1
0
mirror of https://github.com/aportelli/LatAnalyze.git synced 2024-11-14 01:45:35 +00:00
LatAnalyze/lib/MatSample.hpp

386 lines
11 KiB
C++

/*
* MatSample.hpp, part of LatAnalyze 3
*
* Copyright (C) 2013 - 2016 Antonin Portelli
*
* LatAnalyze 3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LatAnalyze 3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LatAnalyze 3. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef Latan_MatSample_hpp_
#define Latan_MatSample_hpp_
#include <LatAnalyze/Global.hpp>
#include <LatAnalyze/Mat.hpp>
#include <LatAnalyze/StatArray.hpp>
BEGIN_LATAN_NAMESPACE
/******************************************************************************
* matrix sample class *
******************************************************************************/
#define SCAL_OP_RETURN(op, s, x) s.unaryExpr(\
std::bind(MatSample<T>::scalar##op,\
std::placeholders::_1, x))
template <typename T>
class MatSample: public Sample<Mat<T>>
{
public:
// block type template
template <class S>
class BlockTemplate
{
private:
typedef typename std::remove_const<S>::type NonConstType;
public:
// constructors
BlockTemplate(S &sample, const Index i, const Index j, const Index nRow,
const Index nCol);
BlockTemplate(BlockTemplate<NonConstType> &b);
BlockTemplate(BlockTemplate<NonConstType> &&b);
// destructor
~BlockTemplate(void) = default;
// access
S & getSample(void);
const S & getSample(void) const;
Index getStartRow(void) const;
Index getStartCol(void) const;
Index getNRow(void) const;
Index getNCol(void) const;
// assignement operators
BlockTemplate<S> & operator=(const S &sample);
BlockTemplate<S> & operator=(const S &&sample);
private:
S &sample_;
const Index i_, j_, nRow_, nCol_;
};
// block types
typedef BlockTemplate<Sample<Mat<T>>> Block;
typedef const BlockTemplate<const Sample<Mat<T>>> ConstBlock;
public:
// constructors
MatSample(void) = default;
MatSample(const Index nSample);
MatSample(const Index nSample, const Index nRow, const Index nCol);
MatSample(ConstBlock &sampleBlock);
MatSample(ConstBlock &&sampleBlock);
EIGEN_EXPR_CTOR(MatSample, MatSample<T>, Sample<Mat<T>>, ArrayExpr)
// destructor
virtual ~MatSample(void) = default;
// assignement operator
MatSample<T> & operator=(Block &sampleBlock);
MatSample<T> & operator=(Block &&sampleBlock);
MatSample<T> & operator=(ConstBlock &sampleBlock);
MatSample<T> & operator=(ConstBlock &&sampleBlock);
// product/division by scalar operators (not provided by Eigen)
static inline Mat<T> scalarMul(const Mat<T> &m, const T &x)
{
return m*x;
}
static inline Mat<T> scalarDiv(const Mat<T> &m, const T &x)
{
return m/x;
}
MatSample<T> & operator*=(const T &x);
MatSample<T> & operator*=(const T &&x);
MatSample<T> & operator/=(const T &x);
MatSample<T> & operator/=(const T &&x);
// block access
ConstBlock block(const Index i, const Index j, const Index nRow,
const Index nCol) const;
Block block(const Index i, const Index j, const Index nRow,
const Index nCol);
// resize all matrices
void resizeMat(const Index nRow, const Index nCol);
};
// non-member operators
template <typename T>
inline auto operator*(MatSample<T> s, const T &x)
->decltype(SCAL_OP_RETURN(Mul, s, x))
{
return SCAL_OP_RETURN(Mul, s, x);
}
template <typename T>
inline auto operator*(MatSample<T> s, const T &&x)
->decltype(SCAL_OP_RETURN(Mul, s, x))
{
return SCAL_OP_RETURN(Mul, s, x);
}
template <typename T>
inline auto operator*(const T &x, MatSample<T> s)->decltype(s*x)
{
return s*x;
}
template <typename T>
inline auto operator*(const T &&x, MatSample<T> s)->decltype(s*x)
{
return s*x;
}
template <typename T>
inline auto operator/(MatSample<T> s, const T &x)
->decltype(SCAL_OP_RETURN(Div, s, x))
{
return SCAL_OP_RETURN(Div, s, x);
}
template <typename T>
inline auto operator/(MatSample<T> s, const T &&x)
->decltype(SCAL_OP_RETURN(Div, s, x))
{
return SCAL_OP_RETURN(Div, s, x);
}
// type aliases
typedef MatSample<double> DMatSample;
typedef MatSample<std::complex<double>> CMatSample;
/******************************************************************************
* Block template implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
template <typename T>
template <class S>
MatSample<T>::BlockTemplate<S>::BlockTemplate(S &sample, const Index i,
const Index j, const Index nRow,
const Index nCol)
: sample_(sample)
, i_(i)
, j_(j)
, nRow_(nRow)
, nCol_(nCol)
{}
template <typename T>
template <class S>
MatSample<T>::BlockTemplate<S>::BlockTemplate(BlockTemplate<NonConstType> &b)
: sample_(b.getSample())
, i_(b.getStartRow())
, j_(b.getStartCol())
, nRow_(b.getNRow())
, nCol_(b.getNCol())
{}
template <typename T>
template <class S>
MatSample<T>::BlockTemplate<S>::BlockTemplate(BlockTemplate<NonConstType> &&b)
: BlockTemplate(b)
{}
// access //////////////////////////////////////////////////////////////////////
template <typename T>
template <class S>
S & MatSample<T>::BlockTemplate<S>::getSample(void)
{
return sample_;
}
template <typename T>
template <class S>
const S & MatSample<T>::BlockTemplate<S>::getSample(void) const
{
return sample_;
}
template <typename T>
template <class S>
Index MatSample<T>::BlockTemplate<S>::getStartRow(void) const
{
return i_;
}
template <typename T>
template <class S>
Index MatSample<T>::BlockTemplate<S>::getStartCol(void) const
{
return j_;
}
template <typename T>
template <class S>
Index MatSample<T>::BlockTemplate<S>::getNRow(void) const
{
return nRow_;
}
template <typename T>
template <class S>
Index MatSample<T>::BlockTemplate<S>::getNCol(void) const
{
return nCol_;
}
// assignement operators ///////////////////////////////////////////////////////
template <typename T>
template <class S>
MatSample<T>::BlockTemplate<S> &
MatSample<T>::BlockTemplate<S>::operator=(const S &sample)
{
FOR_STAT_ARRAY(sample_, s)
{
sample_[s].block(i_, j_, nRow_, nCol_) = sample[s];
}
return *this;
}
template <typename T>
template <class S>
MatSample<T>::BlockTemplate<S> &
MatSample<T>::BlockTemplate<S>::operator=(const S &&sample)
{
*this = sample;
return *this;
}
/******************************************************************************
* DMatSample implementation *
******************************************************************************/
// constructors ////////////////////////////////////////////////////////////////
template <typename T>
MatSample<T>::MatSample(const Index nSample)
: Sample<Mat<T>>(nSample)
{}
template <typename T>
MatSample<T>::MatSample(const Index nSample, const Index nRow,
const Index nCol)
: MatSample(nSample)
{
resizeMat(nRow, nCol);
}
template <typename T>
MatSample<T>::MatSample(ConstBlock &sampleBlock)
: MatSample(sampleBlock.getSample().size(), sampleBlock.getNRow(),
sampleBlock.getNCol())
{
const MatSample<T> &sample = sampleBlock.getSample();
this->resize(sample.size());
FOR_STAT_ARRAY(*this, s)
{
(*this)[s] = sample[s].block(sampleBlock.getStartRow(),
sampleBlock.getStartCol(),
sampleBlock.getNRow(),
sampleBlock.getNCol());
}
}
template <typename T>
MatSample<T>::MatSample(ConstBlock &&sampleBlock)
: MatSample(sampleBlock)
{}
// assignement operator ////////////////////////////////////////////////////////
template <typename T>
MatSample<T> & MatSample<T>::operator=(Block &sampleBlock)
{
MatSample<T> tmp(sampleBlock);
this->swap(tmp);
return *this;
}
template <typename T>
MatSample<T> & MatSample<T>::operator=(Block &&sampleBlock)
{
*this = sampleBlock;
return *this;
}
template <typename T>
MatSample<T> & MatSample<T>::operator=(ConstBlock &sampleBlock)
{
MatSample<T> tmp(sampleBlock);
this->swap(tmp);
return *this;
}
template <typename T>
MatSample<T> & MatSample<T>::operator=(ConstBlock &&sampleBlock)
{
*this = sampleBlock;
return *this;
}
// product/division by scalar operators (not provided by Eigen) ////////////////
template <typename T>
MatSample<T> & MatSample<T>::operator*=(const T &x)
{
return *this = (*this)*x;
}
template <typename T>
MatSample<T> & MatSample<T>::operator*=(const T &&x)
{
return *this = (*this)*x;
}
template <typename T>
MatSample<T> & MatSample<T>::operator/=(const T &x)
{
return *this = (*this)/x;
}
template <typename T>
MatSample<T> & MatSample<T>::operator/=(const T &&x)
{
return *this = (*this)/x;
}
// block access ////////////////////////////////////////////////////////////////
template <typename T>
typename MatSample<T>::ConstBlock MatSample<T>::block(const Index i,
const Index j,
const Index nRow,
const Index nCol) const
{
return ConstBlock(*this, i, j, nRow, nCol);
}
template <typename T>
typename MatSample<T>::Block MatSample<T>::block(const Index i,
const Index j,
const Index nRow,
const Index nCol)
{
return Block(*this, i, j, nRow, nCol);
}
// resize all matrices /////////////////////////////////////////////////////////
template <typename T>
void MatSample<T>::resizeMat(const Index nRow, const Index nCol)
{
FOR_STAT_ARRAY(*this, s)
{
(*this)[s].resize(nRow, nCol);
}
}
END_LATAN_NAMESPACE
#endif // Latan_MatSample_hpp_