1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-10 08:55:37 +00:00
LatAnalyze/lib/MinuitMinimizer.cpp

187 lines
5.4 KiB
C++

/*
* MinuitMinimizer.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2016 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/MinuitMinimizer.hpp>
#include <LatAnalyze/includes.hpp>
#include <Minuit2/Minuit2Minimizer.h>
#include <Math/Functor.h>
using namespace std;
using namespace Latan;
static constexpr double initErr = 0.1;
static constexpr unsigned int maxTry = 10u;
/******************************************************************************
* MinuitMinimizer implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
MinuitMinimizer::MinuitMinimizer(const Algorithm algorithm)
{
setAlgorithm(algorithm);
}
MinuitMinimizer::MinuitMinimizer(const Index dim, const Algorithm algorithm)
: Minimizer(dim)
{
setAlgorithm(algorithm);
}
// access //////////////////////////////////////////////////////////////////////
MinuitMinimizer::Algorithm MinuitMinimizer::getAlgorithm(void) const
{
return algorithm_;
}
void MinuitMinimizer::setAlgorithm(const Algorithm algorithm)
{
algorithm_ = algorithm;
}
// minimization ////////////////////////////////////////////////////////////////
const DVec & MinuitMinimizer::operator()(const DoubleFunction &f)
{
using namespace ROOT;
using namespace Minuit2;
DVec &x = getState();
int printLevel;
EMinimizerType minuitAlg;
unique_ptr<Math::Minimizer> min;
// convert Latan parameters to Minuit parameters
switch (getVerbosity())
{
case Verbosity::Silent:
printLevel = 0;
break;
case Verbosity::Normal:
printLevel = 2;
break;
case Verbosity::Debug:
printLevel = 3;
break;
}
switch (getAlgorithm())
{
case Algorithm::Migrad:
minuitAlg = kMigrad;
break;
case Algorithm::Simplex:
minuitAlg = kSimplex;
break;
case Algorithm::Combined:
minuitAlg = kCombined;
break;
}
// resize minimizer state to match function number of arguments
if (f.getNArg() != x.size())
{
resize(f.getNArg());
}
// create and set minimizer
min.reset(new Minuit2Minimizer(minuitAlg));
min->SetMaxFunctionCalls(getMaxIteration());
min->SetTolerance(getPrecision());
min->SetPrintLevel(printLevel);
// set function and variables
Math::Functor minuitF(f, x.size());
string name;
double val, step;
min->SetFunction(minuitF);
for (Index i = 0; i < x.size(); ++i)
{
name = f.varName().getName(i);
val = x(i);
step = (fabs(x(i)) != 0.) ? initErr*fabs(x(i)) : 1.;
if (hasHighLimit(i) and !hasLowLimit(i))
{
min->SetUpperLimitedVariable(i, name, val, step, getHighLimit(i));
}
else if (!hasHighLimit(i) and hasLowLimit(i))
{
min->SetLowerLimitedVariable(i, name, val, step, getLowLimit(i));
}
else if (hasHighLimit(i) and hasLowLimit(i))
{
min->SetLimitedVariable(i, name, val, step, getLowLimit(i),
getHighLimit(i));
}
else
{
min->SetVariable(i, name, val, step);
}
}
// minimize
int status;
unsigned int n = 0;
if (getVerbosity() >= Verbosity::Normal)
{
cout << "========== Minuit minimization, pass #1";
cout << " ==========" << endl;
}
min->SetStrategy(0);
min->Minimize();
do
{
n++;
if (getVerbosity() >= Verbosity::Normal)
{
cout << "========== Minuit minimization, pass #" << n + 1;
cout << " ==========" << endl;
}
min->SetStrategy(2);
min->Minimize();
status = min->Status();
} while (status and (n < maxTry));
if (getVerbosity() >= Verbosity::Normal)
{
cout << "======================================" << endl;
}
switch (status)
{
case 1:
LATAN_WARNING("invalid minimum: covariance matrix was made positive");
break;
case 2:
LATAN_WARNING("invalid minimum: Hesse analysis is not valid");
break;
case 3:
LATAN_WARNING("invalid minimum: requested precision not reached");
break;
case 4:
LATAN_WARNING("invalid minimum: iteration limit reached");
break;
}
// save and return result
for (Index i = 0; i < x.size(); ++i)
{
x(i) = min->X()[i];
}
return x;
}