mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-14 01:45:35 +00:00
438 lines
15 KiB
C++
438 lines
15 KiB
C++
#include <LatAnalyze/Core/OptParser.hpp>
|
|
#include <LatAnalyze/Functional/CompiledModel.hpp>
|
|
#include <LatAnalyze/Io/Io.hpp>
|
|
#include <LatAnalyze/Statistics/MatSample.hpp>
|
|
#include <LatAnalyze/Core/Math.hpp>
|
|
#include <LatAnalyze/Numerical/MinuitMinimizer.hpp>
|
|
#include <LatAnalyze/Numerical/NloptMinimizer.hpp>
|
|
#include <LatAnalyze/Core/Plot.hpp>
|
|
#include <LatAnalyze/Statistics/XYSampleData.hpp>
|
|
|
|
using namespace std;
|
|
using namespace Latan;
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
// parse arguments /////////////////////////////////////////////////////////
|
|
OptParser opt;
|
|
bool parsed, doPlot, doHeatmap, doCorr, fold;
|
|
string corrFileName, model, outFileName, outFmt, savePlot;
|
|
Index ti, tf, shift, nPar, thinning;
|
|
double svdTol;
|
|
Minimizer::Verbosity verbosity;
|
|
|
|
opt.addOption("" , "ti" , OptParser::OptType::value , false,
|
|
"initial fit time");
|
|
opt.addOption("" , "tf" , OptParser::OptType::value , false,
|
|
"final fit time");
|
|
opt.addOption("t" , "thinning", OptParser::OptType::value , true,
|
|
"thinning of the time interval", "1");
|
|
opt.addOption("s", "shift" , OptParser::OptType::value , true,
|
|
"time variable shift", "0");
|
|
opt.addOption("m", "model" , OptParser::OptType::value , true,
|
|
"fit model (exp|exp2|exp3|sinh|cosh|cosh2|cosh3|explin|const|<interpreter code>)", "cosh");
|
|
opt.addOption("" , "nPar" , OptParser::OptType::value , true,
|
|
"number of model parameters for custom models "
|
|
"(-1 if irrelevant)", "-1");
|
|
opt.addOption("" , "svd" , OptParser::OptType::value , true,
|
|
"singular value elimination threshold", "0.");
|
|
opt.addOption("v", "verbosity", OptParser::OptType::value , true,
|
|
"minimizer verbosity level (0|1|2)", "0");
|
|
opt.addOption("o", "output", OptParser::OptType::value , true,
|
|
"output file", "");
|
|
opt.addOption("" , "uncorr" , OptParser::OptType::trigger, true,
|
|
"only do the uncorrelated fit");
|
|
opt.addOption("" , "fold" , OptParser::OptType::trigger, true,
|
|
"fold the correlator");
|
|
opt.addOption("p", "plot" , OptParser::OptType::trigger, true,
|
|
"show the fit plot");
|
|
opt.addOption("h", "heatmap" , OptParser::OptType::trigger, true,
|
|
"show the fit correlation heatmap");
|
|
opt.addOption("s", "save-plot", OptParser::OptType::value, true,
|
|
"saves the source and .pdf", "");
|
|
opt.addOption("", "help" , OptParser::OptType::trigger, true,
|
|
"show this help message and exit");
|
|
parsed = opt.parse(argc, argv);
|
|
if (!parsed or (opt.getArgs().size() != 1) or opt.gotOption("help"))
|
|
{
|
|
cerr << "usage: " << argv[0] << " <options> <correlator file>" << endl;
|
|
cerr << endl << "Possible options:" << endl << opt << endl;
|
|
|
|
return EXIT_FAILURE;
|
|
}
|
|
corrFileName = opt.getArgs().front();
|
|
ti = opt.optionValue<Index>("ti");
|
|
tf = opt.optionValue<Index>("tf");
|
|
thinning = opt.optionValue<Index>("t");
|
|
shift = opt.optionValue<Index>("s");
|
|
model = opt.optionValue("m");
|
|
nPar = opt.optionValue<Index>("nPar");
|
|
svdTol = opt.optionValue<double>("svd");
|
|
outFileName = opt.optionValue<string>("o");
|
|
doCorr = !opt.gotOption("uncorr");
|
|
fold = opt.gotOption("fold");
|
|
doPlot = opt.gotOption("p");
|
|
doHeatmap = opt.gotOption("h");
|
|
savePlot = opt.optionValue("s");
|
|
switch (opt.optionValue<unsigned int>("v"))
|
|
{
|
|
case 0:
|
|
verbosity = Minimizer::Verbosity::Silent;
|
|
break;
|
|
case 1:
|
|
verbosity = Minimizer::Verbosity::Normal;
|
|
break;
|
|
case 2:
|
|
verbosity = Minimizer::Verbosity::Debug;
|
|
break;
|
|
default:
|
|
cerr << "error: wrong verbosity level" << endl;
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
// load correlator /////////////////////////////////////////////////////////
|
|
DMatSample tmp, corr;
|
|
Index nSample, nt;
|
|
|
|
tmp = Io::load<DMatSample>(corrFileName);
|
|
nSample = tmp.size();
|
|
nt = tmp[central].rows();
|
|
tmp = tmp.block(0, 0, nt, 1);
|
|
corr = tmp;
|
|
FOR_STAT_ARRAY(corr, s)
|
|
{
|
|
for (Index t = 0; t < nt; ++t)
|
|
{
|
|
corr[s]((t - shift + nt)%nt) = tmp[s](t);
|
|
}
|
|
}
|
|
if (fold)
|
|
{
|
|
tmp = corr;
|
|
FOR_STAT_ARRAY(corr, s)
|
|
{
|
|
for (Index t = 0; t < nt; ++t)
|
|
{
|
|
corr[s](t) = 0.5*(tmp[s](t) + tmp[s]((nt - t) % nt));
|
|
}
|
|
}
|
|
}
|
|
|
|
// make model //////////////////////////////////////////////////////////////
|
|
DoubleModel mod;
|
|
bool sinhModel = false, coshModel = false, linearModel = false, constModel = false;
|
|
|
|
if ((model == "exp") or (model == "exp1"))
|
|
{
|
|
nPar = 2;
|
|
mod.setFunction([](const double *x, const double *p)
|
|
{
|
|
return p[1]*exp(-p[0]*x[0]);
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "exp2")
|
|
{
|
|
nPar = 4;
|
|
mod.setFunction([](const double *x, const double *p)
|
|
{
|
|
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0]);
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "exp3")
|
|
{
|
|
nPar = 6;
|
|
mod.setFunction([](const double *x, const double *p)
|
|
{
|
|
return p[1]*exp(-p[0]*x[0]) + p[3]*exp(-p[2]*x[0])
|
|
+ p[5]*exp(-p[4]*x[0]);
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "sinh")
|
|
{
|
|
sinhModel = true;
|
|
nPar = 2;
|
|
mod.setFunction([nt](const double *x, const double *p)
|
|
{
|
|
return p[1]*(exp(-p[0]*x[0])-exp(-p[0]*(nt-x[0])));
|
|
}, 1, nPar);
|
|
}
|
|
else if ((model == "cosh") or (model == "cosh1"))
|
|
{
|
|
coshModel = true;
|
|
nPar = 2;
|
|
mod.setFunction([nt](const double *x, const double *p)
|
|
{
|
|
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])));
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "cosh2")
|
|
{
|
|
coshModel = true;
|
|
nPar = 4;
|
|
mod.setFunction([nt](const double *x, const double *p)
|
|
{
|
|
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
|
|
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])));
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "cosh3")
|
|
{
|
|
coshModel = true;
|
|
nPar = 6;
|
|
mod.setFunction([nt](const double *x, const double *p)
|
|
{
|
|
return p[1]*(exp(-p[0]*x[0])+exp(-p[0]*(nt-x[0])))
|
|
+ p[3]*(exp(-p[2]*x[0])+exp(-p[2]*(nt-x[0])))
|
|
+ p[5]*(exp(-p[2]*x[0])+exp(-p[4]*(nt-x[0])));
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "explin")
|
|
{
|
|
linearModel = true;
|
|
nPar = 2;
|
|
mod.setFunction([](const double *x, const double *p)
|
|
{
|
|
return p[1] - p[0]*x[0];
|
|
}, 1, nPar);
|
|
}
|
|
else if (model == "const")
|
|
{
|
|
constModel = true;
|
|
nPar = 1;
|
|
mod.setFunction([](const double *x __dumb, const double *p)
|
|
{
|
|
return p[0];
|
|
}, 1, nPar);
|
|
}
|
|
else
|
|
{
|
|
if (nPar > 0)
|
|
{
|
|
mod = compile(model, 1, nPar);
|
|
}
|
|
else
|
|
{
|
|
cerr << "error: please specify the number of model parameter"
|
|
" using the --nPar function" << endl;
|
|
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
// fit /////////////////////////////////////////////////////////////////////
|
|
DMatSample tvec(nSample);
|
|
XYSampleData data(nSample);
|
|
SampleFitResult fit;
|
|
DVec init(nPar);
|
|
NloptMinimizer globMin(NloptMinimizer::Algorithm::GN_CRS2_LM);
|
|
MinuitMinimizer locMin;
|
|
vector<Minimizer *> unCorrMin{&globMin, &locMin};
|
|
|
|
FOR_STAT_ARRAY(tvec, s)
|
|
{
|
|
tvec[s] = DVec::LinSpaced(nt, 0, nt - 1);
|
|
}
|
|
data.addXDim(nt, "t/a", true);
|
|
data.addYDim("C(t)");
|
|
data.setUnidimData(tvec, corr);
|
|
// set parameter name /////////////
|
|
if(constModel)
|
|
{
|
|
mod.parName().setName(0, "const");
|
|
}
|
|
else
|
|
{
|
|
for (Index p = 0; p < nPar; p += 2)
|
|
{
|
|
mod.parName().setName(p, "E_" + strFrom(p/2));
|
|
mod.parName().setName(p + 1, "Z_" + strFrom(p/2));
|
|
}
|
|
}
|
|
//set initial values ////////////////
|
|
if (linearModel)
|
|
{
|
|
init(0) = data.y(nt/4, 0)[central] - data.y(nt/4 + 1, 0)[central];
|
|
init(1) = data.y(nt/4, 0)[central] + nt/4*init(0);
|
|
}
|
|
else if(constModel)
|
|
{
|
|
init(0) = data.y(nt/4, 0)[central];
|
|
|
|
}
|
|
else
|
|
{
|
|
init(0) = log(data.y(nt/4, 0)[central]/data.y(nt/4 + 1, 0)[central]);
|
|
init(1) = data.y(nt/4, 0)[central]/(exp(-init(0)*nt/4));
|
|
// cout << init(0) << "\t" << init(1) << endl;
|
|
}
|
|
for (Index p = 2; p < nPar; p += 2)
|
|
{
|
|
init(p) = 2*init(p - 2);
|
|
init(p + 1) = init(p - 1)/2.;
|
|
|
|
}
|
|
// set limits for minimiser //////////////
|
|
for (Index p = 0; p < nPar; p += 2)
|
|
{
|
|
if (linearModel)
|
|
{
|
|
globMin.setLowLimit(p, -10.*fabs(init(p)));
|
|
globMin.setHighLimit(p, 10.*fabs(init(p)));
|
|
}
|
|
else if(constModel)
|
|
{
|
|
globMin.setLowLimit(p, -10*fabs(init(0)));
|
|
locMin.setLowLimit(p, -10*fabs(init(0)));
|
|
globMin.setHighLimit(p, 10*fabs(init(0)));
|
|
}
|
|
else
|
|
{
|
|
globMin.setLowLimit(p, 0.);
|
|
// locMin.setLowLimit(p, 0.);
|
|
globMin.setHighLimit(p, 10.*init(p));
|
|
}
|
|
if(!constModel)
|
|
{
|
|
locMin.setLowLimit(p+1, -1);
|
|
globMin.setLowLimit(p + 1, -10.*fabs(init(p + 1)));
|
|
globMin.setHighLimit(p + 1, 10.*fabs(init(p + 1)));
|
|
}
|
|
|
|
}
|
|
globMin.setPrecision(0.001);
|
|
globMin.setMaxIteration(100000);
|
|
globMin.setVerbosity(verbosity);
|
|
locMin.setMaxIteration(1000000);
|
|
locMin.setVerbosity(verbosity);
|
|
// fit /////////////////////////////////
|
|
for (Index t = 0; t < nt; ++t)
|
|
{
|
|
data.fitPoint((t >= ti) and (t <= tf)
|
|
and ((t - ti) % thinning == 0), t);
|
|
}
|
|
if (doCorr)
|
|
{
|
|
cout << "-- uncorrelated fit..." << endl;
|
|
}
|
|
cout << "using model '" << model << "'" << endl;
|
|
data.setSvdTolerance(svdTol);
|
|
data.assumeYYCorrelated(false, 0, 0);
|
|
fit = data.fit(unCorrMin, init, mod);
|
|
fit.print();
|
|
if (doCorr)
|
|
{
|
|
cout << "-- correlated fit..." << endl;
|
|
cout << "using model '" << model << "'" << endl;
|
|
init = fit[central];
|
|
data.assumeYYCorrelated(true, 0, 0);
|
|
fit = data.fit(locMin, init, mod);
|
|
fit.print();
|
|
}
|
|
// plots ///////////////////////////////////////////////////////////////////
|
|
if (doPlot)
|
|
{
|
|
Plot p;
|
|
|
|
p << PlotRange(Axis::x, 0, nt - 1);
|
|
if (!linearModel and !constModel)
|
|
{
|
|
p << LogScale(Axis::y);
|
|
}
|
|
p << Color("rgb 'blue'") << PlotPredBand(fit.getModel(_), 0, nt - 1);
|
|
p << Color("rgb 'blue'") << PlotFunction(fit.getModel(), 0, nt - 1);
|
|
p << Color("rgb 'red'") << PlotData(data.getData());
|
|
p.display();
|
|
if(savePlot != "")
|
|
{
|
|
cout << "Saving plot and source code to " << savePlot << endl;
|
|
p.save(savePlot);
|
|
}
|
|
// effective mass plot //////////////////////////////////////////////////////
|
|
if (!constModel)
|
|
{
|
|
DMatSample effMass(nSample);
|
|
DVec effMassT, fitErr;
|
|
Index maxT = (coshModel) ? (nt - 2) : (nt - 1);
|
|
double e0, e0Err;
|
|
|
|
effMass.resizeMat(maxT, 1);
|
|
effMassT.setLinSpaced(maxT, 0, maxT-1);
|
|
fitErr = fit.variance().cwiseSqrt();
|
|
e0 = fit[central](0);
|
|
e0Err = fitErr(0);
|
|
if (coshModel or sinhModel)
|
|
{
|
|
FOR_STAT_ARRAY(effMass, s)
|
|
{
|
|
for (Index t = 1; t < nt - 1; ++t)
|
|
{
|
|
effMass[s](t - 1) = acosh((corr[s](t-1) + corr[s](t+1))
|
|
/(2.*corr[s](t)));
|
|
}
|
|
}
|
|
}
|
|
else if (linearModel)
|
|
{
|
|
FOR_STAT_ARRAY(effMass, s)
|
|
{
|
|
for (Index t = 0; t < nt - 1; ++t)
|
|
{
|
|
effMass[s](t) = corr[s](t) - corr[s](t+1);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FOR_STAT_ARRAY(effMass, s)
|
|
{
|
|
for (Index t = 1; t < nt; ++t)
|
|
{
|
|
effMass[s](t - 1) = log(corr[s](t-1)/corr[s](t));
|
|
}
|
|
}
|
|
}
|
|
p.reset();
|
|
p << PlotRange(Axis::x, 0, maxT);
|
|
p << PlotRange(Axis::y, e0 - 20.*e0Err, e0 + 20.*e0Err);
|
|
p << Color("rgb 'blue'") << PlotBand(0, maxT, e0 - e0Err, e0 + e0Err);
|
|
p << Color("rgb 'blue'") << PlotHLine(e0);
|
|
p << Color("rgb 'red'") << PlotData(effMassT, effMass);
|
|
p << Caption("Effective Mass");
|
|
p.display();
|
|
if(savePlot != "")
|
|
{
|
|
string savename = savePlot + "_effMass";
|
|
cout << "Saving effective mass plot and source code to " << savename << endl;
|
|
p.save(savename);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (doHeatmap)
|
|
{
|
|
Plot p;
|
|
Index n = data.getFitVarMat().rows();
|
|
DMat id = DMat::Identity(n, n);
|
|
|
|
p << PlotMatrix(Math::varToCorr(data.getFitVarMat()));
|
|
p << Caption("correlation matrix");
|
|
p.display();
|
|
if (svdTol > 0.)
|
|
{
|
|
p.reset();
|
|
p << PlotMatrix(id - data.getFitVarMat()*data.getFitVarMatPInv());
|
|
p << Caption("singular space projector");
|
|
p.display();
|
|
}
|
|
}
|
|
|
|
|
|
// output //////////////////////////////////////////////////////////////////
|
|
if (!outFileName.empty())
|
|
{
|
|
Io::save(fit, outFileName);
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|