lattice-benchmarks/Grid/Benchmark_Grid.cpp

918 lines
31 KiB
C++

/*
Copyright © 2015 Peter Boyle <paboyle@ph.ed.ac.uk>
Copyright © 2022 Antonin Portelli <antonin.portelli@me.com>
Copyright © 2022 Simon Buerger <simon.buerger@rwth-aachen.de>
This is a fork of Benchmark_ITT.cpp from Grid
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Common.hpp"
#include "json.hpp"
#include <Grid/Grid.h>
using namespace Grid;
int NN_global;
nlohmann::json json_results;
struct time_statistics
{
double mean;
double err;
double min;
double max;
void statistics(std::vector<double> v)
{
double sum = std::accumulate(v.begin(), v.end(), 0.0);
mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
err = std::sqrt(sq_sum / (v.size() * (v.size() - 1)));
auto result = std::minmax_element(v.begin(), v.end());
min = *result.first;
max = *result.second;
}
};
struct controls
{
int Opt;
int CommsOverlap;
Grid::CartesianCommunicator::CommunicatorPolicy_t CommsAsynch;
};
class Benchmark
{
public:
static void Decomposition(void)
{
nlohmann::json tmp;
int threads = GridThread::GetThreads();
Grid::Coordinate mpi = GridDefaultMpi();
assert(mpi.size() == 4);
Coordinate local({8, 8, 8, 8});
Coordinate latt4(
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
Grid::Coordinate shm(4, 1);
GlobalSharedMemory::GetShmDims(mpi, shm);
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global = NN;
uint64_t SHM = NP / NN;
grid_big_sep();
std::cout << GridLogMessage << "Grid Default Decomposition patterns\n";
grid_small_sep();
std::cout << GridLogMessage << "* OpenMP threads : " << GridThread::GetThreads()
<< std::endl;
std::cout << GridLogMessage << "* MPI layout : " << GridCmdVectorIntToString(mpi)
<< std::endl;
std::cout << GridLogMessage << "* Shm layout : " << GridCmdVectorIntToString(shm)
<< std::endl;
std::cout << GridLogMessage << "* vReal : " << sizeof(vReal) * 8 << "bits ; "
<< GridCmdVectorIntToString(GridDefaultSimd(4, vReal::Nsimd()))
<< std::endl;
std::cout << GridLogMessage << "* vRealF : " << sizeof(vRealF) * 8
<< "bits ; "
<< GridCmdVectorIntToString(GridDefaultSimd(4, vRealF::Nsimd()))
<< std::endl;
std::cout << GridLogMessage << "* vRealD : " << sizeof(vRealD) * 8
<< "bits ; "
<< GridCmdVectorIntToString(GridDefaultSimd(4, vRealD::Nsimd()))
<< std::endl;
std::cout << GridLogMessage << "* vComplex : " << sizeof(vComplex) * 8
<< "bits ; "
<< GridCmdVectorIntToString(GridDefaultSimd(4, vComplex::Nsimd()))
<< std::endl;
std::cout << GridLogMessage << "* vComplexF : " << sizeof(vComplexF) * 8
<< "bits ; "
<< GridCmdVectorIntToString(GridDefaultSimd(4, vComplexF::Nsimd()))
<< std::endl;
std::cout << GridLogMessage << "* vComplexD : " << sizeof(vComplexD) * 8
<< "bits ; "
<< GridCmdVectorIntToString(GridDefaultSimd(4, vComplexD::Nsimd()))
<< std::endl;
std::cout << GridLogMessage << "* ranks : " << NP << std::endl;
std::cout << GridLogMessage << "* nodes : " << NN << std::endl;
std::cout << GridLogMessage << "* ranks/node : " << SHM << std::endl;
for (unsigned int i = 0; i < mpi.size(); ++i)
{
tmp["mpi"].push_back(mpi[i]);
tmp["shm"].push_back(shm[i]);
}
tmp["ranks"] = NP;
tmp["nodes"] = NN;
json_results["geometry"] = tmp;
}
static void Comms(void)
{
int Nloop = 200;
int nmu = 0;
int maxlat = 48;
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
Coordinate shm_layout(Nd, 1);
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
for (int mu = 0; mu < Nd; mu++)
if (mpi_layout[mu] > 1)
nmu++;
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout << GridLogMessage << "Benchmarking threaded STENCIL halo exchange in "
<< nmu << " dimensions" << std::endl;
grid_small_sep();
grid_printf("%5s %5s %7s %15s %15s %15s %15s %15s\n", "L", "dir", "shm",
"payload (B)", "time (usec)", "rate (GB/s/node)", "std dev", "max");
for (int lat = 16; lat <= maxlat; lat += 8)
{
int Ls = 12;
Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2],
lat * mpi_layout[3]});
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank / Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
uint64_t bytes = lat * lat * lat * Ls * sizeof(HalfSpinColourVectorD);
for (int d = 0; d < 8; d++)
{
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
}
double dbytes;
#define NWARMUP 50
for (int dir = 0; dir < 8; dir++)
{
int mu = dir % 4;
if (mpi_layout[mu] == 1) // skip directions that are not distributed
continue;
bool is_shm = mpi_layout[mu] == shm_layout[mu];
bool is_partial_shm = !is_shm && shm_layout[mu] != 1;
std::vector<double> times(Nloop);
for (int i = 0; i < NWARMUP; i++)
{
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
}
for (int i = 0; i < Nloop; i++)
{
dbytes = 0;
double start = usecond();
int xmit_to_rank;
int recv_from_rank;
if (dir == mu)
{
int comm_proc = 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
else
{
int comm_proc = mpi_layout[mu] - 1;
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
dbytes += bytes;
double stop = usecond();
t_time[i] = stop - start; // microseconds
}
timestat.statistics(t_time);
dbytes = dbytes * ppn;
double bidibytes = 2. * dbytes;
double rate = bidibytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
grid_printf("%5d %5d %7s %15d %15.2f %15.2f %15.1f %15.2f\n", lat, dir,
is_shm ? "yes"
: is_partial_shm ? "partial"
: "no",
bytes, timestat.mean, rate, rate_err, rate_max);
nlohmann::json tmp;
nlohmann::json tmp_rate;
tmp["L"] = lat;
tmp["dir"] = dir;
tmp["shared_mem"] = is_shm;
tmp["partial_shared_mem"] = is_partial_shm;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp["rate_GBps"] = tmp_rate;
json_results["comms"].push_back(tmp);
}
for (int d = 0; d < 8; d++)
{
acceleratorFreeDevice(xbuf[d]);
acceleratorFreeDevice(rbuf[d]);
}
}
return;
}
static void Memory(void)
{
const int Nvec = 8;
typedef Lattice<iVector<vReal, Nvec>> LatticeVec;
typedef iVector<vReal, Nvec> Vec;
Coordinate simd_layout = GridDefaultSimd(Nd, vReal::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
std::cout << GridLogMessage << "Benchmarking a*x + y bandwidth" << std::endl;
grid_small_sep();
grid_printf("%5s %15s %15s %15s %15s\n", "L", "size (MB/node)", "time (usec)",
"GB/s/node", "Gflop/s/node");
uint64_t NN;
uint64_t lmax = 64;
#define NLOOP (200 * lmax * lmax * lmax / lat / lat / lat)
GridSerialRNG sRNG;
sRNG.SeedFixedIntegers(std::vector<int>({45, 12, 81, 9}));
for (int lat = 8; lat <= lmax; lat += 8)
{
Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2],
lat * mpi_layout[3]});
double vol =
static_cast<double>(latt_size[0]) * latt_size[1] * latt_size[2] * latt_size[3];
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
NN = Grid.NodeCount();
Vec rn;
random(sRNG, rn);
LatticeVec z(&Grid);
z = Zero();
LatticeVec x(&Grid);
x = Zero();
LatticeVec y(&Grid);
y = Zero();
double a = 2.0;
uint64_t Nloop = NLOOP;
for (int i = 0; i < NWARMUP; i++)
{
z = a * x - y;
}
double start = usecond();
for (int i = 0; i < Nloop; i++)
{
z = a * x - y;
}
double stop = usecond();
double time = (stop - start) / Nloop / 1.e6;
double flops = vol * Nvec * 2 / 1.e9; // mul,add
double bytes = 3.0 * vol * Nvec * sizeof(Real) / 1024. / 1024.;
grid_printf("%5d %15.2f %15.2f %15.2f %15.2f\n", lat, bytes / NN, time * 1.e6,
bytes / time / NN / 1024., flops / time / NN);
nlohmann::json tmp;
tmp["L"] = lat;
tmp["size_MB"] = bytes / NN;
tmp["GBps"] = bytes / time / NN / 1024.;
tmp["GFlops"] = flops / time / NN;
json_results["axpy"].push_back(tmp);
}
};
static void SU4(void)
{
const int Nc4 = 4;
typedef Lattice<iMatrix<vComplexF, Nc4>> LatticeSU4;
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexF::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
std::cout << GridLogMessage << "Benchmarking z = y*x SU(4) bandwidth" << std::endl;
grid_small_sep();
grid_printf("%5s %15s %15s %15s %15s\n", "L", "size (MB/node)", "time (usec)",
"GB/s/node", "Gflop/s/node");
uint64_t NN;
uint64_t lmax = 48;
GridSerialRNG sRNG;
sRNG.SeedFixedIntegers(std::vector<int>({45, 12, 81, 9}));
for (int lat = 8; lat <= lmax; lat += 8)
{
Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2],
lat * mpi_layout[3]});
double vol =
static_cast<double>(latt_size[0]) * latt_size[1] * latt_size[2] * latt_size[3];
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
NN = Grid.NodeCount();
LatticeSU4 z(&Grid);
z = Zero();
LatticeSU4 x(&Grid);
x = Zero();
LatticeSU4 y(&Grid);
y = Zero();
uint64_t Nloop = NLOOP;
for (int i = 0; i < NWARMUP; i++)
{
z = x * y;
}
double start = usecond();
for (int i = 0; i < Nloop; i++)
{
z = x * y;
}
double stop = usecond();
double time = (stop - start) / Nloop / 1.e6;
double flops = vol * Nc4 * Nc4 * (6 + (Nc4 - 1) * 8) / 1.e9; // mul,add
double bytes = 3.0 * vol * Nc4 * Nc4 * 2 * sizeof(RealF) / 1024. / 1024.;
grid_printf("%5d %15.2f %15.2f %15.2f %15.2f\n", lat, bytes / NN, time * 1.e6,
bytes / time / NN / 1024., flops / time / NN);
nlohmann::json tmp;
tmp["L"] = lat;
tmp["size_MB"] = bytes / NN;
tmp["GBps"] = bytes / time / NN / 1024.;
tmp["GFlops"] = flops / time / NN;
json_results["SU4"].push_back(tmp);
}
};
static double DWF(int Ls, int L)
{
RealD mass = 0.1;
RealD M5 = 1.8;
double gflops;
double gflops_best = 0;
double gflops_worst = 0;
std::vector<double> gflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi();
assert(mpi.size() == 4);
Coordinate local({L, L, L, L});
Coordinate latt4(
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global = NN;
uint64_t SHM = NP / NN;
///////// Welcome message ////////////
grid_big_sep();
std::cout << GridLogMessage << "Benchmark DWF on " << L << "^4 local volume "
<< std::endl;
std::cout << GridLogMessage << "* Nc : " << Nc << std::endl;
std::cout << GridLogMessage
<< "* Global volume : " << GridCmdVectorIntToString(latt4) << std::endl;
std::cout << GridLogMessage << "* Ls : " << Ls << std::endl;
std::cout << GridLogMessage << "* ranks : " << NP << std::endl;
std::cout << GridLogMessage << "* nodes : " << NN << std::endl;
std::cout << GridLogMessage << "* ranks/node : " << SHM << std::endl;
std::cout << GridLogMessage << "* ranks geom : " << GridCmdVectorIntToString(mpi)
<< std::endl;
std::cout << GridLogMessage << "* Using " << threads << " threads" << std::endl;
grid_big_sep();
///////// Lattice Init ////////////
GridCartesian *UGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian *FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls, UGrid);
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls, UGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1, 2, 3, 4});
std::vector<int> seeds5({5, 6, 7, 8});
GridParallelRNG RNG4(UGrid);
RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG RNG5(FGrid);
RNG5.SeedFixedIntegers(seeds5);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
typedef DomainWallFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
///////// Source preparation ////////////
Gauge Umu(UGrid);
SU<Nc>::HotConfiguration(RNG4, Umu);
Fermion src(FGrid);
random(RNG5, src);
Fermion src_e(FrbGrid);
Fermion src_o(FrbGrid);
Fermion r_e(FrbGrid);
Fermion r_o(FrbGrid);
Fermion r_eo(FGrid);
Action Dw(Umu, *FGrid, *FrbGrid, *UGrid, *UrbGrid, mass, M5);
{
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
const int num_cases = 4;
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases[] = {
{WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsThenCompute,
CartesianCommunicator::CommunicatorPolicyConcurrent},
{WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsAndCompute,
CartesianCommunicator::CommunicatorPolicyConcurrent},
{WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsThenCompute,
CartesianCommunicator::CommunicatorPolicySequential},
{WilsonKernelsStatic::OptGeneric, WilsonKernelsStatic::CommsAndCompute,
CartesianCommunicator::CommunicatorPolicySequential}};
for (int c = 0; c < num_cases; c++)
{
WilsonKernelsStatic::Comms = Cases[c].CommsOverlap;
WilsonKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
grid_small_sep();
if (WilsonKernelsStatic::Opt == WilsonKernelsStatic::OptGeneric)
std::cout << GridLogMessage << "* Using GENERIC Nc WilsonKernels" << std::endl;
if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute)
std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl;
if (WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsThenCompute)
std::cout << GridLogMessage << "* Using sequential Comms/Compute" << std::endl;
std::cout << GridLogMessage << "* SINGLE precision " << std::endl;
grid_small_sep();
int nwarm = 10;
double t0 = usecond();
FGrid->Barrier();
for (int i = 0; i < nwarm; i++)
{
Dw.DhopEO(src_o, r_e, DaggerNo);
}
FGrid->Barrier();
double t1 = usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0, &ncall, sizeof(ncall));
time_statistics timestat;
std::vector<double> t_time(ncall);
for (uint64_t i = 0; i < ncall; i++)
{
t0 = usecond();
Dw.DhopEO(src_o, r_e, DaggerNo);
t1 = usecond();
t_time[i] = t1 - t0;
}
FGrid->Barrier();
double volume = Ls;
for (int mu = 0; mu < Nd; mu++)
volume = volume * latt4[mu];
// Nc=3 gives
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
// double flops=(1344.0*volume)/2;
#if 0
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + Nd*Nc*Ns + Nd*Nc*Ns*2;
#else
double fps =
Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2;
#endif
double flops = (fps * volume) / 2.;
double gf_hi, gf_lo, gf_err;
timestat.statistics(t_time);
gf_hi = flops / timestat.min / 1000.;
gf_lo = flops / timestat.max / 1000.;
gf_err = flops / timestat.min * timestat.err / timestat.mean / 1000.;
gflops = flops / timestat.mean / 1000.;
gflops_all.push_back(gflops);
if (gflops_best == 0)
gflops_best = gflops;
if (gflops_worst == 0)
gflops_worst = gflops;
if (gflops > gflops_best)
gflops_best = gflops;
if (gflops < gflops_worst)
gflops_worst = gflops;
std::cout << GridLogMessage << "Deo FlopsPerSite is " << fps << std::endl;
std::cout << GridLogMessage << std::fixed << std::setprecision(1)
<< "Deo Gflop/s = " << gflops << " (" << gf_err << ") " << gf_lo
<< "-" << gf_hi << std::endl;
std::cout << GridLogMessage << std::fixed << std::setprecision(1)
<< "Deo Gflop/s per rank " << gflops / NP << std::endl;
std::cout << GridLogMessage << std::fixed << std::setprecision(1)
<< "Deo Gflop/s per node " << gflops / NN << std::endl;
}
grid_small_sep();
std::cout << GridLogMessage << L << "^4 x " << Ls
<< " Deo Best Gflop/s = " << gflops_best << " ; "
<< gflops_best / NN << " per node " << std::endl;
std::cout << GridLogMessage << L << "^4 x " << Ls
<< " Deo Worst Gflop/s = " << gflops_worst << " ; "
<< gflops_worst / NN << " per node " << std::endl;
std::cout << GridLogMessage << fmt << std::endl;
std::cout << GridLogMessage;
for (int i = 0; i < gflops_all.size(); i++)
{
std::cout << gflops_all[i] / NN << " ; ";
}
std::cout << std::endl;
}
return gflops_best;
}
static double Staggered(int L)
{
double gflops;
double gflops_best = 0;
double gflops_worst = 0;
std::vector<double> gflops_all;
///////////////////////////////////////////////////////
// Set/Get the layout & grid size
///////////////////////////////////////////////////////
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi();
assert(mpi.size() == 4);
Coordinate local({L, L, L, L});
Coordinate latt4(
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
uint64_t NN = TmpGrid->NodeCount();
NN_global = NN;
uint64_t SHM = NP / NN;
///////// Welcome message ////////////
grid_big_sep();
std::cout << GridLogMessage << "Benchmark ImprovedStaggered on " << L
<< "^4 local volume " << std::endl;
std::cout << GridLogMessage
<< "* Global volume : " << GridCmdVectorIntToString(latt4) << std::endl;
std::cout << GridLogMessage << "* ranks : " << NP << std::endl;
std::cout << GridLogMessage << "* nodes : " << NN << std::endl;
std::cout << GridLogMessage << "* ranks/node : " << SHM << std::endl;
std::cout << GridLogMessage << "* ranks geom : " << GridCmdVectorIntToString(mpi)
<< std::endl;
std::cout << GridLogMessage << "* Using " << threads << " threads" << std::endl;
grid_big_sep();
///////// Lattice Init ////////////
GridCartesian *FGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
///////// RNG Init ////////////
std::vector<int> seeds4({1, 2, 3, 4});
GridParallelRNG RNG4(FGrid);
RNG4.SeedFixedIntegers(seeds4);
std::cout << GridLogMessage << "Initialised RNGs" << std::endl;
RealD mass = 0.1;
RealD c1 = 9.0 / 8.0;
RealD c2 = -1.0 / 24.0;
RealD u0 = 1.0;
typedef ImprovedStaggeredFermionF Action;
typedef typename Action::FermionField Fermion;
typedef LatticeGaugeFieldF Gauge;
Gauge Umu(FGrid);
SU<Nc>::HotConfiguration(RNG4, Umu);
typename Action::ImplParams params;
Action Ds(Umu, Umu, *FGrid, *FrbGrid, mass, c1, c2, u0, params);
///////// Source preparation ////////////
Fermion src(FGrid);
random(RNG4, src);
Fermion src_e(FrbGrid);
Fermion src_o(FrbGrid);
Fermion r_e(FrbGrid);
Fermion r_o(FrbGrid);
Fermion r_eo(FGrid);
{
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
const int num_cases = 4;
std::string fmt("G/S/C ; G/O/C ; G/S/S ; G/O/S ");
controls Cases[] = {
{StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsThenCompute,
CartesianCommunicator::CommunicatorPolicyConcurrent},
{StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsAndCompute,
CartesianCommunicator::CommunicatorPolicyConcurrent},
{StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsThenCompute,
CartesianCommunicator::CommunicatorPolicySequential},
{StaggeredKernelsStatic::OptGeneric, StaggeredKernelsStatic::CommsAndCompute,
CartesianCommunicator::CommunicatorPolicySequential}};
for (int c = 0; c < num_cases; c++)
{
StaggeredKernelsStatic::Comms = Cases[c].CommsOverlap;
StaggeredKernelsStatic::Opt = Cases[c].Opt;
CartesianCommunicator::SetCommunicatorPolicy(Cases[c].CommsAsynch);
grid_small_sep();
if (StaggeredKernelsStatic::Opt == StaggeredKernelsStatic::OptGeneric)
std::cout << GridLogMessage << "* Using GENERIC Nc StaggeredKernels"
<< std::endl;
if (StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute)
std::cout << GridLogMessage << "* Using Overlapped Comms/Compute" << std::endl;
if (StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsThenCompute)
std::cout << GridLogMessage << "* Using sequential Comms/Compute" << std::endl;
std::cout << GridLogMessage << "* SINGLE precision " << std::endl;
grid_small_sep();
int nwarm = 10;
double t0 = usecond();
FGrid->Barrier();
for (int i = 0; i < nwarm; i++)
{
Ds.DhopEO(src_o, r_e, DaggerNo);
}
FGrid->Barrier();
double t1 = usecond();
uint64_t ncall = 500;
FGrid->Broadcast(0, &ncall, sizeof(ncall));
time_statistics timestat;
std::vector<double> t_time(ncall);
for (uint64_t i = 0; i < ncall; i++)
{
t0 = usecond();
Ds.DhopEO(src_o, r_e, DaggerNo);
t1 = usecond();
t_time[i] = t1 - t0;
}
FGrid->Barrier();
double volume = 1;
for (int mu = 0; mu < Nd; mu++)
volume = volume * latt4[mu];
double flops = (1146.0 * volume) / 2.;
double gf_hi, gf_lo, gf_err;
timestat.statistics(t_time);
gf_hi = flops / timestat.min / 1000.;
gf_lo = flops / timestat.max / 1000.;
gf_err = flops / timestat.min * timestat.err / timestat.mean / 1000.;
gflops = flops / timestat.mean / 1000.;
gflops_all.push_back(gflops);
if (gflops_best == 0)
gflops_best = gflops;
if (gflops_worst == 0)
gflops_worst = gflops;
if (gflops > gflops_best)
gflops_best = gflops;
if (gflops < gflops_worst)
gflops_worst = gflops;
std::cout << GridLogMessage << std::fixed << std::setprecision(1)
<< "Deo Gflop/s = " << gflops << " (" << gf_err << ") " << gf_lo
<< "-" << gf_hi << std::endl;
std::cout << GridLogMessage << std::fixed << std::setprecision(1)
<< "Deo Gflop/s per rank " << gflops / NP << std::endl;
std::cout << GridLogMessage << std::fixed << std::setprecision(1)
<< "Deo Gflop/s per node " << gflops / NN << std::endl;
}
grid_small_sep();
std::cout << GridLogMessage << L
<< "^4 Deo Best Gflop/s = " << gflops_best << " ; "
<< gflops_best / NN << " per node " << std::endl;
std::cout << GridLogMessage << L
<< "^4 Deo Worst Gflop/s = " << gflops_worst << " ; "
<< gflops_worst / NN << " per node " << std::endl;
std::cout << GridLogMessage << fmt << std::endl;
std::cout << GridLogMessage;
for (int i = 0; i < gflops_all.size(); i++)
{
std::cout << gflops_all[i] / NN << " ; ";
}
std::cout << std::endl;
}
return gflops_best;
}
};
int main(int argc, char **argv)
{
Grid_init(&argc, &argv);
std::string json_filename = ""; // empty indicates no json output
for (int i = 0; i < argc; i++)
{
if (std::string(argv[i]) == "--json-out")
json_filename = argv[i + 1];
}
CartesianCommunicator::SetCommunicatorPolicy(
CartesianCommunicator::CommunicatorPolicySequential);
#ifdef KNL
LebesgueOrder::Block = std::vector<int>({8, 2, 2, 2});
#else
LebesgueOrder::Block = std::vector<int>({2, 2, 2, 2});
#endif
Benchmark::Decomposition();
int do_su4 = 1;
int do_memory = 1;
int do_comms = 1;
int do_flops = 1;
int Ls = 1;
int sel = 4;
std::vector<int> L_list({8, 12, 16, 24, 32});
int selm1 = sel - 1;
std::vector<double> wilson;
std::vector<double> dwf4;
std::vector<double> staggered;
if (do_memory)
{
grid_big_sep();
std::cout << GridLogMessage << " Memory benchmark " << std::endl;
grid_big_sep();
Benchmark::Memory();
}
if (do_su4)
{
grid_big_sep();
std::cout << GridLogMessage << " SU(4) benchmark " << std::endl;
grid_big_sep();
Benchmark::SU4();
}
if (do_comms)
{
grid_big_sep();
std::cout << GridLogMessage << " Communications benchmark " << std::endl;
grid_big_sep();
Benchmark::Comms();
}
if (do_flops)
{
Ls = 1;
grid_big_sep();
std::cout << GridLogMessage << " Wilson dslash 4D vectorised" << std::endl;
for (int l = 0; l < L_list.size(); l++)
{
wilson.push_back(Benchmark::DWF(Ls, L_list[l]));
}
Ls = 12;
grid_big_sep();
std::cout << GridLogMessage << " Domain wall dslash 4D vectorised" << std::endl;
for (int l = 0; l < L_list.size(); l++)
{
double result = Benchmark::DWF(Ls, L_list[l]);
dwf4.push_back(result);
}
grid_big_sep();
std::cout << GridLogMessage << " Improved Staggered dslash 4D vectorised"
<< std::endl;
for (int l = 0; l < L_list.size(); l++)
{
double result = Benchmark::Staggered(L_list[l]);
staggered.push_back(result);
}
int NN = NN_global;
grid_big_sep();
std::cout << GridLogMessage << "Gflop/s/node Summary table Ls=" << Ls << std::endl;
grid_big_sep();
grid_printf("%5s %12s %12s %12s\n", "L", "Wilson", "DWF", "Staggered");
nlohmann::json tmp_flops;
for (int l = 0; l < L_list.size(); l++)
{
grid_printf("%5d %12.2f %12.2f %12.2f\n", L_list[l], wilson[l] / NN, dwf4[l] / NN,
staggered[l] / NN);
nlohmann::json tmp;
tmp["L"] = L_list[l];
tmp["Gflops_wilson"] = wilson[l] / NN;
tmp["Gflops_dwf4"] = dwf4[l] / NN;
tmp["Gflops_staggered"] = staggered[l] / NN;
tmp_flops["results"].push_back(tmp);
}
grid_big_sep();
std::cout << GridLogMessage
<< " Comparison point result: " << 0.5 * (dwf4[sel] + dwf4[selm1]) / NN
<< " Gflop/s per node" << std::endl;
std::cout << GridLogMessage << " Comparison point is 0.5*(" << dwf4[sel] / NN << "+"
<< dwf4[selm1] / NN << ") " << std::endl;
std::cout << std::setprecision(3);
grid_big_sep();
tmp_flops["comparison_point_Gflops"] = 0.5 * (dwf4[sel] + dwf4[selm1]) / NN;
json_results["flops"] = tmp_flops;
}
if (!json_filename.empty())
{
std::cout << GridLogMessage << "writing benchmark results to " << json_filename
<< std::endl;
int me = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &me);
if (me == 0)
{
std::ofstream json_file(json_filename);
json_file << std::setw(2) << json_results;
}
}
Grid_finalize();
}