/* Copyright © 2015 Peter Boyle Copyright © 2022 Antonin Portelli Copyright © 2022 Simon Buerger This is a fork of Benchmark_ITT.cpp from Grid This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "Common.hpp" #include "json.hpp" #include using namespace Grid; int NN_global; nlohmann::json json_results; struct time_statistics { double mean; double err; double min; double max; void statistics(std::vector v) { double sum = std::accumulate(v.begin(), v.end(), 0.0); mean = sum / v.size(); std::vector diff(v.size()); std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; }); double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0); err = std::sqrt(sq_sum / (v.size() * (v.size() - 1))); auto result = std::minmax_element(v.begin(), v.end()); min = *result.first; max = *result.second; } }; struct controls { int Opt; int CommsOverlap; Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch; }; class Benchmark { public: static void Decomposition(void) { nlohmann::json tmp; int threads = GridThread::GetThreads(); Grid::Coordinate mpi = GridDefaultMpi(); assert(mpi.size() == 4); Coordinate local({8, 8, 8, 8}); Coordinate latt4( {local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]}); GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid( latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); uint64_t NP = TmpGrid->RankCount(); uint64_t NN = TmpGrid->NodeCount(); NN_global = NN; uint64_t SHM = NP / NN; grid_big_sep(); std::cout << GridLogMessage << "Grid Default Decomposition patterns\n"; grid_small_sep(); std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads() << std::endl; std::cout << GridLogMessage << "* MPI tasks : " << GridCmdVectorIntToString(mpi) << std::endl; std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; " << GridCmdVectorIntToString(GridDefaultSimd(4, vReal::Nsimd())) << std::endl; std::cout << GridLogMessage << "* vRealF : " << sizeof(vRealF) * 8 << "bits ; " << GridCmdVectorIntToString(GridDefaultSimd(4, vRealF::Nsimd())) << std::endl; std::cout << GridLogMessage << "* vRealD : " << sizeof(vRealD) * 8 << "bits ; " << GridCmdVectorIntToString(GridDefaultSimd(4, vRealD::Nsimd())) << std::endl; std::cout << GridLogMessage << "* vComplex : " << sizeof(vComplex) * 8 << "bits ; " << GridCmdVectorIntToString(GridDefaultSimd(4, vComplex::Nsimd())) << std::endl; std::cout << GridLogMessage << "* vComplexF : " << sizeof(vComplexF) * 8 << "bits ; " << GridCmdVectorIntToString(GridDefaultSimd(4, vComplexF::Nsimd())) << std::endl; std::cout << GridLogMessage << "* vComplexD : " << sizeof(vComplexD) * 8 << "bits ; " << GridCmdVectorIntToString(GridDefaultSimd(4, vComplexD::Nsimd())) << std::endl; std::cout << GridLogMessage << "* ranks : " << NP << std::endl; std::cout << GridLogMessage << "* nodes : " << NN << std::endl; std::cout << GridLogMessage << "* ranks/node : " << SHM << std::endl; for (unsigned int i = 0; i < mpi.size(); ++i) { tmp["mpi"].push_back(mpi[i]); } tmp["ranks"] = NP; tmp["nodes"] = NN; json_results["geometry"] = tmp; } static void Comms(void) { int Nloop = 200; int nmu = 0; int maxlat = 48; Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd()); Coordinate mpi_layout = GridDefaultMpi(); for (int mu = 0; mu < Nd; mu++) if (mpi_layout[mu] > 1) nmu++; std::vector t_time(Nloop); time_statistics timestat; std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in " << nmu << " dimensions" << std::endl; grid_small_sep(); grid_printf("%5s %5s %15s %15s %15s %15s %15s\n", "L", "dir", "payload (B)", "time (usec)", "rate (GB/s)", "std dev", "max"); for (int lat = 16; lat <= maxlat; lat += 8) { int Ls = 12; Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2], lat * mpi_layout[3]}); GridCartesian Grid(latt_size, simd_layout, mpi_layout); RealD Nrank = Grid._Nprocessors; RealD Nnode = Grid.NodeCount(); RealD ppn = Nrank / Nnode; std::vector xbuf(8); std::vector rbuf(8); uint64_t bytes = lat * lat * lat * Ls * sizeof(HalfSpinColourVectorD); for (int d = 0; d < 8; d++) { xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes); rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes); } double dbytes; for (int dir = 0; dir < 8; dir++) { int mu = dir % 4; if (mpi_layout[mu] > 1) { std::vector times(Nloop); for (int i = 0; i < Nloop; i++) { dbytes = 0; double start = usecond(); int xmit_to_rank; int recv_from_rank; if (dir == mu) { int comm_proc = 1; Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank); } else { int comm_proc = mpi_layout[mu] - 1; Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank); } Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0], recv_from_rank, bytes); dbytes += bytes; double stop = usecond(); t_time[i] = stop - start; // microseconds } timestat.statistics(t_time); dbytes = dbytes * ppn; double bidibytes = 2. * dbytes; double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.; double rate_err = rate * timestat.err / timestat.mean; double rate_max = rate * timestat.mean / timestat.min; grid_printf("%5d %5d %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir, bytes, timestat.mean, rate, rate_err, rate_max); nlohmann::json tmp; nlohmann::json tmp_rate; tmp["L"] = lat; tmp["dir"] = dir; tmp["bytes"] = bytes; tmp["time_usec"] = timestat.mean; tmp_rate["mean"] = rate; tmp_rate["error"] = rate_err; tmp_rate["max"] = rate_max; tmp["rate_GBps"] = tmp_rate; json_results["comms"].push_back(tmp); } } for (int d = 0; d < 8; d++) { acceleratorFreeDevice(xbuf[d]); acceleratorFreeDevice(rbuf[d]); } } return; } static void Memory(void) { const int Nvec = 8; typedef Lattice> LatticeVec; typedef iVector Vec; Coordinate simd_layout = GridDefaultSimd(Nd, vReal::Nsimd()); Coordinate mpi_layout = GridDefaultMpi(); std::cout << GridLogMessage << "Benchmarking a*x + y bandwidth" << std::endl; grid_small_sep(); grid_printf("%5s %15s %15s %15s %15s\n", "L", "size (MB/node)", "time (usec)", "GB/s/node", "Gflop/s/node"); uint64_t NN; uint64_t lmax = 64; #define NLOOP (200 * lmax * lmax * lmax / lat / lat / lat) #define NWARMUP 50 GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector({45, 12, 81, 9})); for (int lat = 8; lat <= lmax; lat += 8) { Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2], lat * mpi_layout[3]}); uint64_t vol = latt_size[0] * latt_size[1] * latt_size[2] * latt_size[3]; GridCartesian Grid(latt_size, simd_layout, mpi_layout); NN = Grid.NodeCount(); Vec rn; random(sRNG, rn); LatticeVec z(&Grid); z = Zero(); LatticeVec x(&Grid); x = Zero(); LatticeVec y(&Grid); y = Zero(); double a = 2.0; uint64_t Nloop = NLOOP; for (int i = 0; i < NWARMUP; i++) { z = a * x - y; } double start = usecond(); for (int i = 0; i < Nloop; i++) { z = a * x - y; } double stop = usecond(); double time = (stop - start) / Nloop / 1.e6; double flops = vol * Nvec * 2 / 1.e9; // mul,add double bytes = 3.0 * vol * Nvec * sizeof(Real) / 1024. / 1024.; grid_printf("%5d %15.2f %15.2f %15.2f %15.2f\n", lat, bytes / NN, time * 1.e6, bytes / time / NN / 1024., flops / time / NN); nlohmann::json tmp; tmp["L"] = lat; tmp["size_MB"] = bytes / NN; tmp["GBps"] = bytes / time / NN / 1024.; tmp["GFlops"] = flops / time / NN; json_results["axpy"].push_back(tmp); } }; static void SU4(void) { const int Nc4 = 4; typedef Lattice> LatticeSU4; Coordinate simd_layout = GridDefaultSimd(Nd, vComplexF::Nsimd()); Coordinate mpi_layout = GridDefaultMpi(); std::cout << GridLogMessage << "Benchmarking z = y*x SU(4) bandwidth" << std::endl; grid_small_sep(); grid_printf("%5s %15s %15s %15s %15s\n", "L", "size (MB/node)", "time (usec)", "GB/s/node", "Gflop/s/node"); uint64_t NN; uint64_t lmax = 48; GridSerialRNG sRNG; sRNG.SeedFixedIntegers(std::vector({45, 12, 81, 9})); for (int lat = 8; lat <= lmax; lat += 8) { Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2], lat * mpi_layout[3]}); int64_t vol = latt_size[0] * latt_size[1] * latt_size[2] * latt_size[3]; GridCartesian Grid(latt_size, simd_layout, mpi_layout); NN = Grid.NodeCount(); LatticeSU4 z(&Grid); z = Zero(); LatticeSU4 x(&Grid); x = Zero(); LatticeSU4 y(&Grid); y = Zero(); uint64_t Nloop = NLOOP; for (int i = 0; i < NWARMUP; i++) { z = x * y; } double start = usecond(); for (int i = 0; i < Nloop; i++) { z = x * y; } double stop = usecond(); double time = (stop - start) / Nloop / 1.e6; double flops = vol * Nc4 * Nc4 * (6 + (Nc4 - 1) * 8) / 1.e9; // mul,add double bytes = 3.0 * vol * Nc4 * Nc4 * 2 * sizeof(RealF) / 1024. / 1024.; grid_printf("%5d %15.2f %15.2f %15.2f %15.2f\n", lat, bytes / NN, time * 1.e6, bytes / time / NN / 1024., flops / time / NN); nlohmann::json tmp; tmp["L"] = lat; tmp["size_MB"] = bytes / NN; tmp["GBps"] = bytes / time / NN / 1024.; tmp["GFlops"] = flops / time / NN; json_results["SU4"].push_back(tmp); } }; static double DWF(int Ls, int L) { RealD mass = 0.1; RealD M5 = 1.8; double gflops; double gflops_best = 0; double gflops_worst = 0; std::vector gflops_all; /////////////////////////////////////////////////////// // Set/Get the layout & grid size /////////////////////////////////////////////////////// int threads = GridThread::GetThreads(); Coordinate mpi = GridDefaultMpi(); assert(mpi.size() == 4); Coordinate local({L, L, L, L}); Coordinate latt4( {local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]}); GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid( latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); uint64_t NP = TmpGrid->RankCount(); uint64_t NN = TmpGrid->NodeCount(); NN_global = NN; uint64_t SHM = NP / NN; ///////// Welcome message //////////// grid_big_sep(); std::cout << GridLogMessage << "Benchmark DWF on " << L << "^4 local volume " << std::endl; std::cout << GridLogMessage << "* Nc : " << Nc << std::endl; std::cout << GridLogMessage << "* Global volume : " << GridCmdVectorIntToString(latt4) << std::endl; std::cout << GridLogMessage << "* Ls : " << Ls << std::endl; std::cout << GridLogMessage << "* ranks : " << NP << std::endl; std::cout << GridLogMessage << "* nodes : " << NN << std::endl; std::cout << GridLogMessage << "* ranks/node : " << SHM << std::endl; std::cout << GridLogMessage << "* ranks geom : " << GridCmdVectorIntToString(mpi) << std::endl; std::cout << GridLogMessage << "* Using " << threads << " threads" << std::endl; grid_big_sep(); ///////// Lattice Init //////////// GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid( latt4, GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid); GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid); GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid); ///////// RNG Init //////////// std::vector seeds4({1, 2, 3, 4}); std::vector seeds5({5, 6, 7, 8}); GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4); GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5); std::cout << GridLogMessage << "Initialised RNGs" << std::endl; typedef DomainWallFermionF Action; typedef typename Action::FermionField Fermion; typedef LatticeGaugeFieldF Gauge; ///////// Source preparation //////////// Gauge Umu(UGrid); SU::HotConfiguration(RNG4, Umu); Fermion src(FGrid); random(RNG5, src); Fermion src_e(FrbGrid); Fermion src_o(FrbGrid); Fermion r_e(FrbGrid); Fermion r_o(FrbGrid); Fermion r_eo(FGrid); Action Dw(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5); { pickCheckerboard(Even, src_e, src); pickCheckerboard(Odd, src_o, src); const int num_cases = 4; std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S "); controls Cases[] = { {WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsThenCompute, CartesianCommunicator::CommunicatorPolicyConcurrent}, {WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsAndCompute, CartesianCommunicator::CommunicatorPolicyConcurrent}, {WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsThenCompute, CartesianCommunicator::CommunicatorPolicySequential}, {WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsAndCompute, CartesianCommunicator::CommunicatorPolicySequential}}; for (int c = 0; c < num_cases; c++) { WilsonKernelsStatic::Comms = Cases[c].CommsOverlap; WilsonKernelsStatic::Opt = Cases[c].Opt; CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch); grid_small_sep(); if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric) std::cout << GridLogMessage << "* Using GENERIC Nc WilsonKernels" << std::endl; if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute) std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl; if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute) std::cout << GridLogMessage << "* Using sequential Comms/Compute" << std::endl; std::cout << GridLogMessage << "* SINGLE precision " << std::endl; grid_small_sep(); int nwarm = 10; double t0 = usecond(); FGrid->Barrier(); for (int i = 0; i < nwarm; i++) { Dw.DhopEO(src_o, r_e, DaggerNo); } FGrid->Barrier(); double t1 = usecond(); uint64_t ncall = 500; FGrid->Broadcast(0, &ncall, sizeof(ncall)); Dw.ZeroCounters(); time_statistics timestat; std::vector t_time(ncall); for (uint64_t i = 0; i < ncall; i++) { t0 = usecond(); Dw.DhopEO(src_o, r_e, DaggerNo); t1 = usecond(); t_time[i] = t1 - t0; } FGrid->Barrier(); double volume = Ls; for (int mu = 0; mu < Nd; mu++) volume = volume * latt4[mu]; // Nc=3 gives // 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8 // 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2 // double flops=(1344.0*volume)/2; #if 0 double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + Nd*Nc*Ns + Nd*Nc*Ns*2; #else double fps = Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2; #endif double flops = (fps * volume) / 2.; double gf_hi, gf_lo, gf_err; timestat.statistics(t_time); gf_hi = flops / timestat.min / 1000.; gf_lo = flops / timestat.max / 1000.; gf_err = flops / timestat.min * timestat.err / timestat.mean / 1000.; gflops = flops / timestat.mean / 1000.; gflops_all.push_back(gflops); if (gflops_best == 0) gflops_best = gflops; if (gflops_worst == 0) gflops_worst = gflops; if (gflops > gflops_best) gflops_best = gflops; if (gflops < gflops_worst) gflops_worst = gflops; std::cout << GridLogMessage << "Deo FlopsPerSite is " << fps << std::endl; std::cout << GridLogMessage << std::fixed << std::setprecision(1) << "Deo Gflop/s = " << gflops << " (" << gf_err << ") " << gf_lo << "-" << gf_hi << std::endl; std::cout << GridLogMessage << std::fixed << std::setprecision(1) << "Deo Gflop/s per rank " << gflops / NP << std::endl; std::cout << GridLogMessage << std::fixed << std::setprecision(1) << "Deo Gflop/s per node " << gflops / NN << std::endl; } grid_small_sep(); std::cout << GridLogMessage << L << "^4 x " << Ls << " Deo Best Gflop/s = " << gflops_best << " ; " << gflops_best / NN << " per node " << std::endl; std::cout << GridLogMessage << L << "^4 x " << Ls << " Deo Worst Gflop/s = " << gflops_worst << " ; " << gflops_worst / NN << " per node " << std::endl; std::cout << GridLogMessage << fmt << std::endl; std::cout << GridLogMessage; for (int i = 0; i < gflops_all.size(); i++) { std::cout << gflops_all[i] / NN << " ; "; } std::cout << std::endl; } return gflops_best; } static double Staggered(int L) { double gflops; double gflops_best = 0; double gflops_worst = 0; std::vector gflops_all; /////////////////////////////////////////////////////// // Set/Get the layout & grid size /////////////////////////////////////////////////////// int threads = GridThread::GetThreads(); Coordinate mpi = GridDefaultMpi(); assert(mpi.size() == 4); Coordinate local({L, L, L, L}); Coordinate latt4( {local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]}); GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid( latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); uint64_t NP = TmpGrid->RankCount(); uint64_t NN = TmpGrid->NodeCount(); NN_global = NN; uint64_t SHM = NP / NN; ///////// Welcome message //////////// grid_big_sep(); std::cout << GridLogMessage << "Benchmark ImprovedStaggered on " << L << "^4 local volume " << std::endl; std::cout << GridLogMessage << "* Global volume : " << GridCmdVectorIntToString(latt4) << std::endl; std::cout << GridLogMessage << "* ranks : " << NP << std::endl; std::cout << GridLogMessage << "* nodes : " << NN << std::endl; std::cout << GridLogMessage << "* ranks/node : " << SHM << std::endl; std::cout << GridLogMessage << "* ranks geom : " << GridCmdVectorIntToString(mpi) << std::endl; std::cout << GridLogMessage << "* Using " << threads << " threads" << std::endl; grid_big_sep(); ///////// Lattice Init //////////// GridCartesian *FGrid = SpaceTimeGrid::makeFourDimGrid( latt4, GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi()); GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid); ///////// RNG Init //////////// std::vector seeds4({1, 2, 3, 4}); GridParallelRNG RNG4(FGrid); RNG4.SeedFixedIntegers(seeds4); std::cout << GridLogMessage << "Initialised RNGs" << std::endl; RealD mass = 0.1; RealD c1 = 9.0 / 8.0; RealD c2 = -1.0 / 24.0; RealD u0 = 1.0; typedef ImprovedStaggeredFermionF Action; typedef typename Action::FermionField Fermion; typedef LatticeGaugeFieldF Gauge; Gauge Umu(FGrid); SU::HotConfiguration(RNG4, Umu); typename Action::ImplParams params; Action Ds(Umu, Umu, *FGrid, *FrbGrid, mass, c1, c2, u0, params); ///////// Source preparation //////////// Fermion src(FGrid); random(RNG4, src); Fermion src_e(FrbGrid); Fermion src_o(FrbGrid); Fermion r_e(FrbGrid); Fermion r_o(FrbGrid); Fermion r_eo(FGrid); { pickCheckerboard(Even, src_e, src); pickCheckerboard(Odd, src_o, src); const int num_cases = 4; std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S "); controls Cases[] = { {StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsThenCompute, CartesianCommunicator::CommunicatorPolicyConcurrent}, {StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsAndCompute, CartesianCommunicator::CommunicatorPolicyConcurrent}, {StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsThenCompute, CartesianCommunicator::CommunicatorPolicySequential}, {StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsAndCompute, CartesianCommunicator::CommunicatorPolicySequential}}; for (int c = 0; c < num_cases; c++) { StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap; StaggeredKernelsStatic::Opt = Cases[c].Opt; CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch); grid_small_sep(); if (StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric) std::cout << GridLogMessage << "* Using GENERIC Nc StaggeredKernels" << std::endl; if (StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute) std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl; if (StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsThenCompute) std::cout << GridLogMessage << "* Using sequential Comms/Compute" << std::endl; std::cout << GridLogMessage << "* SINGLE precision " << std::endl; grid_small_sep(); int nwarm = 10; double t0 = usecond(); FGrid->Barrier(); for (int i = 0; i < nwarm; i++) { Ds.DhopEO(src_o, r_e, DaggerNo); } FGrid->Barrier(); double t1 = usecond(); uint64_t ncall = 500; FGrid->Broadcast(0, &ncall, sizeof(ncall)); Ds.ZeroCounters(); time_statistics timestat; std::vector t_time(ncall); for (uint64_t i = 0; i < ncall; i++) { t0 = usecond(); Ds.DhopEO(src_o, r_e, DaggerNo); t1 = usecond(); t_time[i] = t1 - t0; } FGrid->Barrier(); double volume = 1; for (int mu = 0; mu < Nd; mu++) volume = volume * latt4[mu]; double flops = (1146.0 * volume) / 2.; double gf_hi, gf_lo, gf_err; timestat.statistics(t_time); gf_hi = flops / timestat.min / 1000.; gf_lo = flops / timestat.max / 1000.; gf_err = flops / timestat.min * timestat.err / timestat.mean / 1000.; gflops = flops / timestat.mean / 1000.; gflops_all.push_back(gflops); if (gflops_best == 0) gflops_best = gflops; if (gflops_worst == 0) gflops_worst = gflops; if (gflops > gflops_best) gflops_best = gflops; if (gflops < gflops_worst) gflops_worst = gflops; std::cout << GridLogMessage << std::fixed << std::setprecision(1) << "Deo Gflop/s = " << gflops << " (" << gf_err << ") " << gf_lo << "-" << gf_hi << std::endl; std::cout << GridLogMessage << std::fixed << std::setprecision(1) << "Deo Gflop/s per rank " << gflops / NP << std::endl; std::cout << GridLogMessage << std::fixed << std::setprecision(1) << "Deo Gflop/s per node " << gflops / NN << std::endl; } grid_small_sep(); std::cout << GridLogMessage << L << "^4 Deo Best Gflop/s = " << gflops_best << " ; " << gflops_best / NN << " per node " << std::endl; std::cout << GridLogMessage << L << "^4 Deo Worst Gflop/s = " << gflops_worst << " ; " << gflops_worst / NN << " per node " << std::endl; std::cout << GridLogMessage << fmt << std::endl; std::cout << GridLogMessage; for (int i = 0; i < gflops_all.size(); i++) { std::cout << gflops_all[i] / NN << " ; "; } std::cout << std::endl; } return gflops_best; } }; int main(int argc, char **argv) { Grid_init(&argc, &argv); std::string json_filename = ""; // empty indicates no json output for (int i = 0; i < argc; i++) { if (std::string(argv[i]) == "--json-out") json_filename = argv[i + 1]; } CartesianCommunicator::SetCommunicatorPolicy( CartesianCommunicator::CommunicatorPolicySequential); #ifdef KNL LebesgueOrder::Block = std::vector({8, 2, 2, 2}); #else LebesgueOrder::Block = std::vector({2, 2, 2, 2}); #endif Benchmark::Decomposition(); int do_su4 = 1; int do_memory = 1; int do_comms = 1; int do_flops = 1; int Ls = 1; int sel = 4; std::vector L_list({8, 12, 16, 24, 32}); int selm1 = sel - 1; std::vector wilson; std::vector dwf4; std::vector staggered; if (do_memory) { grid_big_sep(); std::cout << GridLogMessage << " Memory benchmark " << std::endl; grid_big_sep(); Benchmark::Memory(); } if (do_su4) { grid_big_sep(); std::cout << GridLogMessage << " SU(4) benchmark " << std::endl; grid_big_sep(); Benchmark::SU4(); } if (do_comms) { grid_big_sep(); std::cout << GridLogMessage << " Communications benchmark " << std::endl; grid_big_sep(); Benchmark::Comms(); } if (do_flops) { Ls = 1; grid_big_sep(); std::cout << GridLogMessage << " Wilson dslash 4D vectorised" << std::endl; for (int l = 0; l < L_list.size(); l++) { wilson.push_back(Benchmark::DWF(Ls, L_list[l])); } Ls = 12; grid_big_sep(); std::cout << GridLogMessage << " Domain wall dslash 4D vectorised" << std::endl; for (int l = 0; l < L_list.size(); l++) { double result = Benchmark::DWF(Ls, L_list[l]); dwf4.push_back(result); } grid_big_sep(); std::cout << GridLogMessage << " Improved Staggered dslash 4D vectorised" << std::endl; for (int l = 0; l < L_list.size(); l++) { double result = Benchmark::Staggered(L_list[l]); staggered.push_back(result); } int NN = NN_global; grid_big_sep(); std::cout << GridLogMessage << "Gflop/s/node Summary table Ls=" << Ls << std::endl; grid_big_sep(); grid_printf("%5s %12s %12s %12s\n", "L", "Wilson", "DWF", "Staggered"); nlohmann::json tmp_flops; for (int l = 0; l < L_list.size(); l++) { grid_printf("%5d %12.2f %12.2f %12.2f\n", L_list[l], wilson[l] / NN, dwf4[l] / NN, staggered[l] / NN); nlohmann::json tmp; tmp["L"] = L_list[l]; tmp["Gflops_wilson"] = wilson[l] / NN; tmp["Gflops_dwf4"] = dwf4[l] / NN; tmp["Gflops_staggered"] = staggered[l] / NN; tmp_flops["results"].push_back(tmp); } grid_big_sep(); std::cout << GridLogMessage << " Comparison point result: " << 0.5 * (dwf4[sel] + dwf4[selm1]) / NN << " Gflop/s per node" << std::endl; std::cout << GridLogMessage << " Comparison point is 0.5*(" << dwf4[sel] / NN << "+" << dwf4[selm1] / NN << ") " << std::endl; std::cout << std::setprecision(3); grid_big_sep(); tmp_flops["comparison_point_Gflops"] = 0.5 * (dwf4[sel] + dwf4[selm1]) / NN; json_results["flops"] = tmp_flops; } if (!json_filename.empty()) { std::cout << GridLogMessage << "writing benchmark results to " << json_filename << std::endl; int me = 0; MPI_Comm_rank(MPI_COMM_WORLD, &me); if (me == 0) { std::ofstream json_file(json_filename); json_file << std::setw(2) << json_results; } } Grid_finalize(); }