mirror of
https://github.com/aportelli/LatAnalyze.git
synced 2024-11-14 01:45:35 +00:00
375 lines
11 KiB
C++
375 lines
11 KiB
C++
/*
|
|
* XYSampleData.cpp, part of LatAnalyze 3
|
|
*
|
|
* Copyright (C) 2013 - 2015 Antonin Portelli
|
|
*
|
|
* LatAnalyze 3 is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* LatAnalyze 3 is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <LatAnalyze/XYSampleData.hpp>
|
|
#include <LatAnalyze/Math.hpp>
|
|
#include <LatAnalyze/includes.hpp>
|
|
|
|
using namespace std;
|
|
using namespace Latan;
|
|
using namespace Math;
|
|
|
|
/******************************************************************************
|
|
* SampleFitResult implementation *
|
|
******************************************************************************/
|
|
double SampleFitResult::getChi2(const Index s) const
|
|
{
|
|
return chi2_[s];
|
|
}
|
|
|
|
const DSample & SampleFitResult::getChi2(const PlaceHolder ph __dumb) const
|
|
{
|
|
return chi2_;
|
|
}
|
|
|
|
double SampleFitResult::getChi2PerDof(const Index s) const
|
|
{
|
|
return chi2_[s]/getNDof();
|
|
}
|
|
|
|
DSample SampleFitResult::getChi2PerDof(const PlaceHolder ph __dumb) const
|
|
{
|
|
return chi2_/getNDof();
|
|
}
|
|
|
|
double SampleFitResult::getNDof(void) const
|
|
{
|
|
return static_cast<double>(nDof_);
|
|
}
|
|
|
|
double SampleFitResult::getPValue(const Index s) const
|
|
{
|
|
return chi2PValue(getChi2(s), getNDof());
|
|
}
|
|
|
|
const DoubleFunction & SampleFitResult::getModel(const Index s,
|
|
const Index j) const
|
|
{
|
|
return model_[static_cast<unsigned int>(j)][s];
|
|
}
|
|
|
|
const DoubleFunctionSample & SampleFitResult::getModel(
|
|
const PlaceHolder ph __dumb,
|
|
const Index j) const
|
|
{
|
|
return model_[static_cast<unsigned int>(j)];
|
|
}
|
|
|
|
FitResult SampleFitResult::getFitResult(const Index s) const
|
|
{
|
|
FitResult fit;
|
|
|
|
fit = (*this)[s];
|
|
fit.chi2_ = getChi2();
|
|
fit.nDof_ = static_cast<Index>(getNDof());
|
|
fit.model_.resize(model_.size());
|
|
for (unsigned int k = 0; k < model_.size(); ++k)
|
|
{
|
|
fit.model_[k] = model_[k][s];
|
|
}
|
|
|
|
return fit;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* XYSampleData implementation *
|
|
******************************************************************************/
|
|
// constructors ////////////////////////////////////////////////////////////////
|
|
XYSampleData::XYSampleData(const Index nData, const Index xDim,
|
|
const Index yDim, const Index nSample)
|
|
{
|
|
resize(nData, xDim, yDim, nSample);
|
|
}
|
|
|
|
// access //////////////////////////////////////////////////////////////////////
|
|
const XYStatData & XYSampleData::getData(const Index s)
|
|
{
|
|
setDataToSample(s);
|
|
|
|
return data_;
|
|
}
|
|
|
|
void XYSampleData::resize(const Index nData, const Index xDim,
|
|
const Index yDim, const Index nSample)
|
|
{
|
|
FitInterface::resize(nData, xDim, yDim);
|
|
x_.resize(nSample);
|
|
x_.resizeMat(nData, xDim);
|
|
y_.resize(nSample);
|
|
y_.resizeMat(nData, yDim);
|
|
data_.resize(nData, xDim, yDim);
|
|
isCovarianceInit_ = false;
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
|
|
const PlaceHolder ph2 __dumb)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return x_.block(0, 0, getNData(), getXDim());
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
|
|
const PlaceHolder ph2 __dumb)
|
|
const
|
|
{
|
|
return x_.block(0, 0, getNData(), getXDim());
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::x(const Index i,
|
|
const PlaceHolder ph2 __dumb)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return x_.block(0, i, getNData(), 1);
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::x(const Index i,
|
|
const PlaceHolder ph2 __dumb)
|
|
const
|
|
{
|
|
return x_.block(0, i, getNData(), 1);
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
|
|
const Index k)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return x_.block(k, 0, 1, getXDim());
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::x(const PlaceHolder ph1 __dumb,
|
|
const Index k) const
|
|
{
|
|
return x_.block(k, 0, 1, getXDim());
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::x(const Index i, const Index k)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return x_.block(k, i, 1, 1);
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::x(const Index i, const Index k)
|
|
const
|
|
{
|
|
return x_.block(k, i, 1, 1);
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
|
|
const PlaceHolder ph2 __dumb)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return y_.block(0, 0, getNData(), getYDim());
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
|
|
const PlaceHolder ph2 __dumb)
|
|
const
|
|
{
|
|
return y_.block(0, 0, getNData(), getYDim());
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::y(const Index j,
|
|
const PlaceHolder ph2 __dumb)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return y_.block(0, j, getNData(), 1);
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::y(const Index j,
|
|
const PlaceHolder ph2 __dumb)
|
|
const
|
|
{
|
|
return y_.block(0, j, getNData(), 1);
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
|
|
const Index k)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return y_.block(k, 0, 1, getYDim());
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::y(const PlaceHolder ph1 __dumb,
|
|
const Index k) const
|
|
{
|
|
return y_.block(k, 0, 1, getYDim());
|
|
}
|
|
|
|
XYSampleData::SampleBlock XYSampleData::y(const Index j, const Index k)
|
|
{
|
|
isCovarianceInit_ = false;
|
|
|
|
return y_.block(k, j, 1, 1);
|
|
}
|
|
|
|
XYSampleData::ConstSampleBlock XYSampleData::y(const Index j, const Index k)
|
|
const
|
|
{
|
|
return y_.block(k, j, 1, 1);
|
|
}
|
|
|
|
// fit /////////////////////////////////////////////////////////////////////////
|
|
SampleFitResult XYSampleData::fit(Minimizer &minimizer, const DVec &init,
|
|
const std::vector<const DoubleModel *> &modelVector)
|
|
{
|
|
const Index nSample = x_.size();
|
|
FitResult sampleResult;
|
|
SampleFitResult result;
|
|
DVec initBuf = init;
|
|
|
|
result.resize(nSample);
|
|
result.chi2_.resize(nSample);
|
|
FOR_STAT_ARRAY(x_, s)
|
|
{
|
|
// reinit chi^2 for central value only
|
|
if (s == central)
|
|
{
|
|
data_.reinitChi2(true);
|
|
}
|
|
else
|
|
{
|
|
data_.reinitChi2(false);
|
|
}
|
|
|
|
// set data
|
|
setDataToSample(s);
|
|
|
|
// fit
|
|
sampleResult = data_.fit(minimizer, initBuf, modelVector);
|
|
if (s == central)
|
|
{
|
|
initBuf = sampleResult;
|
|
}
|
|
|
|
// store result
|
|
result[s] = sampleResult;
|
|
result.chi2_[s] = sampleResult.getChi2();
|
|
result.nDof_ = sampleResult.getNDof();
|
|
result.model_.resize(modelVector.size());
|
|
for (unsigned int j = 0; j < modelVector.size(); ++j)
|
|
{
|
|
result.model_[j].resize(nSample);
|
|
result.model_[j][s] = sampleResult.getModel(j);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void XYSampleData::setDataToSample(const Index s)
|
|
{
|
|
// compute covariance matrices if necessary
|
|
if (!isCovarianceInit_)
|
|
{
|
|
DMatSample buf1, buf2;
|
|
|
|
for (Index i2 = 0; i2 < getXDim(); ++i2)
|
|
for (Index i1 = 0; i1 < getXDim(); ++i1)
|
|
{
|
|
buf1 = x(i1);
|
|
buf2 = x(i2);
|
|
data_.xxVar(i1, i2) = buf1.covarianceMatrix(buf2);
|
|
}
|
|
for (Index j2 = 0; j2 < getYDim(); ++j2)
|
|
for (Index j1 = 0; j1 < getYDim(); ++j1)
|
|
{
|
|
buf1 = y(j1);
|
|
buf2 = y(j2);
|
|
data_.yyVar(j1, j2) = buf1.covarianceMatrix(buf2);
|
|
}
|
|
for (Index i = 0; i < getXDim(); ++i)
|
|
for (Index j = 0; j < getYDim(); ++j)
|
|
{
|
|
buf1 = y(j);
|
|
buf2 = x(i);
|
|
data_.yxVar(j, i) = buf1.covarianceMatrix(buf2);
|
|
}
|
|
isCovarianceInit_ = true;
|
|
}
|
|
|
|
// copy interface to sample data
|
|
data_.setFitInterface(*this);
|
|
|
|
// set data
|
|
data_.x() = x_[s];
|
|
data_.y() = y_[s];
|
|
}
|
|
|
|
// residuals ///////////////////////////////////////////////////////////////////
|
|
XYSampleData XYSampleData::getResiduals(const SampleFitResult &fit) const
|
|
{
|
|
const Index nSample = x_.size();
|
|
XYSampleData res(*this);
|
|
DMatSample xBuf(nSample, getXDim(), 1), tmp(nSample, 1, 1);
|
|
|
|
for (Index j = 0; j < res.getYDim(); ++j)
|
|
{
|
|
const DoubleFunctionSample &f = fit.getModel(_, j);
|
|
|
|
for (Index k = 0; k < res.getNData(); ++k)
|
|
{
|
|
xBuf = this->x(_, k);
|
|
tmp = this->y(j, k);
|
|
FOR_STAT_ARRAY(xBuf, s)
|
|
{
|
|
tmp[s](0) -= f[s](xBuf[s].transpose());
|
|
}
|
|
res.y(j, k) = tmp;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
XYSampleData XYSampleData::getPartialResiduals(const SampleFitResult &fit,
|
|
const DVec &x,
|
|
const Index i) const
|
|
{
|
|
const Index nSample = x_.size();
|
|
XYSampleData res(*this);
|
|
DMatSample xBuf(nSample, getXDim(), 1), tmp(nSample, 1, 1);
|
|
DVec buf(x);
|
|
|
|
for (Index j = 0; j < res.getYDim(); ++j)
|
|
{
|
|
const DoubleFunctionSample &f = fit.getModel(_, j);
|
|
|
|
for (Index k = 0; k < res.getNData(); ++k)
|
|
{
|
|
xBuf = this->x(_, k);
|
|
tmp = this->y(j, k);
|
|
FOR_STAT_ARRAY(xBuf, s)
|
|
{
|
|
buf(i) = xBuf[s](i);
|
|
tmp[s](0) -= f[s](xBuf[s].transpose()) - f[s](buf);
|
|
}
|
|
res.y(j, k) = tmp;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|