{
return Math::chi2Ccdf(getChi2(s), getNDof());
}
const DoubleFunction & SampleFitResult::getModel(const Index s,
const Index j) const
{
return model_[j][s];
}
const DoubleFunctionSample & SampleFitResult::getModel(
const PlaceHolder ph __dumb,
const Index j) const
{
return model_[j];
}
FitResult SampleFitResult::getFitResult(const Index s) const
{
FitResult fit;
fit = (*this)[s];
fit.chi2_ = getChi2();
fit.nDof_ = static_cast<Index>(getNDof());
fit.model_.resize(model_.size());
for (unsigned int k = 0; k < model_.size(); ++k)
{
fit.model_[k] = model_[k][s];
}
return fit;
}
// IO //////////////////////////////////////////////////////////////////////////
void SampleFitResult::print(const bool printXsi, ostream &out) const
{
char buf[256];
Index pMax = printXsi ? size() : nPar_;
DMat err = this->variance().cwiseSqrt();
sprintf(buf, "chi^2/dof= %.1e/%d= %.2e -- chi^2 CCDF= %.2e -- p-value= %.2e",
getChi2(), static_cast<int>(getNDof()), getChi2PerDof(), getCcdf(),
getPValue());
out << buf << endl;
sprintf(buf, "correlation dynamic range= %.1f dB", getCorrRangeDb());
out << buf << endl;
for (Index p = 0; p < pMax; ++p)
{
sprintf(buf, "%12s= % e +/- %e", parName_[p].c_str(),
(*this)[central](p), err(p));
out << buf << endl;
}
}
/******************************************************************************
* XYSampleData implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
XYSampleData::XYSampleData(const Index nSample)
: nSample_(nSample)
{}
// data access /////////////////////////////////////////////////////////////////
DSample & XYSampleData::x(const Index r, const Index i)
{
checkXIndex(r, i);
scheduleDataInit();
scheduleComputeVarMat();
if (xData_[i][r].size() == 0)
{
xData_[i][r].resize(nSample_);
}
return xData_[i][r];
}
const DSample & XYSampleData::x(const Index r, const Index i) const
{
checkXIndex(r, i);
return xData_[i][r];
}
const DMatSample & XYSampleData::x(const Index k)
{
checkDataIndex(k);
updateXMap();
return xMap_.at(k);
}
DSample & XYSampleData::y(const Index k, const Index j)
{
checkYDim(j);
if (!pointExists(k, j))
{
registerDataPoint(k, j);
}
scheduleDataInit();
scheduleComputeVarMat();
if (yData_[j][k].size() == 0)
{
yData_[j][k].resize(nSample_);
}
return yData_[j][k];
}
const DSample & XYSampleData::y(const Index k, const Index j) const
{
checkPoint(k, j);
return yData_[j].at(k);
}
void XYSampleData::setUnidimData(const DMatSample &xData,
const vector<const DMatSample *> &v)
{
FOR_STAT_ARRAY(xData, s)
FOR_VEC(xData[central], r)
{
x(r, 0)[s] = xData[s](r);
for (unsigned int j = 0; j < v.size(); ++j)
{
y(r, j)[s] = (*(v[j]))[s](r);
}
}
}
const DMat & XYSampleData::getXXVar(const Index i1, const Index i2)
{
checkXDim(i1);
checkXDim(i2);
computeVarMat();
return data_.getXXVar(i1, i2);
}
const DMat & XYSampleData::getYYVar(const Index j1, const Index j2)
{
checkYDim(j1);
checkYDim(j2);
computeVarMat();
return data_.getYYVar(j1, j2);
}
const DMat & XYSampleData::getXYVar(const Index i, const Index j)
{
checkXDim(i);
checkYDim(j);
computeVarMat();
return data_.getXYVar(i, j);
}
DVec XYSampleData::getXError(const Index i)
{
checkXDim(i);
computeVarMat();
return data_.getXError(i);
}
DVec XYSampleData::getYError(const Index j)
{
checkYDim(j);
computeVarMat();
return data_.getYError(j);
}
// get total fit variance matrix and its pseudo-inverse ////////////////////////
const DMat & XYSampleData::getFitVarMat(void)
{
computeVarMat();
return data_.getFitVarMat();
}
const DMat & XYSampleData::getFitVarMatPInv(void)
{
computeVarMat();
return data_.getFitVarMatPInv();
}
const DMat & XYSampleData::getFitCorrMat(void)
{
computeVarMat();
return data_.getFitCorrMat();
}
const DMat & XYSampleData::getFitCorrMatPInv(void)
{
computeVarMat();
return data_.getFitCorrMatPInv();
}
// set data to a particular sample /////////////////////////////////////////////
void XYSampleData::setDataToSample(const Index s)
{
if (initData_ or (s != dataSample_))
{
for (Index i = 0; i < getNXDim(); ++i)
for (Index r = 0; r < getXSize(i); ++r)
{
data_.x(r, i) = xData_[i][r][s];
}
for (Index j = 0; j < getNYDim(); ++j)
for (auto &p: yData_[j])
{
data_.y(p.first, j) = p.second[s];
}
dataSample_ = s;
initData_ = false;
}
}
// get internal XYStatData /////////////////////////////////////////////////////
const XYStatData & XYSampleData::getData(void)
{
setDataToSample(central);
computeVarMat();
return data_;
}
// fit /////////////////////////////////////////////////////////////////////////
SampleFitResult XYSampleData::fit(std::vector<Minimizer *> &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v)
{
computeVarMat();
SampleFitResult result;
FitResult sampleResult;
DVec initCopy = init;
Minimizer::Verbosity verbCopy = minimizer.back()->getVerbosity();
result.resize(nSample_);
result.chi2_.resize(nSample_);
result.model_.resize(v.size());
FOR_STAT_ARRAY(result, s)
{
setDataToSample(s);
if (s == central)
{
sampleResult = data_.fit(minimizer, initCopy, v);
initCopy = sampleResult.segment(0, initCopy.size());
if (verbCopy != Minimizer::Verbosity::Debug)
{
minimizer.back()->setVerbosity(Minimizer::Verbosity::Silent);
}
}
else
{
sampleResult = data_.fit(*(minimizer.back()), initCopy, v);
}
result[s] = sampleResult;
result.chi2_[s] = sampleResult.getChi2();
for (unsigned int j = 0; j < v.size(); ++j)
{
result.model_[j].resize(nSample_);
result.model_[j][s] = sampleResult.getModel(j);
}
}
minimizer.back()->setVerbosity(verbCopy);
result.nPar_ = sampleResult.getNPar();
result.nDof_ = sampleResult.nDof_;
result.parName_ = sampleResult.parName_;
result.corrRangeDb_ = Math::cdr(getFitCorrMat());
return result;
}
SampleFitResult XYSampleData::fit(Minimizer &minimizer,
const DVec &init,
const std::vector<const DoubleModel *> &v)
{
vector<Minimizer *> mv{&minimizer};
return fit(mv, init, v);
}
// residuals ///////////////////////////////////////////////////////////////////
XYSampleData XYSampleData::getResiduals(const SampleFitResult &fit)
{
XYSampleData res(*this);
for (Index j = 0; j < getNYDim(); ++j)
{
const DoubleFunctionSample &f = fit.getModel(_, j);
for (auto &p: yData_[j])
{
res.y(p.first, j) -= f(x(p.first));
}
}
return res;
}
XYSampleData XYSampleData::getNormalisedResiduals(const SampleFitResult &fit)
{
XYSampleData res(*this);
for (Index j = 0; j < getNYDim(); ++j)
{
const DoubleFunctionSample &f = fit.getModel(_, j);
for (auto &p: yData_[j])
{
res.y(p.first, j) -= f(x(p.first));
}
const DMat &var = res.getYYVar(j, j);
for (auto &p: yData_[j])
{
res.y(p.first, j) /= sqrt(var(p.first, p.first));
}
}
return res;
}
XYSampleData XYSampleData::getPartialResiduals(const SampleFitResult &fit,
const DVec &ref, const Index i)
{
XYSampleData res(*this);
DMatSample buf(nSample_);
buf.fill(ref);
for (Index j = 0; j < getNYDim(); ++j)
{
const DoubleFunctionSample &f = fit.getModel(_, j);
for (auto &p: yData_[j])
{
FOR_STAT_ARRAY(buf, s)
{
buf[s](i) = x(p.first)[s](i);
}
res.y(p.first, j) -= f(x(p.first)) - f(buf);
}
}
return res;
}
// buffer list of x vectors ////////////////////////////////////////////////////
void XYSampleData::scheduleXMapInit(void)
{
initXMap_ = true;
}
void XYSampleData::updateXMap(void)
{
if (initXMap_)
{
for (Index s = central; s < nSample_; ++s)
{
setDataToSample(s);
for (auto k: getDataIndexSet())
{
if (s == central)
{
xMap_[k].resize(nSample_);
}
xMap_[k][s] = data_.x(k);
}
}
initXMap_ = false;
}
}
// schedule data initilization from samples ////////////////////////////////////
void XYSampleData::scheduleDataInit(void)
{
initData_ = true;
}
// variance matrix computation /////////////////////////////////////////////////
void XYSampleData::scheduleComputeVarMat(void)
{
computeVarMat_ = true;
}
void XYSampleData::computeVarMat(void)
{
if (computeVarMat_)
{
// initialize data if necessary
setDataToSample(central);
// compute relevant sizes
Index size = 0, ySize = 0;
for (Index j = 0; j < getNYDim(); ++j)
{
size += getYSize(j);
}
ySize = size;
for (Index i = 0; i < getNXDim(); ++i)
{
size += getXSize(i);
}
// compute total matrix
DMatSample z(nSample_, size, 1);
DMat var;
Index a;
FOR_STAT_ARRAY(z, s)
{
a = 0;
for (Index j = 0; j < getNYDim(); ++j)
for (auto &p: yData_[j])
{
z[s](a, 0) = p.second[s];
a++;
}
for (Index i = 0; i < getNXDim(); ++i)
for (Index r = 0; r < getXSize(i); ++r)
{
z[s](a, 0) = xData_[i][r][s];
a++;
}
}
var = z.varianceMatrix();
// assign blocks to data
Index a1, a2;
a1 = ySize;
for (Index i1 = 0; i1 < getNXDim(); ++i1)
{
a2 = ySize;
for (Index i2 = 0; i2 < getNXDim(); ++i2)
{
data_.setXXVar(i1, i2,
var.block(a1, a2, getXSize(i1), getXSize(i2)));
a2 += getXSize(i2);
}
a1 += getXSize(i1);
}
a1 = 0;
for (Index j1 = 0; j1 < getNYDim(); ++j1)
{
a2 = 0;
for (Index j2 = 0; j2 < getNYDim(); ++j2)
{
data_.setYYVar(j1, j2,
var.block(a1, a2, getYSize(j1), getYSize(j2)));
a2 += getYSize(j2);
}
a1 += getYSize(j1);
}
a1 = ySize;
for (Index i = 0; i < getNXDim(); ++i)
{
a2 = 0;
for (Index j = 0; j < getNYDim(); ++j)
{
data_.setXYVar(i, j,
var.block(a1, a2, getXSize(i), getYSize(j)));
a2 += getYSize(j);
}
a1 += getXSize(i);
}
computeVarMat_ = false;
}
if (initVarMat())
{
data_.copyInterface(*this);
scheduleFitVarMatInit(false);
}
}
// create data /////////////////////////////////////////////////////////////////
void XYSampleData::createXData(const string name, const Index nData)
{
data_.addXDim(nData, name);
xData_.push_back(vector<DSample>(nData));
}
void XYSampleData::createYData(const string name)
{
data_.addYDim(name);
yData_.push_back(map<Index, DSample>());
}