1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-14 01:45:35 +00:00
LatAnalyze/lib/RandGen.cpp

691 lines
16 KiB
C++

/*
* RandGen.cpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2015 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#include <LatAnalyze/RandGen.hpp>
#include <LatAnalyze/includes.hpp>
#pragma GCC diagnostic ignored "-Wfloat-conversion"
#ifndef RLXD_LEVEL
#define RLXD_LEVEL 1
#endif
using namespace std;
using namespace Latan;
/******************************************************************************
* RandGenState implementation *
******************************************************************************/
// IO type ///////////////////////////////////////////////////////////////
IoObject::IoType RandGenState::getType(void) const
{
return IoType::rgState;
}
/******************************************************************************
* RandGen implementation *
******************************************************************************/
// RanLxd implementation ///////////////////////////////////////////////////////
RandGen::RanLxd::RanLxd(void)
{
// avoid a warning in the SSE case
one_bit = 0.0;
}
/****************************************************************************/
/* Copyright (C) 2005 Martin Luescher (GPL)
* This software is distributed under the terms of the GNU General Public
* License (GPL)
*
* Random number generator "ranlxd". See the notes
*
* "User's guide for ranlxs and ranlxd v3.2" (December 2005)
*
* "Algorithms used in ranlux v3.0" (May 2001)
*
* for a detailed description
*
* The functions are
*
* void ranlxd(double r[],int n)
* Computes the next n double-precision random numbers and
* assigns them to the elements r[0],...,r[n-1] of the array r[]
*
* void rlxd_init(int level,int seed)
* Initialization of the generator
*
* int rlxd_size(void)
* Returns the number of integers required to save the state of
* the generator
*
* void rlxd_get(int state[])
* Extracts the current state of the generator and stores the
* information in the array state[N] where N>=rlxd_size()
*
* void rlxd_reset(int state[])
* Resets the generator to the state defined by the array state[N]
*/
#ifdef HAVE_SSE
#define STEP(pi,pj) \
__asm__ __volatile__ ("movaps %4, %%xmm4 \n\t" \
"movaps %%xmm2, %%xmm3 \n\t" \
"subps %2, %%xmm4 \n\t" \
"movaps %%xmm1, %%xmm5 \n\t" \
"cmpps $0x6, %%xmm4, %%xmm2 \n\t" \
"andps %%xmm2, %%xmm5 \n\t" \
"subps %%xmm3, %%xmm4 \n\t" \
"andps %%xmm0, %%xmm2 \n\t" \
"addps %%xmm4, %%xmm5 \n\t" \
"movaps %%xmm5, %0 \n\t" \
"movaps %5, %%xmm6 \n\t" \
"movaps %%xmm2, %%xmm3 \n\t" \
"subps %3, %%xmm6 \n\t" \
"movaps %%xmm1, %%xmm7 \n\t" \
"cmpps $0x6, %%xmm6, %%xmm2 \n\t" \
"andps %%xmm2, %%xmm7 \n\t" \
"subps %%xmm3, %%xmm6 \n\t" \
"andps %%xmm0, %%xmm2 \n\t" \
"addps %%xmm6, %%xmm7 \n\t" \
"movaps %%xmm7, %1" \
: \
"=m" ((*pi).c1), \
"=m" ((*pi).c2) \
: \
"m" ((*pi).c1), \
"m" ((*pi).c2), \
"m" ((*pj).c1), \
"m" ((*pj).c2) \
: \
"xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7")
void RandGen::RanLxd::error(int no) const
{
switch(no)
{
case 1:
LATAN_ERROR(Range, "Bad choice of luxury level (should be 1 or 2)");
break;
case 2:
LATAN_ERROR(Range, "Bad choice of seed (should be between 1 and 2^31-1)");
break;
case 3:
LATAN_ERROR(Runtime, "Undefined state (ranlxd is not initialized)");
break;
case 5:
LATAN_ERROR(Logic, "Unexpected input data");
break;
}
}
void RandGen::RanLxd::update(void)
{
int k,kmax;
rlxd_dble_vec_t *pmin,*pmax,*pi,*pj;
kmax=rlxd_pr;
pmin=&rlxd_x.vec[0];
pmax=pmin+12;
pi=&rlxd_x.vec[ir];
pj=&rlxd_x.vec[jr];
__asm__ __volatile__ ("movaps %0, %%xmm0 \n\t"
"movaps %1, %%xmm1 \n\t"
"movaps %2, %%xmm2"
:
:
"m" (one_bit_sse),
"m" (one_sse),
"m" (carry)
:
"xmm0", "xmm1", "xmm2");
for (k=0;k<kmax;k++)
{
STEP(pi,pj);
pi+=1;
pj+=1;
if (pi==pmax)
pi=pmin;
if (pj==pmax)
pj=pmin;
}
__asm__ __volatile__ ("movaps %%xmm2, %0"
:
"=m" (carry));
ir+=prm;
jr+=prm;
if (ir>=12)
ir-=12;
if (jr>=12)
jr-=12;
is=8*ir;
is_old=is;
}
void RandGen::RanLxd::define_constants(void)
{
int k;
float b;
one_sse.c1=1.0f;
one_sse.c2=1.0f;
one_sse.c3=1.0f;
one_sse.c4=1.0f;
b=(float)(ldexp(1.0,-24));
one_bit_sse.c1=b;
one_bit_sse.c2=b;
one_bit_sse.c3=b;
one_bit_sse.c4=b;
for (k=0;k<96;k++)
{
next[k]=(k+1)%96;
if ((k%4)==3)
next[k]=(k+5)%96;
}
}
void RandGen::RanLxd::rlxd_init(int level,int seed)
{
int i,k,l;
int ibit,jbit,xbit[31];
int ix,iy;
define_constants();
if (level==1)
rlxd_pr=202;
else if (level==2)
rlxd_pr=397;
else
error(1);
i=seed;
for (k=0;k<31;k++)
{
xbit[k]=i%2;
i/=2;
}
if ((seed<=0)||(i!=0))
error(2);
ibit=0;
jbit=18;
for (i=0;i<4;i++)
{
for (k=0;k<24;k++)
{
ix=0;
for (l=0;l<24;l++)
{
iy=xbit[ibit];
ix=2*ix+iy;
xbit[ibit]=(xbit[ibit]+xbit[jbit])%2;
ibit=(ibit+1)%31;
jbit=(jbit+1)%31;
}
if ((k%4)!=i)
ix=16777215-ix;
rlxd_x.num[4*k+i]=(float)(ldexp((double)(ix),-24));
}
}
carry.c1=0.0f;
carry.c2=0.0f;
carry.c3=0.0f;
carry.c4=0.0f;
ir=0;
jr=7;
is=91;
is_old=0;
prm=rlxd_pr%12;
init=1;
}
void RandGen::RanLxd::ranlxd(double r[],int n)
{
int k;
if (init==0)
rlxd_init(1,1);
for (k=0;k<n;k++)
{
is=next[is];
if (is==is_old)
update();
r[k]=(double)(rlxd_x.num[is+4])+(double)(one_bit_sse.c1*rlxd_x.num[is]);
}
}
int RandGen::RanLxd::rlxd_size(void) const
{
return(RLXG_STATE_SIZE);
}
void RandGen::RanLxd::rlxd_get(int state[]) const
{
int k;
float base;
if (init==0)
error(3);
base=(float)(ldexp(1.0,24));
state[0]=rlxd_size();
for (k=0;k<96;k++)
state[k+1]=(int)(base*rlxd_x.num[k]);
state[97]=(int)(base*carry.c1);
state[98]=(int)(base*carry.c2);
state[99]=(int)(base*carry.c3);
state[100]=(int)(base*carry.c4);
state[101]=rlxd_pr;
state[102]=ir;
state[103]=jr;
state[104]=is;
}
void RandGen::RanLxd::rlxd_reset(const int state[])
{
int k;
define_constants();
if (state[0]!=rlxd_size())
error(5);
for (k=0;k<96;k++)
{
if ((state[k+1]<0)||(state[k+1]>=167777216))
error(5);
rlxd_x.num[k]=(float)(ldexp((double)(state[k+1]),-24));
}
if (((state[97]!=0)&&(state[97]!=1))||
((state[98]!=0)&&(state[98]!=1))||
((state[99]!=0)&&(state[99]!=1))||
((state[100]!=0)&&(state[100]!=1)))
error(5);
carry.c1=(float)(ldexp((double)(state[97]),-24));
carry.c2=(float)(ldexp((double)(state[98]),-24));
carry.c3=(float)(ldexp((double)(state[99]),-24));
carry.c4=(float)(ldexp((double)(state[100]),-24));
rlxd_pr=state[101];
ir=state[102];
jr=state[103];
is=state[104];
is_old=8*ir;
prm=rlxd_pr%12;
init=1;
if (((rlxd_pr!=202)&&(rlxd_pr!=397))||
(ir<0)||(ir>11)||(jr<0)||(jr>11)||(jr!=((ir+7)%12))||
(is<0)||(is>91))
error(5);
}
#else
#define BASE 0x1000000
#define MASK 0xffffff
#define STEP(pi,pj) \
d=(*pj).c1.c1-(*pi).c1.c1-carry.c1; \
(*pi).c2.c1+=(d<0); \
d+=BASE; \
(*pi).c1.c1=d&MASK; \
d=(*pj).c1.c2-(*pi).c1.c2-carry.c2; \
(*pi).c2.c2+=(d<0); \
d+=BASE; \
(*pi).c1.c2=d&MASK; \
d=(*pj).c1.c3-(*pi).c1.c3-carry.c3; \
(*pi).c2.c3+=(d<0); \
d+=BASE; \
(*pi).c1.c3=d&MASK; \
d=(*pj).c1.c4-(*pi).c1.c4-carry.c4; \
(*pi).c2.c4+=(d<0); \
d+=BASE; \
(*pi).c1.c4=d&MASK; \
d=(*pj).c2.c1-(*pi).c2.c1; \
carry.c1=(d<0); \
d+=BASE; \
(*pi).c2.c1=d&MASK; \
d=(*pj).c2.c2-(*pi).c2.c2; \
carry.c2=(d<0); \
d+=BASE; \
(*pi).c2.c2=d&MASK; \
d=(*pj).c2.c3-(*pi).c2.c3; \
carry.c3=(d<0); \
d+=BASE; \
(*pi).c2.c3=d&MASK; \
d=(*pj).c2.c4-(*pi).c2.c4; \
carry.c4=(d<0); \
d+=BASE; \
(*pi).c2.c4=d&MASK
void RandGen::RanLxd::error(int no) const
{
switch(no)
{
case 0:
LATAN_ERROR(System, "Arithmetic on this machine is not suitable for ranlxd");
break;
case 1:
LATAN_ERROR(Range, "Bad choice of luxury level (should be 1 or 2)");
break;
case 2:
LATAN_ERROR(Range, "Bad choice of seed (should be between 1 and 2^31-1)");
break;
case 3:
LATAN_ERROR(Runtime, "Undefined state (ranlxd is not initialized)");
case 4:
LATAN_ERROR(System, "Arithmetic on this machine is not suitable for ranlxd");
break;
case 5:
LATAN_ERROR(Logic, "Unexpected input data");
break;
}
}
void RandGen::RanLxd::update(void)
{
int k,kmax,d;
rlxd_dble_vec_t *pmin,*pmax,*pi,*pj;
kmax=rlxd_pr;
pmin=&rlxd_x.vec[0];
pmax=pmin+12;
pi=&rlxd_x.vec[ir];
pj=&rlxd_x.vec[jr];
for (k=0;k<kmax;k++)
{
STEP(pi,pj);
pi+=1;
pj+=1;
if (pi==pmax)
pi=pmin;
if (pj==pmax)
pj=pmin;
}
ir+=prm;
jr+=prm;
if (ir>=12)
ir-=12;
if (jr>=12)
jr-=12;
is=8*ir;
is_old=is;
}
void RandGen::RanLxd::define_constants(void)
{
int k;
one_bit=ldexp(1.0,-24);
for (k=0;k<96;k++)
{
next[k]=(k+1)%96;
if ((k%4)==3)
next[k]=(k+5)%96;
}
}
void RandGen::RanLxd::rlxd_init(int level,int seed)
{
int i,k,l;
int ibit,jbit,xbit[31];
int ix,iy;
if ((INT_MAX<2147483647)||(FLT_RADIX!=2)||(FLT_MANT_DIG<24)||
(DBL_MANT_DIG<48))
error(0);
define_constants();
if (level==1)
rlxd_pr=202;
else if (level==2)
rlxd_pr=397;
else
error(1);
i=seed;
for (k=0;k<31;k++)
{
xbit[k]=i%2;
i/=2;
}
if ((seed<=0)||(i!=0))
error(2);
ibit=0;
jbit=18;
for (i=0;i<4;i++)
{
for (k=0;k<24;k++)
{
ix=0;
for (l=0;l<24;l++)
{
iy=xbit[ibit];
ix=2*ix+iy;
xbit[ibit]=(xbit[ibit]+xbit[jbit])%2;
ibit=(ibit+1)%31;
jbit=(jbit+1)%31;
}
if ((k%4)!=i)
ix=16777215-ix;
rlxd_x.num[4*k+i]=ix;
}
}
carry.c1=0;
carry.c2=0;
carry.c3=0;
carry.c4=0;
ir=0;
jr=7;
is=91;
is_old=0;
prm=rlxd_pr%12;
init=1;
}
void RandGen::RanLxd::ranlxd(double r[],int n)
{
int k;
if (init==0)
rlxd_init(1,1);
for (k=0;k<n;k++)
{
is=next[is];
if (is==is_old)
update();
r[k]=one_bit*((double)(rlxd_x.num[is+4])+one_bit*(double)(rlxd_x.num[is]));
}
}
int RandGen::RanLxd::rlxd_size(void) const
{
return(RLXG_STATE_SIZE);
}
void RandGen::RanLxd::rlxd_get(int state[]) const
{
int k;
if (init==0)
error(3);
state[0]=rlxd_size();
for (k=0;k<96;k++)
state[k+1]=rlxd_x.num[k];
state[97]=carry.c1;
state[98]=carry.c2;
state[99]=carry.c3;
state[100]=carry.c4;
state[101]=rlxd_pr;
state[102]=ir;
state[103]=jr;
state[104]=is;
}
void RandGen::RanLxd::rlxd_reset(const int state[])
{
int k;
if ((INT_MAX<2147483647)||(FLT_RADIX!=2)||(FLT_MANT_DIG<24)||
(DBL_MANT_DIG<48))
error(4);
define_constants();
if (state[0]!=rlxd_size())
error(5);
for (k=0;k<96;k++)
{
if ((state[k+1]<0)||(state[k+1]>=167777216))
error(5);
rlxd_x.num[k]=state[k+1];
}
if (((state[97]!=0)&&(state[97]!=1))||
((state[98]!=0)&&(state[98]!=1))||
((state[99]!=0)&&(state[99]!=1))||
((state[100]!=0)&&(state[100]!=1)))
error(5);
carry.c1=state[97];
carry.c2=state[98];
carry.c3=state[99];
carry.c4=state[100];
rlxd_pr=state[101];
ir=state[102];
jr=state[103];
is=state[104];
is_old=8*ir;
prm=rlxd_pr%12;
init=1;
if (((rlxd_pr!=202)&&(rlxd_pr!=397))||
(ir<0)||(ir>11)||(jr<0)||(jr>11)||(jr!=((ir+7)%12))||
(is<0)||(is>91))
error(5);
}
#endif
// constructors ////////////////////////////////////////////////////////////////
RandGen::RandGen(void)
{
generator_.rlxd_init(RLXD_LEVEL, (int)time(NULL));
}
RandGen::RandGen(const int seed)
{
generator_.rlxd_init(RLXD_LEVEL, seed);
}
RandGen::RandGen(const RandGenState &state)
{
setState(state);
}
// state management ////////////////////////////////////////////////////////////
RandGenState RandGen::getState(void) const
{
RandGenState state;
generator_.rlxd_get(state.data());
return state;
}
void RandGen::setState(const RandGenState &state)
{
generator_.rlxd_reset(state.data());
}
// generators //////////////////////////////////////////////////////////////////
double RandGen::uniform(const double a, const double b)
{
double rx;
generator_.ranlxd(&rx, 1);
return (b-a)*rx + a;
}
unsigned int RandGen::discreteUniform(const unsigned int n)
{
return ((unsigned int)(uniform()*(double)(n)));
}
double RandGen::gaussian(const double mean, const double sigma)
{
double rx, ry, sqNrm;
do
{
rx = uniform(-1.0, 1.0);
ry = uniform(-1.0, 1.0);
sqNrm = rx*rx + ry*ry;
} while ((sqNrm > 1.0)||(sqNrm == 0.0));
return sigma*rx*sqrt(-2.0*log(sqNrm)/sqNrm) + mean;
}