2023-03-31 18:03:39 +01:00
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
|
|
|
#include <blas_quda.h>
|
2023-04-24 11:35:47 +01:00
|
|
|
#include <cassert>
|
2023-06-19 18:22:24 +01:00
|
|
|
#include <chrono>
|
2023-03-31 18:03:39 +01:00
|
|
|
#include <color_spinor_field.h>
|
2023-04-24 11:35:47 +01:00
|
|
|
#include <dirac_quda.h>
|
2023-06-19 18:08:50 +01:00
|
|
|
#include <fstream>
|
2023-04-24 11:35:47 +01:00
|
|
|
#include <gauge_tools.h>
|
2023-03-31 18:03:39 +01:00
|
|
|
#include <memory>
|
2023-04-24 11:35:47 +01:00
|
|
|
#include <mpi.h>
|
2023-03-31 18:03:39 +01:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
2023-06-05 17:07:07 +01:00
|
|
|
// remove to use QUDA's own flop counting instead of Grid's convention
|
|
|
|
#define FLOP_COUNTING_GRID
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
#include "json.hpp"
|
|
|
|
using nlohmann::json;
|
|
|
|
json json_results;
|
|
|
|
|
|
|
|
using namespace quda;
|
|
|
|
|
2023-06-19 18:22:24 +01:00
|
|
|
// timestamp = seconds since program start.
|
|
|
|
// these are written to the json output with the goal of later matching them against
|
|
|
|
// power-measurments to determine energy efficiency.
|
|
|
|
using Clock = std::chrono::steady_clock;
|
|
|
|
Clock::time_point program_start_time = Clock::now();
|
|
|
|
double get_timestamp()
|
|
|
|
{
|
|
|
|
auto dur = Clock::now() - program_start_time;
|
|
|
|
return std::chrono::duration_cast<std::chrono::microseconds>(dur).count() * 1.0e-6;
|
|
|
|
}
|
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
// This is the MPI grid, i.e. the layout of ranks
|
|
|
|
int nranks = -1;
|
|
|
|
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
void initComms(int argc, char **argv)
|
2023-03-31 18:03:39 +01:00
|
|
|
{
|
|
|
|
// init MPI communication
|
|
|
|
MPI_Init(&argc, &argv);
|
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
|
|
|
|
assert(1 <= nranks && nranks <= 100000);
|
|
|
|
|
|
|
|
mpi_grid[3] = nranks;
|
|
|
|
|
2023-03-31 18:03:39 +01:00
|
|
|
// this maps coordinates to rank number
|
|
|
|
auto lex_rank_from_coords = [](int const *coords, void *)
|
|
|
|
{
|
|
|
|
int rank = coords[0];
|
|
|
|
for (int i = 1; i < 4; i++)
|
2023-04-24 11:35:47 +01:00
|
|
|
rank = mpi_grid[i] * rank + coords[i];
|
2023-03-31 18:03:39 +01:00
|
|
|
return rank;
|
|
|
|
};
|
2023-04-21 10:38:28 +01:00
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
|
2023-03-31 18:03:39 +01:00
|
|
|
|
|
|
|
for (int d = 0; d < 4; d++)
|
2023-04-24 11:35:47 +01:00
|
|
|
if (mpi_grid[d] > 1)
|
2023-03-31 18:03:39 +01:00
|
|
|
commDimPartitionedSet(d);
|
2023-06-19 18:08:50 +01:00
|
|
|
|
|
|
|
json_results["geometry"]["ranks"] = nranks;
|
|
|
|
json_results["geometry"]["mpi"] = mpi_grid;
|
2023-03-31 18:03:39 +01:00
|
|
|
}
|
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
// creates a random gauge field. L = local(!) size
|
|
|
|
cudaGaugeField make_gauge_field(int L)
|
2023-03-31 18:03:39 +01:00
|
|
|
{
|
|
|
|
GaugeFieldParam param;
|
|
|
|
|
|
|
|
// dimension and type of the lattice object
|
|
|
|
param.nDim = 4;
|
2023-04-24 11:35:47 +01:00
|
|
|
param.x[0] = L;
|
|
|
|
param.x[1] = L;
|
|
|
|
param.x[2] = L;
|
|
|
|
param.x[3] = L;
|
2023-04-21 10:38:28 +01:00
|
|
|
|
|
|
|
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
|
|
|
|
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
|
|
|
|
// solvers where it (to my understanding) refers to the number of (parallely processed)
|
|
|
|
// deflation vectors.
|
|
|
|
param.nColor = 3;
|
|
|
|
|
|
|
|
// boundary conditions (dont really care for benchmark)
|
2023-03-31 18:03:39 +01:00
|
|
|
param.t_boundary = QUDA_PERIODIC_T;
|
2023-04-21 10:38:28 +01:00
|
|
|
|
|
|
|
// for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller
|
|
|
|
// precisions are available in QUDA too
|
2023-06-05 17:07:07 +01:00
|
|
|
param.setPrecision(QUDA_SINGLE_PRECISION);
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-21 10:38:28 +01:00
|
|
|
// no even/odd subset, we want a full lattice
|
|
|
|
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
|
|
|
|
|
|
|
// what kind of 3x3 matrices the field contains. A proper gauge field has SU(3)
|
|
|
|
// matrices, but (for example) smeared/thick links could have non-unitary links.
|
|
|
|
param.link_type = QUDA_SU3_LINKS;
|
|
|
|
|
|
|
|
// "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0
|
|
|
|
param.create = QUDA_NULL_FIELD_CREATE;
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-21 10:38:28 +01:00
|
|
|
// field should be allocated directly on the accelerator/GPU
|
|
|
|
param.location = QUDA_CUDA_FIELD_LOCATION;
|
|
|
|
|
|
|
|
// "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real
|
|
|
|
// numbers (=3x3 complex numbers). Great feature in production (saving
|
|
|
|
// memory/cache/network bandwidth), not used for this benchmark.
|
2023-03-31 18:03:39 +01:00
|
|
|
param.reconstruct = QUDA_RECONSTRUCT_NO;
|
2023-04-21 10:38:28 +01:00
|
|
|
|
|
|
|
// "ghostExchange" would often be called "halo exchange" outside of Quda. This has
|
|
|
|
// nothing to do with ghost fields from continuum/perturbative qcd.
|
2023-03-31 18:03:39 +01:00
|
|
|
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
|
|
|
|
|
2023-04-21 10:38:28 +01:00
|
|
|
// This controls the physical order of elements. "float2" is the the default
|
2023-03-31 18:03:39 +01:00
|
|
|
param.order = QUDA_FLOAT2_GAUGE_ORDER;
|
2023-04-21 10:38:28 +01:00
|
|
|
|
|
|
|
// this means the field is a LORENTZ vector (which a gauge field must be). Has nothing
|
|
|
|
// to do with spin.
|
|
|
|
param.geometry = QUDA_VECTOR_GEOMETRY;
|
2023-03-31 18:03:39 +01:00
|
|
|
|
|
|
|
// create the field and fill with random SU(3) matrices
|
2023-04-21 10:38:28 +01:00
|
|
|
// std::cout << param << std::endl; // double-check parameters
|
2023-03-31 18:03:39 +01:00
|
|
|
auto U = cudaGaugeField(param);
|
2023-04-21 10:38:28 +01:00
|
|
|
gaugeGauss(U, /*seed=*/1234, 1.0);
|
2023-03-31 18:03:39 +01:00
|
|
|
return U;
|
|
|
|
}
|
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
// create a random source vector (L = local size)
|
2023-06-05 17:07:07 +01:00
|
|
|
ColorSpinorField make_source(int L, int Ls = 1)
|
2023-03-31 18:03:39 +01:00
|
|
|
{
|
2023-04-24 14:58:53 +01:00
|
|
|
// NOTE: `param.x` directly determines the size of the (local, per rank) memory
|
|
|
|
// allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a
|
|
|
|
// physical local volume of L^4, thus implicity choosing a dimension for the
|
|
|
|
// checkerboarding (shouldnt really matter of course which one).
|
2023-03-31 18:03:39 +01:00
|
|
|
ColorSpinorParam param;
|
|
|
|
param.nColor = 3;
|
|
|
|
param.nSpin = 4;
|
|
|
|
param.nVec = 1; // only a single vector
|
|
|
|
param.pad = 0;
|
2023-04-24 14:58:53 +01:00
|
|
|
param.siteSubset = QUDA_PARITY_SITE_SUBSET;
|
2023-06-05 17:07:07 +01:00
|
|
|
param.nDim = Ls == 1 ? 4 : 5;
|
2023-04-24 14:58:53 +01:00
|
|
|
param.x[0] = L / 2;
|
2023-04-24 11:35:47 +01:00
|
|
|
param.x[1] = L;
|
|
|
|
param.x[2] = L;
|
|
|
|
param.x[3] = L;
|
2023-06-05 17:07:07 +01:00
|
|
|
param.x[4] = Ls;
|
2023-03-31 18:03:39 +01:00
|
|
|
param.pc_type = QUDA_4D_PC;
|
|
|
|
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
2023-04-24 14:58:53 +01:00
|
|
|
|
|
|
|
// somewhat surprisingly, the DiracWilson::Dslash(...) function only works with the
|
|
|
|
// UKQCD_GAMMA_BASIS
|
|
|
|
param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS;
|
|
|
|
|
2023-03-31 18:03:39 +01:00
|
|
|
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
2023-06-05 17:07:07 +01:00
|
|
|
param.setPrecision(QUDA_SINGLE_PRECISION);
|
2023-03-31 18:03:39 +01:00
|
|
|
param.location = QUDA_CUDA_FIELD_LOCATION;
|
|
|
|
|
|
|
|
// create the field and fill it with random values
|
|
|
|
auto src = ColorSpinorField(param);
|
|
|
|
quda::RNG rng(src, 1234);
|
|
|
|
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
|
2023-04-21 10:38:28 +01:00
|
|
|
/*printfQuda(
|
2023-03-31 18:03:39 +01:00
|
|
|
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
|
|
|
|
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
|
2023-04-21 10:38:28 +01:00
|
|
|
src.Bytes() * 1.0);*/
|
|
|
|
// src.PrintDims();
|
2023-03-31 18:03:39 +01:00
|
|
|
|
|
|
|
return src;
|
|
|
|
}
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
void benchmark_wilson(std::vector<int> const &L_list, int niter)
|
2023-03-31 18:03:39 +01:00
|
|
|
{
|
2023-04-24 11:35:47 +01:00
|
|
|
int niter_warmup = 10;
|
|
|
|
|
|
|
|
printfQuda("==================== wilson dirac operator ====================\n");
|
2023-06-05 17:07:07 +01:00
|
|
|
#ifdef FLOP_COUNTING_GRID
|
|
|
|
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
|
|
|
#else
|
|
|
|
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
|
|
|
|
"Benchmark_Grid)\n");
|
|
|
|
#endif
|
2023-04-24 11:35:47 +01:00
|
|
|
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
for (int L : L_list)
|
2023-04-24 11:35:47 +01:00
|
|
|
{
|
|
|
|
auto U = make_gauge_field(L);
|
|
|
|
auto src = make_source(L);
|
|
|
|
|
|
|
|
// create (Wilson) dirac operator
|
|
|
|
DiracParam param;
|
|
|
|
param.kappa = 0.10;
|
|
|
|
param.dagger = QUDA_DAG_NO;
|
|
|
|
param.matpcType = QUDA_MATPC_EVEN_EVEN;
|
|
|
|
auto dirac = DiracWilson(param);
|
|
|
|
|
|
|
|
// insert gauge field into the dirac operator
|
|
|
|
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
|
|
|
|
// Not used for simple Wilson fermions)
|
|
|
|
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
auto res = ColorSpinorField(ColorSpinorParam(src));
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
// couple iterations without timing to warm up
|
|
|
|
for (int iter = 0; iter < niter_warmup; ++iter)
|
2023-06-19 18:08:50 +01:00
|
|
|
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
// actual benchmark with timings
|
|
|
|
dirac.Flops(); // reset flops counter
|
|
|
|
device_timer_t device_timer;
|
|
|
|
device_timer.start();
|
2023-06-19 18:22:24 +01:00
|
|
|
double start_time = get_timestamp();
|
2023-04-24 11:35:47 +01:00
|
|
|
for (int iter = 0; iter < niter; ++iter)
|
2023-06-19 18:08:50 +01:00
|
|
|
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
2023-06-19 18:22:24 +01:00
|
|
|
double end_time = get_timestamp();
|
2023-04-24 11:35:47 +01:00
|
|
|
device_timer.stop();
|
|
|
|
|
|
|
|
double secs = device_timer.last() / niter;
|
2023-06-05 17:07:07 +01:00
|
|
|
|
|
|
|
#ifdef FLOP_COUNTING_GRID
|
|
|
|
// this is the flop counting from Benchmark_Grid
|
|
|
|
double Nc = 3;
|
|
|
|
double Nd = 4;
|
|
|
|
double Ns = 4;
|
|
|
|
double flops =
|
|
|
|
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
|
|
|
flops *= L * L * L * L / 2.0;
|
|
|
|
#else
|
|
|
|
double flops = 1.0 * dirac.Flops() / niter;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
2023-06-19 18:08:50 +01:00
|
|
|
|
|
|
|
json tmp;
|
|
|
|
tmp["L"] = L;
|
|
|
|
tmp["Gflops_wilson"] = flops / secs * 1e-9;
|
2023-06-19 18:22:24 +01:00
|
|
|
tmp["start_time"] = start_time;
|
|
|
|
tmp["end_time"] = end_time;
|
2023-06-19 18:08:50 +01:00
|
|
|
json_results["flops"]["results"].push_back(tmp);
|
2023-06-05 17:07:07 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
void benchmark_dwf(std::vector<int> const &L_list, int niter)
|
2023-06-05 17:07:07 +01:00
|
|
|
{
|
|
|
|
int niter_warmup = 10;
|
|
|
|
|
|
|
|
printfQuda("==================== domain wall dirac operator ====================\n");
|
|
|
|
#ifdef FLOP_COUNTING_GRID
|
|
|
|
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
|
|
|
#else
|
|
|
|
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
|
|
|
|
"Benchmark_Grid)\n");
|
|
|
|
#endif
|
|
|
|
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
|
|
|
int Ls = 12;
|
2023-06-19 18:08:50 +01:00
|
|
|
for (int L : L_list)
|
2023-06-05 17:07:07 +01:00
|
|
|
{
|
|
|
|
auto U = make_gauge_field(L);
|
|
|
|
auto src = make_source(L, Ls);
|
|
|
|
|
|
|
|
// create dirac operator
|
|
|
|
DiracParam param;
|
|
|
|
param.kappa = 0.10;
|
|
|
|
param.Ls = Ls;
|
|
|
|
param.m5 = 0.1;
|
|
|
|
param.dagger = QUDA_DAG_NO;
|
|
|
|
param.matpcType = QUDA_MATPC_EVEN_EVEN;
|
|
|
|
auto dirac = DiracDomainWall(param);
|
|
|
|
|
|
|
|
// insert gauge field into the dirac operator
|
|
|
|
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
|
|
|
|
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
auto res = ColorSpinorField(ColorSpinorParam(src));
|
2023-06-05 17:07:07 +01:00
|
|
|
|
|
|
|
// couple iterations without timing to warm up
|
|
|
|
for (int iter = 0; iter < niter_warmup; ++iter)
|
2023-06-19 18:08:50 +01:00
|
|
|
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
2023-06-05 17:07:07 +01:00
|
|
|
|
|
|
|
// actual benchmark with timings
|
|
|
|
dirac.Flops(); // reset flops counter
|
|
|
|
device_timer_t device_timer;
|
|
|
|
device_timer.start();
|
2023-06-19 18:22:24 +01:00
|
|
|
double start_time = get_timestamp();
|
2023-06-05 17:07:07 +01:00
|
|
|
for (int iter = 0; iter < niter; ++iter)
|
2023-06-19 18:08:50 +01:00
|
|
|
dirac.Dslash(res, src, QUDA_EVEN_PARITY);
|
2023-06-19 18:22:24 +01:00
|
|
|
double end_time = get_timestamp();
|
2023-06-05 17:07:07 +01:00
|
|
|
device_timer.stop();
|
|
|
|
|
|
|
|
double secs = device_timer.last() / niter;
|
|
|
|
|
|
|
|
#ifdef FLOP_COUNTING_GRID
|
|
|
|
// this is the flop counting from Benchmark_Grid
|
|
|
|
double Nc = 3;
|
|
|
|
double Nd = 4;
|
|
|
|
double Ns = 4;
|
|
|
|
double flops =
|
|
|
|
(Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
|
|
|
flops *= L * L * L * L * Ls / 2.0;
|
|
|
|
#else
|
2023-04-24 11:35:47 +01:00
|
|
|
double flops = 1.0 * dirac.Flops() / niter;
|
2023-06-05 17:07:07 +01:00
|
|
|
#endif
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
2023-06-19 18:08:50 +01:00
|
|
|
json tmp;
|
|
|
|
tmp["L"] = L;
|
|
|
|
tmp["Gflops_dwf4"] = flops / secs * 1e-9;
|
2023-06-19 18:22:24 +01:00
|
|
|
tmp["start_time"] = start_time;
|
|
|
|
tmp["end_time"] = end_time;
|
2023-06-19 18:08:50 +01:00
|
|
|
json_results["flops"]["results"].push_back(tmp);
|
2023-04-24 11:35:47 +01:00
|
|
|
}
|
2023-04-21 10:38:28 +01:00
|
|
|
}
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
void benchmark_axpy(std::vector<int> const &L_list, int niter)
|
2023-04-21 10:38:28 +01:00
|
|
|
{
|
2023-04-24 11:35:47 +01:00
|
|
|
// number of iterations for warmup / measurement
|
|
|
|
// (feel free to change for noise/time tradeoff)
|
|
|
|
constexpr int niter_warmup = 10;
|
|
|
|
|
|
|
|
printfQuda("==================== axpy / memory ====================\n");
|
2023-04-21 10:38:28 +01:00
|
|
|
|
|
|
|
ColorSpinorParam param;
|
2023-04-24 11:35:47 +01:00
|
|
|
param.nDim = 4; // 4-dimensional lattice
|
|
|
|
param.x[4] = 1; // no fifth dimension
|
|
|
|
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
|
|
|
|
// QUDA. "3*4" will probably always be enabled, so we stick with this
|
2023-04-21 10:38:28 +01:00
|
|
|
param.nSpin = 4;
|
2023-04-24 11:35:47 +01:00
|
|
|
param.nVec = 1; // just a single vector
|
|
|
|
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
|
|
|
|
param.pad = 0; // no padding
|
|
|
|
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
|
|
|
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
|
2023-06-05 17:07:07 +01:00
|
|
|
param.setPrecision(QUDA_SINGLE_PRECISION);
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
// the following dont matter for an axpy benchmark, but need to choose something
|
2023-04-21 10:38:28 +01:00
|
|
|
param.pc_type = QUDA_4D_PC;
|
|
|
|
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
|
|
|
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
|
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
|
|
|
|
"GiB/s/rank", "Gflop/s/rank");
|
|
|
|
for (int L : L_list)
|
|
|
|
{
|
|
|
|
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
|
|
|
// are LOCAL, i.e. per rank / per GPU
|
|
|
|
|
|
|
|
param.x[0] = L;
|
|
|
|
param.x[1] = L;
|
|
|
|
param.x[2] = L;
|
|
|
|
param.x[3] = L;
|
|
|
|
|
|
|
|
// number of (real) elements in one (local) field
|
|
|
|
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
|
|
|
|
param.nColor * param.nSpin;
|
|
|
|
|
|
|
|
// create the field(s)
|
|
|
|
auto fieldA = ColorSpinorField(param);
|
|
|
|
auto fieldB = ColorSpinorField(param);
|
2023-06-05 17:07:07 +01:00
|
|
|
assert(fieldA.Bytes() == sizeof(float) * field_elements); // sanity check
|
|
|
|
assert(fieldB.Bytes() == sizeof(float) * field_elements); // sanity check
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
// fill fields with random values
|
|
|
|
quda::RNG rng(fieldA, 1234);
|
|
|
|
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
|
|
|
|
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
|
|
|
|
|
|
|
|
// number of operations / bytes per iteration
|
|
|
|
// axpy is one addition, one multiplication, two read, one write
|
|
|
|
double flops = 2 * field_elements;
|
2023-06-05 17:07:07 +01:00
|
|
|
double memory = 3 * sizeof(float) * field_elements;
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
// do some iterations to to let QUDA do its internal tuning and also stabilize cache
|
|
|
|
// behaviour and such
|
|
|
|
for (int iter = 0; iter < niter_warmup; ++iter)
|
|
|
|
blas::axpy(1.234, fieldA, fieldB);
|
|
|
|
|
|
|
|
// running the actual benchmark
|
|
|
|
device_timer_t device_timer;
|
|
|
|
device_timer.start();
|
2023-06-19 18:22:24 +01:00
|
|
|
double start_time = get_timestamp();
|
2023-04-24 11:35:47 +01:00
|
|
|
for (int iter = 0; iter < niter; ++iter)
|
|
|
|
blas::axpy(1.234, fieldA, fieldB);
|
2023-06-19 18:22:24 +01:00
|
|
|
double end_time = get_timestamp();
|
2023-04-24 11:35:47 +01:00
|
|
|
device_timer.stop();
|
|
|
|
double secs = device_timer.last() / niter; // seconds per iteration
|
2023-06-19 18:08:50 +01:00
|
|
|
double mem_MiB = memory / 1024. / 1024.;
|
|
|
|
double GBps = mem_MiB / 1024 / secs;
|
|
|
|
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, mem_MiB, secs * 1e6, GBps,
|
|
|
|
flops / secs * 1e-9);
|
|
|
|
|
|
|
|
json tmp;
|
|
|
|
tmp["L"] = L;
|
|
|
|
tmp["size_MB"] = mem_MiB;
|
|
|
|
tmp["GBps"] = GBps;
|
|
|
|
tmp["GFlops"] = flops / secs * 1e-9;
|
2023-06-19 18:22:24 +01:00
|
|
|
tmp["start_time"] = start_time;
|
|
|
|
tmp["end_time"] = end_time;
|
2023-06-19 18:08:50 +01:00
|
|
|
json_results["axpy"].push_back(tmp);
|
2023-04-24 11:35:47 +01:00
|
|
|
}
|
2023-03-31 18:03:39 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
|
|
{
|
2023-06-19 18:08:50 +01:00
|
|
|
std::string json_filename = ""; // empty indicates no json output
|
|
|
|
for (int i = 0; i < argc; i++)
|
|
|
|
{
|
|
|
|
if (std::string(argv[i]) == "--json-out")
|
|
|
|
json_filename = argv[i + 1];
|
|
|
|
}
|
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
initComms(argc, argv);
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-21 10:38:28 +01:00
|
|
|
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-21 10:38:28 +01:00
|
|
|
// verbosity options are:
|
|
|
|
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
|
2023-04-24 11:35:47 +01:00
|
|
|
setVerbosity(QUDA_SUMMARIZE);
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
|
|
|
|
mpi_grid[3]);
|
|
|
|
|
2023-06-19 18:08:50 +01:00
|
|
|
benchmark_axpy({8, 12, 16, 24, 32, 48}, 20);
|
2023-04-24 11:35:47 +01:00
|
|
|
|
|
|
|
setVerbosity(QUDA_SILENT);
|
2023-06-19 18:08:50 +01:00
|
|
|
benchmark_wilson({8, 12, 16, 24, 32, 48}, 20);
|
|
|
|
benchmark_dwf({8, 12, 16, 24, 32}, 20);
|
2023-04-24 11:35:47 +01:00
|
|
|
setVerbosity(QUDA_SUMMARIZE);
|
2023-03-31 18:03:39 +01:00
|
|
|
|
2023-04-24 11:35:47 +01:00
|
|
|
printfQuda("==================== done with all benchmarks ====================\n");
|
2023-06-19 18:08:50 +01:00
|
|
|
|
|
|
|
if (!json_filename.empty())
|
|
|
|
{
|
|
|
|
printfQuda("writing benchmark results to %s\n", json_filename.c_str());
|
|
|
|
|
|
|
|
int me = 0;
|
|
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
|
|
|
if (me == 0)
|
|
|
|
{
|
|
|
|
std::ofstream json_file(json_filename);
|
|
|
|
json_file << std::setw(2) << json_results;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-03-31 18:03:39 +01:00
|
|
|
endQuda();
|
|
|
|
quda::comm_finalize();
|
|
|
|
MPI_Finalize();
|
|
|
|
}
|