benchmark-quda #3
@ -73,6 +73,8 @@ class Benchmark
|
|||||||
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
|
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
|
||||||
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
|
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
|
||||||
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
|
||||||
|
Grid::Coordinate shm;
|
||||||
|
GlobalSharedMemory::GetShmDims(mpi, shm);
|
||||||
|
|
||||||
uint64_t NP = TmpGrid->RankCount();
|
uint64_t NP = TmpGrid->RankCount();
|
||||||
uint64_t NN = TmpGrid->NodeCount();
|
uint64_t NN = TmpGrid->NodeCount();
|
||||||
@ -85,7 +87,9 @@ class Benchmark
|
|||||||
std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads()
|
std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads()
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
|
|
||||||
std::cout << GridLogMessage << "* MPI tasks : " << GridCmdVectorIntToString(mpi)
|
std::cout << GridLogMessage << "* MPI layout : " << GridCmdVectorIntToString(mpi)
|
||||||
|
<< std::endl;
|
||||||
|
std::cout << GridLogMessage << "* Shm layout : " << GridCmdVectorIntToString(shm)
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
|
|
||||||
std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; "
|
std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; "
|
||||||
@ -118,6 +122,7 @@ class Benchmark
|
|||||||
for (unsigned int i = 0; i < mpi.size(); ++i)
|
for (unsigned int i = 0; i < mpi.size(); ++i)
|
||||||
{
|
{
|
||||||
tmp["mpi"].push_back(mpi[i]);
|
tmp["mpi"].push_back(mpi[i]);
|
||||||
|
tmp["shm"].push_back(shm[i]);
|
||||||
}
|
}
|
||||||
tmp["ranks"] = NP;
|
tmp["ranks"] = NP;
|
||||||
tmp["nodes"] = NN;
|
tmp["nodes"] = NN;
|
||||||
@ -132,6 +137,8 @@ class Benchmark
|
|||||||
|
|
||||||
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
|
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
|
||||||
Coordinate mpi_layout = GridDefaultMpi();
|
Coordinate mpi_layout = GridDefaultMpi();
|
||||||
|
Coordinate shm_layout;
|
||||||
|
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
|
||||||
|
|
||||||
for (int mu = 0; mu < Nd; mu++)
|
for (int mu = 0; mu < Nd; mu++)
|
||||||
if (mpi_layout[mu] > 1)
|
if (mpi_layout[mu] > 1)
|
||||||
@ -143,8 +150,8 @@ class Benchmark
|
|||||||
std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in "
|
std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in "
|
||||||
<< nmu << " dimensions" << std::endl;
|
<< nmu << " dimensions" << std::endl;
|
||||||
grid_small_sep();
|
grid_small_sep();
|
||||||
grid_printf("%5s %5s %15s %15s %15s %15s %15s\n", "L", "dir", "payload (B)",
|
grid_printf("%5s %5s %7s %15s %15s %15s %15s %15s\n", "L", "dir", "shm",
|
||||||
"time (usec)", "rate (GB/s/node)", "std dev", "max");
|
"payload (B)", "time (usec)", "rate (GB/s/node)", "std dev", "max");
|
||||||
|
|
||||||
for (int lat = 16; lat <= maxlat; lat += 8)
|
for (int lat = 16; lat <= maxlat; lat += 8)
|
||||||
{
|
{
|
||||||
@ -173,74 +180,80 @@ class Benchmark
|
|||||||
for (int dir = 0; dir < 8; dir++)
|
for (int dir = 0; dir < 8; dir++)
|
||||||
{
|
{
|
||||||
int mu = dir % 4;
|
int mu = dir % 4;
|
||||||
if (mpi_layout[mu] > 1)
|
if (mpi_layout[mu] == 1) // skip directions that are not distributed
|
||||||
|
continue;
|
||||||
|
bool is_shm = mpi_layout[mu] == shm_layout[mu];
|
||||||
|
bool is_partial_shm = !is_shm && shm_layout[mu] != 1;
|
||||||
|
|
||||||
|
std::vector<double> times(Nloop);
|
||||||
|
for (int i = 0; i < NWARMUP; i++)
|
||||||
|
{
|
||||||
|
int xmit_to_rank;
|
||||||
|
int recv_from_rank;
|
||||||
|
|
||||||
|
if (dir == mu)
|
||||||
|
{
|
||||||
|
int comm_proc = 1;
|
||||||
|
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
int comm_proc = mpi_layout[mu] - 1;
|
||||||
|
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||||
|
}
|
||||||
|
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
|
||||||
|
recv_from_rank, bytes);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < Nloop; i++)
|
||||||
{
|
{
|
||||||
|
|
||||||
std::vector<double> times(Nloop);
|
dbytes = 0;
|
||||||
for (int i = 0; i < NWARMUP; i++)
|
double start = usecond();
|
||||||
|
int xmit_to_rank;
|
||||||
|
int recv_from_rank;
|
||||||
|
|
||||||
|
if (dir == mu)
|
||||||
{
|
{
|
||||||
int xmit_to_rank;
|
int comm_proc = 1;
|
||||||
int recv_from_rank;
|
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||||
|
|
||||||
if (dir == mu)
|
|
||||||
{
|
|
||||||
int comm_proc = 1;
|
|
||||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
int comm_proc = mpi_layout[mu] - 1;
|
|
||||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
|
||||||
}
|
|
||||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
|
|
||||||
(void *)&rbuf[dir][0], recv_from_rank, bytes);
|
|
||||||
}
|
}
|
||||||
for (int i = 0; i < Nloop; i++)
|
else
|
||||||
{
|
{
|
||||||
|
int comm_proc = mpi_layout[mu] - 1;
|
||||||
dbytes = 0;
|
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
||||||
double start = usecond();
|
|
||||||
int xmit_to_rank;
|
|
||||||
int recv_from_rank;
|
|
||||||
|
|
||||||
if (dir == mu)
|
|
||||||
{
|
|
||||||
int comm_proc = 1;
|
|
||||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
int comm_proc = mpi_layout[mu] - 1;
|
|
||||||
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
|
|
||||||
}
|
|
||||||
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank,
|
|
||||||
(void *)&rbuf[dir][0], recv_from_rank, bytes);
|
|
||||||
dbytes += bytes;
|
|
||||||
|
|
||||||
double stop = usecond();
|
|
||||||
t_time[i] = stop - start; // microseconds
|
|
||||||
}
|
}
|
||||||
timestat.statistics(t_time);
|
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
|
||||||
|
recv_from_rank, bytes);
|
||||||
|
dbytes += bytes;
|
||||||
|
|
||||||
dbytes = dbytes * ppn;
|
double stop = usecond();
|
||||||
double bidibytes = 2. * dbytes;
|
t_time[i] = stop - start; // microseconds
|
||||||
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
|
|
||||||
double rate_err = rate * timestat.err / timestat.mean;
|
|
||||||
double rate_max = rate * timestat.mean / timestat.min;
|
|
||||||
grid_printf("%5d %5d %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir, bytes,
|
|
||||||
timestat.mean, rate, rate_err, rate_max);
|
|
||||||
nlohmann::json tmp;
|
|
||||||
nlohmann::json tmp_rate;
|
|
||||||
tmp["L"] = lat;
|
|
||||||
tmp["dir"] = dir;
|
|
||||||
tmp["bytes"] = bytes;
|
|
||||||
tmp["time_usec"] = timestat.mean;
|
|
||||||
tmp_rate["mean"] = rate;
|
|
||||||
tmp_rate["error"] = rate_err;
|
|
||||||
tmp_rate["max"] = rate_max;
|
|
||||||
tmp["rate_GBps"] = tmp_rate;
|
|
||||||
json_results["comms"].push_back(tmp);
|
|
||||||
}
|
}
|
||||||
|
timestat.statistics(t_time);
|
||||||
|
|
||||||
|
dbytes = dbytes * ppn;
|
||||||
|
double bidibytes = 2. * dbytes;
|
||||||
|
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
|
||||||
|
double rate_err = rate * timestat.err / timestat.mean;
|
||||||
|
double rate_max = rate * timestat.mean / timestat.min;
|
||||||
|
grid_printf("%5d %5d %7s %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir,
|
||||||
|
is_shm ? "yes"
|
||||||
|
: is_partial_shm ? "partial"
|
||||||
|
: "no",
|
||||||
|
bytes, timestat.mean, rate, rate_err, rate_max);
|
||||||
|
nlohmann::json tmp;
|
||||||
|
nlohmann::json tmp_rate;
|
||||||
|
tmp["L"] = lat;
|
||||||
|
tmp["dir"] = dir;
|
||||||
|
tmp["shared_mem"] = is_shm;
|
||||||
|
tmp["partial_shared_mem"] = is_partial_shm;
|
||||||
|
tmp["bytes"] = bytes;
|
||||||
|
tmp["time_usec"] = timestat.mean;
|
||||||
|
tmp_rate["mean"] = rate;
|
||||||
|
tmp_rate["error"] = rate_err;
|
||||||
|
tmp_rate["max"] = rate_max;
|
||||||
|
tmp["rate_GBps"] = tmp_rate;
|
||||||
|
json_results["comms"].push_back(tmp);
|
||||||
}
|
}
|
||||||
for (int d = 0; d < 8; d++)
|
for (int d = 0; d < 8; d++)
|
||||||
{
|
{
|
||||||
|
14
Quda/.clang-format
Normal file
14
Quda/.clang-format
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
{
|
||||||
|
BasedOnStyle: LLVM,
|
||||||
|
UseTab: Never,
|
||||||
|
IndentWidth: 2,
|
||||||
|
TabWidth: 2,
|
||||||
|
BreakBeforeBraces: Allman,
|
||||||
|
AllowShortIfStatementsOnASingleLine: false,
|
||||||
|
IndentCaseLabels: false,
|
||||||
|
ColumnLimit: 90,
|
||||||
|
AccessModifierOffset: -4,
|
||||||
|
NamespaceIndentation: All,
|
||||||
|
FixNamespaceComments: false,
|
||||||
|
SortIncludes: true,
|
||||||
|
}
|
458
Quda/Benchmark_Quda.cpp
Normal file
458
Quda/Benchmark_Quda.cpp
Normal file
@ -0,0 +1,458 @@
|
|||||||
|
#include <algorithm>
|
||||||
|
#include <array>
|
||||||
|
#include <blas_quda.h>
|
||||||
|
#include <cassert>
|
||||||
|
#include <chrono>
|
||||||
|
#include <color_spinor_field.h>
|
||||||
|
#include <communicator_quda.h>
|
||||||
|
#include <dirac_quda.h>
|
||||||
|
#include <fstream>
|
||||||
|
#include <gauge_tools.h>
|
||||||
|
#include <memory>
|
||||||
|
#include <mpi.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
// remove to use QUDA's own flop counting instead of Grid's convention
|
||||||
|
#define FLOP_COUNTING_GRID
|
||||||
|
|
||||||
|
#include "json.hpp"
|
||||||
|
using nlohmann::json;
|
||||||
|
json json_results;
|
||||||
|
|
||||||
|
using namespace quda;
|
||||||
|
|
||||||
|
// thanks chatGPT :)
|
||||||
|
std::string get_timestamp()
|
||||||
|
{
|
||||||
|
// Get the current time
|
||||||
|
auto now = std::chrono::system_clock::now();
|
||||||
|
|
||||||
|
// Convert the current time to a time_t object
|
||||||
|
std::time_t currentTime = std::chrono::system_clock::to_time_t(now);
|
||||||
|
|
||||||
|
// Format the time using std::put_time
|
||||||
|
std::stringstream ss;
|
||||||
|
ss << std::put_time(std::localtime(¤tTime), "%Y%m%d %H:%M:%S");
|
||||||
|
|
||||||
|
return ss.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
// This is the MPI grid, i.e. the layout of ranks
|
||||||
|
int nranks = -1;
|
||||||
|
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
|
||||||
|
|
||||||
|
// run f() in a loop for roughly target_time seconds
|
||||||
|
// returns seconds per iteration it took
|
||||||
|
template <class F> double bench(F const &f, double target_time, int niter_warmup = 5)
|
||||||
|
{
|
||||||
|
device_timer_t timer;
|
||||||
|
timer.start();
|
||||||
|
for (int iter = 0; iter < niter_warmup; ++iter)
|
||||||
|
f();
|
||||||
|
timer.stop();
|
||||||
|
|
||||||
|
double secs = timer.last() / niter_warmup;
|
||||||
|
int niter = std::max(1, int(target_time / secs));
|
||||||
|
// niter = std::min(1000, niter);
|
||||||
|
// printfQuda("during warmup took %f s/iter, deciding on %d iters\n", secs, niter);
|
||||||
|
|
||||||
|
// important: each rank has its own timer, so their measurements can slightly vary. But
|
||||||
|
// 'niter' needs to be consistent (bug took me a couple hours to track down)
|
||||||
|
comm_broadcast_global(&niter, sizeof(niter), 0);
|
||||||
|
|
||||||
|
timer.reset(__FUNCTION__, __FILE__, __LINE__);
|
||||||
|
timer.start();
|
||||||
|
for (int iter = 0; iter < niter; ++iter)
|
||||||
|
f();
|
||||||
|
timer.stop();
|
||||||
|
return timer.last() / niter;
|
||||||
|
}
|
||||||
|
|
||||||
|
void initComms(int argc, char **argv)
|
||||||
|
{
|
||||||
|
// init MPI communication
|
||||||
|
MPI_Init(&argc, &argv);
|
||||||
|
|
||||||
|
MPI_Comm_size(MPI_COMM_WORLD, &nranks);
|
||||||
|
assert(1 <= nranks && nranks <= 100000);
|
||||||
|
|
||||||
|
mpi_grid[3] = nranks;
|
||||||
|
|
||||||
|
// this maps coordinates to rank number
|
||||||
|
auto lex_rank_from_coords = [](int const *coords, void *)
|
||||||
|
{
|
||||||
|
int rank = coords[0];
|
||||||
|
for (int i = 1; i < 4; i++)
|
||||||
|
rank = mpi_grid[i] * rank + coords[i];
|
||||||
|
return rank;
|
||||||
|
};
|
||||||
|
|
||||||
|
initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
|
||||||
|
|
||||||
|
for (int d = 0; d < 4; d++)
|
||||||
|
if (mpi_grid[d] > 1)
|
||||||
|
commDimPartitionedSet(d);
|
||||||
|
|
||||||
|
json_results["geometry"]["ranks"] = nranks;
|
||||||
|
json_results["geometry"]["mpi"] = mpi_grid;
|
||||||
|
}
|
||||||
|
|
||||||
|
// creates a random gauge field. L = local(!) size
|
||||||
|
cudaGaugeField make_gauge_field(int L)
|
||||||
|
{
|
||||||
|
GaugeFieldParam param;
|
||||||
|
|
||||||
|
// dimension and type of the lattice object
|
||||||
|
param.nDim = 4;
|
||||||
|
param.x[0] = L;
|
||||||
|
param.x[1] = L;
|
||||||
|
param.x[2] = L;
|
||||||
|
param.x[3] = L;
|
||||||
|
|
||||||
|
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
|
||||||
|
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
|
||||||
|
// solvers where it (to my understanding) refers to the number of (parallely processed)
|
||||||
|
// deflation vectors.
|
||||||
|
param.nColor = 3;
|
||||||
|
|
||||||
|
// boundary conditions (dont really care for benchmark)
|
||||||
|
param.t_boundary = QUDA_PERIODIC_T;
|
||||||
|
|
||||||
|
// for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller
|
||||||
|
// precisions are available in QUDA too
|
||||||
|
param.setPrecision(QUDA_SINGLE_PRECISION);
|
||||||
|
|
||||||
|
// no even/odd subset, we want a full lattice
|
||||||
|
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
||||||
|
|
||||||
|
// what kind of 3x3 matrices the field contains. A proper gauge field has SU(3)
|
||||||
|
// matrices, but (for example) smeared/thick links could have non-unitary links.
|
||||||
|
param.link_type = QUDA_SU3_LINKS;
|
||||||
|
|
||||||
|
// "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0
|
||||||
|
param.create = QUDA_NULL_FIELD_CREATE;
|
||||||
|
|
||||||
|
// field should be allocated directly on the accelerator/GPU
|
||||||
|
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||||
|
|
||||||
|
// "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real
|
||||||
|
// numbers (=3x3 complex numbers). Great feature in production (saving
|
||||||
|
// memory/cache/network bandwidth), not used for this benchmark.
|
||||||
|
param.reconstruct = QUDA_RECONSTRUCT_NO;
|
||||||
|
|
||||||
|
// "ghostExchange" would often be called "halo exchange" outside of Quda. This has
|
||||||
|
// nothing to do with ghost fields from continuum/perturbative qcd.
|
||||||
|
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
|
||||||
|
|
||||||
|
// This controls the physical order of elements. "float2" is the the default
|
||||||
|
param.order = QUDA_FLOAT2_GAUGE_ORDER;
|
||||||
|
|
||||||
|
// this means the field is a LORENTZ vector (which a gauge field must be). Has nothing
|
||||||
|
// to do with spin.
|
||||||
|
param.geometry = QUDA_VECTOR_GEOMETRY;
|
||||||
|
|
||||||
|
// create the field and fill with random SU(3) matrices
|
||||||
|
// std::cout << param << std::endl; // double-check parameters
|
||||||
|
auto U = cudaGaugeField(param);
|
||||||
|
gaugeGauss(U, /*seed=*/1234, 1.0);
|
||||||
|
return U;
|
||||||
|
}
|
||||||
|
|
||||||
|
// create a random source vector (L = local size)
|
||||||
|
ColorSpinorField make_source(int L, int Ls = 1)
|
||||||
|
{
|
||||||
|
// NOTE: `param.x` directly determines the size of the (local, per rank) memory
|
||||||
|
// allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a
|
||||||
|
// physical local volume of L^4, thus implicity choosing a dimension for the
|
||||||
|
// checkerboarding (shouldnt really matter of course which one).
|
||||||
|
ColorSpinorParam param;
|
||||||
|
param.nColor = 3;
|
||||||
|
param.nSpin = 4;
|
||||||
|
param.nVec = 1; // only a single vector
|
||||||
|
param.pad = 0;
|
||||||
|
param.siteSubset = QUDA_PARITY_SITE_SUBSET;
|
||||||
|
param.nDim = Ls == 1 ? 4 : 5;
|
||||||
|
param.x[0] = L / 2;
|
||||||
|
param.x[1] = L;
|
||||||
|
param.x[2] = L;
|
||||||
|
param.x[3] = L;
|
||||||
|
param.x[4] = Ls;
|
||||||
|
param.pc_type = QUDA_4D_PC;
|
||||||
|
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||||
|
|
||||||
|
// somewhat surprisingly, the DiracWilson::Dslash(...) function only works with the
|
||||||
|
// UKQCD_GAMMA_BASIS
|
||||||
|
param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS;
|
||||||
|
|
||||||
|
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||||
|
param.setPrecision(QUDA_SINGLE_PRECISION);
|
||||||
|
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||||
|
|
||||||
|
// create the field and fill it with random values
|
||||||
|
auto src = ColorSpinorField(param);
|
||||||
|
quda::RNG rng(src, 1234);
|
||||||
|
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
|
||||||
|
/*printfQuda(
|
||||||
|
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
|
||||||
|
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
|
||||||
|
src.Bytes() * 1.0);*/
|
||||||
|
// src.PrintDims();
|
||||||
|
|
||||||
|
return src;
|
||||||
|
}
|
||||||
|
|
||||||
|
void benchmark_wilson(std::vector<int> const &L_list, double target_time)
|
||||||
|
{
|
||||||
|
printfQuda("==================== wilson dirac operator ====================\n");
|
||||||
|
#ifdef FLOP_COUNTING_GRID
|
||||||
|
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||||
|
#else
|
||||||
|
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
|
||||||
|
"Benchmark_Grid)\n");
|
||||||
|
#endif
|
||||||
|
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||||
|
|
||||||
|
for (int L : L_list)
|
||||||
|
{
|
||||||
|
// printfQuda("starting wilson L=%d\n", L);
|
||||||
|
|
||||||
|
auto U = make_gauge_field(L);
|
||||||
|
auto src = make_source(L);
|
||||||
|
|
||||||
|
// create (Wilson) dirac operator
|
||||||
|
DiracParam param;
|
||||||
|
param.kappa = 0.10;
|
||||||
|
param.dagger = QUDA_DAG_NO;
|
||||||
|
param.matpcType = QUDA_MATPC_EVEN_EVEN;
|
||||||
|
auto dirac = DiracWilson(param);
|
||||||
|
|
||||||
|
// insert gauge field into the dirac operator
|
||||||
|
// (the additional nullptr's are for smeared links and fancy preconditioners and such.
|
||||||
|
// Not used for simple Wilson fermions)
|
||||||
|
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||||
|
auto res = ColorSpinorField(ColorSpinorParam(src));
|
||||||
|
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
|
||||||
|
|
||||||
|
// first run to get the quda tuning out of the way
|
||||||
|
dirac.Flops(); // reset flops counter
|
||||||
|
f();
|
||||||
|
double flops = 1.0 * dirac.Flops();
|
||||||
|
|
||||||
|
// actual benchmarking
|
||||||
|
auto start_time = get_timestamp();
|
||||||
|
double secs = bench(f, target_time);
|
||||||
|
auto end_time = get_timestamp();
|
||||||
|
|
||||||
|
#ifdef FLOP_COUNTING_GRID
|
||||||
|
// this is the flop counting from Benchmark_Grid
|
||||||
|
double Nc = 3;
|
||||||
|
double Nd = 4;
|
||||||
|
double Ns = 4;
|
||||||
|
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||||
|
flops *= L * L * L * L / 2.0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||||
|
|
||||||
|
json tmp;
|
||||||
|
tmp["L"] = L;
|
||||||
|
tmp["Gflops_wilson"] = flops / secs * 1e-9;
|
||||||
|
tmp["start_time"] = start_time;
|
||||||
|
tmp["end_time"] = end_time;
|
||||||
|
json_results["flops"]["results"].push_back(tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void benchmark_dwf(std::vector<int> const &L_list, double target_time)
|
||||||
|
{
|
||||||
|
printfQuda("==================== domain wall dirac operator ====================\n");
|
||||||
|
#ifdef FLOP_COUNTING_GRID
|
||||||
|
printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n");
|
||||||
|
#else
|
||||||
|
printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from "
|
||||||
|
"Benchmark_Grid)\n");
|
||||||
|
#endif
|
||||||
|
printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
|
||||||
|
int Ls = 12;
|
||||||
|
for (int L : L_list)
|
||||||
|
{
|
||||||
|
// printfQuda("starting dwf L=%d\n", L);
|
||||||
|
auto U = make_gauge_field(L);
|
||||||
|
auto src = make_source(L, Ls);
|
||||||
|
|
||||||
|
// create dirac operator
|
||||||
|
DiracParam param;
|
||||||
|
param.kappa = 0.10;
|
||||||
|
param.Ls = Ls;
|
||||||
|
param.m5 = 0.1;
|
||||||
|
param.dagger = QUDA_DAG_NO;
|
||||||
|
param.matpcType = QUDA_MATPC_EVEN_EVEN;
|
||||||
|
auto dirac = DiracDomainWall(param);
|
||||||
|
|
||||||
|
// insert gauge field into the dirac operator
|
||||||
|
// (the additional nullptr's are for smeared links and fancy preconditioners and such)
|
||||||
|
dirac.updateFields(&U, nullptr, nullptr, nullptr);
|
||||||
|
auto res = ColorSpinorField(ColorSpinorParam(src));
|
||||||
|
auto f = [&]() { dirac.Dslash(res, src, QUDA_EVEN_PARITY); };
|
||||||
|
|
||||||
|
// first run to get the quda tuning out of the way
|
||||||
|
dirac.Flops(); // reset flops counter
|
||||||
|
f();
|
||||||
|
double flops = 1.0 * dirac.Flops();
|
||||||
|
|
||||||
|
// actual benchmarking
|
||||||
|
auto start_time = get_timestamp();
|
||||||
|
double secs = bench(f, target_time);
|
||||||
|
auto end_time = get_timestamp();
|
||||||
|
|
||||||
|
#ifdef FLOP_COUNTING_GRID
|
||||||
|
// this is the flop counting from Benchmark_Grid
|
||||||
|
double Nc = 3;
|
||||||
|
double Nd = 4;
|
||||||
|
double Ns = 4;
|
||||||
|
flops = (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2);
|
||||||
|
flops *= L * L * L * L * Ls / 2.0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
|
||||||
|
json tmp;
|
||||||
|
tmp["L"] = L;
|
||||||
|
tmp["Gflops_dwf4"] = flops / secs * 1e-9;
|
||||||
|
tmp["start_time"] = start_time;
|
||||||
|
tmp["end_time"] = end_time;
|
||||||
|
json_results["flops"]["results"].push_back(tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void benchmark_axpy(std::vector<int> const &L_list, double target_time)
|
||||||
|
{
|
||||||
|
// number of iterations for warmup / measurement
|
||||||
|
// (feel free to change for noise/time tradeoff)
|
||||||
|
constexpr int niter_warmup = 5;
|
||||||
|
|
||||||
|
printfQuda("==================== axpy / memory ====================\n");
|
||||||
|
|
||||||
|
ColorSpinorParam param;
|
||||||
|
param.nDim = 4; // 4-dimensional lattice
|
||||||
|
param.x[4] = 1; // no fifth dimension
|
||||||
|
param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
|
||||||
|
// QUDA. "3*4" will probably always be enabled, so we stick with this
|
||||||
|
param.nSpin = 4;
|
||||||
|
param.nVec = 1; // just a single vector
|
||||||
|
param.siteSubset = QUDA_FULL_SITE_SUBSET; // full lattice = no odd/even
|
||||||
|
param.pad = 0; // no padding
|
||||||
|
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||||
|
param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
|
||||||
|
param.setPrecision(QUDA_SINGLE_PRECISION);
|
||||||
|
|
||||||
|
// the following dont matter for an axpy benchmark, but need to choose something
|
||||||
|
param.pc_type = QUDA_4D_PC;
|
||||||
|
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||||
|
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
|
||||||
|
|
||||||
|
printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
|
||||||
|
"GiB/s/rank", "Gflop/s/rank");
|
||||||
|
for (int L : L_list)
|
||||||
|
{
|
||||||
|
// printfQuda("starting axpy L=%d\n", L);
|
||||||
|
// IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
|
||||||
|
// are LOCAL, i.e. per rank / per GPU
|
||||||
|
|
||||||
|
param.x[0] = L;
|
||||||
|
param.x[1] = L;
|
||||||
|
param.x[2] = L;
|
||||||
|
param.x[3] = L;
|
||||||
|
|
||||||
|
// number of (real) elements in one (local) field
|
||||||
|
size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
|
||||||
|
param.nColor * param.nSpin;
|
||||||
|
|
||||||
|
// create the field(s)
|
||||||
|
auto fieldA = ColorSpinorField(param);
|
||||||
|
auto fieldB = ColorSpinorField(param);
|
||||||
|
assert(fieldA.Bytes() == sizeof(float) * field_elements); // sanity check
|
||||||
|
assert(fieldB.Bytes() == sizeof(float) * field_elements); // sanity check
|
||||||
|
|
||||||
|
// fill fields with random values
|
||||||
|
quda::RNG rng(fieldA, 1234);
|
||||||
|
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
|
||||||
|
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
|
||||||
|
|
||||||
|
// number of operations / bytes per iteration
|
||||||
|
// axpy is one addition, one multiplication, two read, one write
|
||||||
|
double flops = 2 * field_elements;
|
||||||
|
double memory = 3 * sizeof(float) * field_elements;
|
||||||
|
|
||||||
|
auto f = [&]() { blas::axpy(1.234, fieldA, fieldB); };
|
||||||
|
|
||||||
|
// first run to get the quda tuning out of the way
|
||||||
|
f();
|
||||||
|
|
||||||
|
// actual benchmarking
|
||||||
|
auto start_time = get_timestamp();
|
||||||
|
double secs = bench(f, target_time);
|
||||||
|
auto end_time = get_timestamp();
|
||||||
|
|
||||||
|
double mem_MiB = memory / 1024. / 1024.;
|
||||||
|
double GBps = mem_MiB / 1024 / secs;
|
||||||
|
printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, mem_MiB, secs * 1e6, GBps,
|
||||||
|
flops / secs * 1e-9);
|
||||||
|
|
||||||
|
json tmp;
|
||||||
|
tmp["L"] = L;
|
||||||
|
tmp["size_MB"] = mem_MiB;
|
||||||
|
tmp["GBps"] = GBps;
|
||||||
|
tmp["GFlops"] = flops / secs * 1e-9;
|
||||||
|
tmp["start_time"] = start_time;
|
||||||
|
tmp["end_time"] = end_time;
|
||||||
|
json_results["axpy"].push_back(tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char **argv)
|
||||||
|
{
|
||||||
|
std::string json_filename = ""; // empty indicates no json output
|
||||||
|
for (int i = 0; i < argc; i++)
|
||||||
|
{
|
||||||
|
if (std::string(argv[i]) == "--json-out")
|
||||||
|
json_filename = argv[i + 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
initComms(argc, argv);
|
||||||
|
|
||||||
|
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
|
||||||
|
|
||||||
|
// verbosity options are:
|
||||||
|
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
|
||||||
|
setVerbosity(QUDA_SUMMARIZE);
|
||||||
|
|
||||||
|
printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
|
||||||
|
mpi_grid[3]);
|
||||||
|
|
||||||
|
benchmark_axpy({8, 12, 16, 24, 32, 48}, 1.0);
|
||||||
|
|
||||||
|
setVerbosity(QUDA_SILENT);
|
||||||
|
benchmark_wilson({8, 12, 16, 24, 32, 48}, 1.0);
|
||||||
|
benchmark_dwf({8, 12, 16, 24, 32}, 1.0);
|
||||||
|
setVerbosity(QUDA_SUMMARIZE);
|
||||||
|
|
||||||
|
printfQuda("==================== done with all benchmarks ====================\n");
|
||||||
|
|
||||||
|
if (!json_filename.empty())
|
||||||
|
{
|
||||||
|
printfQuda("writing benchmark results to %s\n", json_filename.c_str());
|
||||||
|
|
||||||
|
int me = 0;
|
||||||
|
MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
||||||
|
if (me == 0)
|
||||||
|
{
|
||||||
|
std::ofstream json_file(json_filename);
|
||||||
|
json_file << std::setw(2) << json_results;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
endQuda();
|
||||||
|
quda::comm_finalize();
|
||||||
|
MPI_Finalize();
|
||||||
|
}
|
30
Quda/Readme.md
Normal file
30
Quda/Readme.md
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
# QUDA benchmarks
|
||||||
|
|
||||||
|
This folder contains benchmarks for the [QUDA](https://github.com/lattice/quda) library.
|
||||||
|
|
||||||
|
- `Benchmark_Quda`: This benchmark measure floating point performances of fermion
|
||||||
|
matrices (Wilson and DWF), as well as memory bandwidth (using a simple `axpy` operation). Measurements are
|
||||||
|
performed for a fixed range of problem sizes.
|
||||||
|
|
||||||
|
## Building
|
||||||
|
After setting up your compilation environment (Tursa: `source /home/dp207/dp207/shared/env/production/env-{base,gpu}.sh`):
|
||||||
|
```bash
|
||||||
|
./build-quda.sh <env_dir> # build Quda
|
||||||
|
./build-benchmark.sh <env_dir> # build benchmark
|
||||||
|
```
|
||||||
|
where `<env_dir>` is an arbitrary directory where every product will be stored.
|
||||||
|
|
||||||
|
## Running the Benchmark
|
||||||
|
|
||||||
|
The benchmark should be run as
|
||||||
|
```bash
|
||||||
|
mpirun -np <ranks> <env_dir>/prefix/qudabench/Benchmark_Quda
|
||||||
|
```
|
||||||
|
where `<ranks>` is the total number of GPU's to use. On Tursa this is 4 times the number of nodes.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
- on Tursa, the `wrapper.sh` script that is typically used with Grid is not necessary.
|
||||||
|
- due to Qudas automatic tuning, the benchmark might take significantly longer to run than `Benchmark_Grid` (even though it does fewer things).
|
||||||
|
- setting `QUDA_ENABLE_TUNING=0` disables all tuning (degrades performance severely). By default, it is turned on.
|
||||||
|
- setting `QUDA_RESOURCE_PATH=<some folder>` enables Quda to save and reuse optimal tuning parameters, making repeated runs much faster
|
||||||
|
|
32
Quda/build-benchmark.sh
Executable file
32
Quda/build-benchmark.sh
Executable file
@ -0,0 +1,32 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
# shellcheck disable=SC1090,SC1091
|
||||||
|
|
||||||
|
set -euo pipefail
|
||||||
|
|
||||||
|
if (( $# != 1 )); then
|
||||||
|
echo "usage: $(basename "$0") <environment directory>" 1>&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
env_dir=$1
|
||||||
|
|
||||||
|
# TODO: this is Tursa specific. have not figured out the correct way to do this.
|
||||||
|
EXTRA_LIBS="/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libcuda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libnvidia-ml.so"
|
||||||
|
|
||||||
|
# NOTE: these flags need to be in sync with Qudas compilation options (see build-quda.sh)
|
||||||
|
BUILD_FLAGS="-O3 -std=c++17 -DMPI_COMMS -DMULTI_GPU -DQUDA_PRECISION=12 -DQUDA_RECONSTRUCT=4"
|
||||||
|
|
||||||
|
call_dir=$(pwd -P)
|
||||||
|
script_dir="$(dirname "$(readlink -f "${BASH_SOURCE:-$0}")")"
|
||||||
|
cd "${env_dir}"
|
||||||
|
env_dir=$(pwd -P)
|
||||||
|
cd "${call_dir}"
|
||||||
|
BUILD_DIR="${env_dir}/build/Quda-benchmarks"
|
||||||
|
PREFIX_DIR="${env_dir}/prefix/qudabench"
|
||||||
|
QUDA_DIR=${env_dir}/prefix/quda
|
||||||
|
mkdir -p "${BUILD_DIR}"
|
||||||
|
mkdir -p "${PREFIX_DIR}"
|
||||||
|
|
||||||
|
LINK_FLAGS="-Wl,-rpath,$QUDA_DIR/lib: $QUDA_DIR/lib/libquda.so $EXTRA_LIBS -lpthread -lmpi"
|
||||||
|
|
||||||
|
g++ $BUILD_FLAGS -I$QUDA_DIR/include/targets/cuda -I$QUDA_DIR/include -c -o $BUILD_DIR/Benchmark_Quda.o $script_dir/Benchmark_Quda.cpp
|
||||||
|
g++ -g -O3 $BUILD_DIR/Benchmark_Quda.o -o $PREFIX_DIR/Benchmark_Quda $LINK_FLAGS -lmpi
|
36
Quda/build-quda.sh
Executable file
36
Quda/build-quda.sh
Executable file
@ -0,0 +1,36 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
# shellcheck disable=SC1090,SC1091
|
||||||
|
|
||||||
|
BUILD_FLAGS="-O3 -std=c++17"
|
||||||
|
QUDA_FLAGS="-DQUDA_MPI=ON -DQUDA_PRECISION=14 -DQUDA_RECONSTRUCT=4 -DQUDA_GPU_ARCH=sm_80"
|
||||||
|
|
||||||
|
set -euo pipefail
|
||||||
|
|
||||||
|
if (( $# != 1 )); then
|
||||||
|
echo "usage: $(basename "$0") <environment directory>" 1>&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
env_dir=$1
|
||||||
|
|
||||||
|
call_dir=$(pwd -P)
|
||||||
|
mkdir -p ${env_dir}
|
||||||
|
cd "${env_dir}"
|
||||||
|
env_dir=$(pwd -P)
|
||||||
|
cd "${call_dir}"
|
||||||
|
|
||||||
|
build_dir="${env_dir}/build/quda"
|
||||||
|
if [ -d "${build_dir}" ]; then
|
||||||
|
echo "error: directory '${build_dir}' exists"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
mkdir -p "${build_dir}"
|
||||||
|
|
||||||
|
git clone https://github.com/lattice/quda.git "${build_dir}"
|
||||||
|
cd "${build_dir}"
|
||||||
|
|
||||||
|
mkdir build; cd build
|
||||||
|
cmake .. $QUDA_FLAGS -DCMAKE_INSTALL_PREFIX=${env_dir}/prefix/quda
|
||||||
|
make -j128
|
||||||
|
make install
|
||||||
|
|
||||||
|
cd "${call_dir}"
|
21
Quda/env.sh
Normal file
21
Quda/env.sh
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
module load gcc/9.3.0
|
||||||
|
module load cuda/11.4.1
|
||||||
|
module load openmpi/4.1.1-cuda11.4
|
||||||
|
|
||||||
|
export QUDA_RESOURCE_PATH=$(pwd)/tuning
|
||||||
|
export OMP_NUM_THREADS=4
|
||||||
|
export OMPI_MCA_btl=^uct,openib
|
||||||
|
export OMPI_MCA_pml=ucx # by fabian. no idea what this is
|
||||||
|
#export UCX_TLS=rc,rc_x,sm,cuda_copy,cuda_ipc,gdr_copy
|
||||||
|
export UCX_TLS=gdr_copy,rc,rc_x,sm,cuda_copy,cuda_ipc
|
||||||
|
export UCX_RNDV_THRESH=16384
|
||||||
|
export UCX_RNDV_SCHEME=put_zcopy
|
||||||
|
export UCX_IB_GPU_DIRECT_RDMA=yes
|
||||||
|
export UCX_MEMTYPE_CACHE=n
|
||||||
|
|
||||||
|
export OMPI_MCA_io=romio321
|
||||||
|
export OMPI_MCA_btl_openib_allow_ib=true
|
||||||
|
export OMPI_MCA_btl_openib_device_type=infiniband
|
||||||
|
export OMPI_MCA_btl_openib_if_exclude=mlx5_1,mlx5_2,mlx5_3
|
||||||
|
|
||||||
|
export QUDA_REORDER_LOCATION=GPU # this is the default anyway
|
Loading…
Reference in New Issue
Block a user