forked from portelli/lattice-benchmarks
		
	add DWF benchmark
This commit is contained in:
		| @@ -12,6 +12,9 @@ | |||||||
|  |  | ||||||
| using namespace quda; | using namespace quda; | ||||||
|  |  | ||||||
|  | // remove to use QUDA's own flop counting instead of Grid's convention | ||||||
|  | #define FLOP_COUNTING_GRID | ||||||
|  |  | ||||||
| // This is the MPI grid, i.e. the layout of ranks | // This is the MPI grid, i.e. the layout of ranks | ||||||
| int nranks = -1; | int nranks = -1; | ||||||
| std::array<int, 4> mpi_grid = {1, 1, 1, 1}; | std::array<int, 4> mpi_grid = {1, 1, 1, 1}; | ||||||
| @@ -65,7 +68,7 @@ cudaGaugeField make_gauge_field(int L) | |||||||
|  |  | ||||||
|   // for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller |   // for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller | ||||||
|   // precisions are available in QUDA too |   // precisions are available in QUDA too | ||||||
|   param.setPrecision(QUDA_DOUBLE_PRECISION); |   param.setPrecision(QUDA_SINGLE_PRECISION); | ||||||
|  |  | ||||||
|   // no even/odd subset, we want a full lattice |   // no even/odd subset, we want a full lattice | ||||||
|   param.siteSubset = QUDA_FULL_SITE_SUBSET; |   param.siteSubset = QUDA_FULL_SITE_SUBSET; | ||||||
| @@ -104,7 +107,7 @@ cudaGaugeField make_gauge_field(int L) | |||||||
| } | } | ||||||
|  |  | ||||||
| // create a random source vector (L = local size) | // create a random source vector (L = local size) | ||||||
| ColorSpinorField make_source(int L) | ColorSpinorField make_source(int L, int Ls = 1) | ||||||
| { | { | ||||||
|   // NOTE: `param.x` directly determines the size of the (local, per rank) memory |   // NOTE: `param.x` directly determines the size of the (local, per rank) memory | ||||||
|   // allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a |   // allocation. Thus for checkerboarding, we have to specifly x=(L/2,L,L,L) to get a | ||||||
| @@ -116,12 +119,12 @@ ColorSpinorField make_source(int L) | |||||||
|   param.nVec = 1; // only a single vector |   param.nVec = 1; // only a single vector | ||||||
|   param.pad = 0; |   param.pad = 0; | ||||||
|   param.siteSubset = QUDA_PARITY_SITE_SUBSET; |   param.siteSubset = QUDA_PARITY_SITE_SUBSET; | ||||||
|   param.nDim = 4; |   param.nDim = Ls == 1 ? 4 : 5; | ||||||
|   param.x[0] = L / 2; |   param.x[0] = L / 2; | ||||||
|   param.x[1] = L; |   param.x[1] = L; | ||||||
|   param.x[2] = L; |   param.x[2] = L; | ||||||
|   param.x[3] = L; |   param.x[3] = L; | ||||||
|   param.x[4] = 1; // no fifth dimension |   param.x[4] = Ls; | ||||||
|   param.pc_type = QUDA_4D_PC; |   param.pc_type = QUDA_4D_PC; | ||||||
|   param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; |   param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER; | ||||||
|  |  | ||||||
| @@ -130,7 +133,7 @@ ColorSpinorField make_source(int L) | |||||||
|   param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS; |   param.gammaBasis = QUDA_UKQCD_GAMMA_BASIS; | ||||||
|  |  | ||||||
|   param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field |   param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field | ||||||
|   param.setPrecision(QUDA_DOUBLE_PRECISION); |   param.setPrecision(QUDA_SINGLE_PRECISION); | ||||||
|   param.location = QUDA_CUDA_FIELD_LOCATION; |   param.location = QUDA_CUDA_FIELD_LOCATION; | ||||||
|  |  | ||||||
|   // create the field and fill it with random values |   // create the field and fill it with random values | ||||||
| @@ -152,10 +155,15 @@ void benchmark_wilson() | |||||||
|   int niter_warmup = 10; |   int niter_warmup = 10; | ||||||
|  |  | ||||||
|   printfQuda("==================== wilson dirac operator ====================\n"); |   printfQuda("==================== wilson dirac operator ====================\n"); | ||||||
|   printfQuda("IMPORTANT: QUDAs own flop counting. Probably not the same as in Grid.\n"); | #ifdef FLOP_COUNTING_GRID | ||||||
|  |   printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n"); | ||||||
|  | #else | ||||||
|  |   printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from " | ||||||
|  |              "Benchmark_Grid)\n"); | ||||||
|  | #endif | ||||||
|   printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank"); |   printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank"); | ||||||
|  |  | ||||||
|   for (int L : {8, 12, 16, 24, 32}) |   for (int L : {8, 12, 16, 24, 32, 48}) | ||||||
|   { |   { | ||||||
|     auto U = make_gauge_field(L); |     auto U = make_gauge_field(L); | ||||||
|     auto src = make_source(L); |     auto src = make_source(L); | ||||||
| @@ -187,7 +195,82 @@ void benchmark_wilson() | |||||||
|     device_timer.stop(); |     device_timer.stop(); | ||||||
|  |  | ||||||
|     double secs = device_timer.last() / niter; |     double secs = device_timer.last() / niter; | ||||||
|  |  | ||||||
|  | #ifdef FLOP_COUNTING_GRID | ||||||
|  |     // this is the flop counting from Benchmark_Grid | ||||||
|  |     double Nc = 3; | ||||||
|  |     double Nd = 4; | ||||||
|  |     double Ns = 4; | ||||||
|  |     double flops = | ||||||
|  |         (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2); | ||||||
|  |     flops *= L * L * L * L / 2.0; | ||||||
|  | #else | ||||||
|     double flops = 1.0 * dirac.Flops() / niter; |     double flops = 1.0 * dirac.Flops() / niter; | ||||||
|  | #endif | ||||||
|  |  | ||||||
|  |     printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9); | ||||||
|  |   } | ||||||
|  | } | ||||||
|  |  | ||||||
|  | void benchmark_dwf() | ||||||
|  | { | ||||||
|  |   int niter = 20; | ||||||
|  |   int niter_warmup = 10; | ||||||
|  |  | ||||||
|  |   printfQuda("==================== domain wall dirac operator ====================\n"); | ||||||
|  | #ifdef FLOP_COUNTING_GRID | ||||||
|  |   printfQuda("IMPORTANT: flop counting as in Benchmark_Grid\n"); | ||||||
|  | #else | ||||||
|  |   printfQuda("IMPORTANT: flop counting by QUDA's own convention (different from " | ||||||
|  |              "Benchmark_Grid)\n"); | ||||||
|  | #endif | ||||||
|  |   printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank"); | ||||||
|  |   int Ls = 12; | ||||||
|  |   for (int L : {8, 12, 16, 24, 32, 48}) | ||||||
|  |   { | ||||||
|  |     auto U = make_gauge_field(L); | ||||||
|  |     auto src = make_source(L, Ls); | ||||||
|  |  | ||||||
|  |     // create dirac operator | ||||||
|  |     DiracParam param; | ||||||
|  |     param.kappa = 0.10; | ||||||
|  |     param.Ls = Ls; | ||||||
|  |     param.m5 = 0.1; | ||||||
|  |     param.dagger = QUDA_DAG_NO; | ||||||
|  |     param.matpcType = QUDA_MATPC_EVEN_EVEN; | ||||||
|  |     auto dirac = DiracDomainWall(param); | ||||||
|  |  | ||||||
|  |     // insert gauge field into the dirac operator | ||||||
|  |     // (the additional nullptr's are for smeared links and fancy preconditioners and such) | ||||||
|  |     dirac.updateFields(&U, nullptr, nullptr, nullptr); | ||||||
|  |  | ||||||
|  |     auto tmp = ColorSpinorField(ColorSpinorParam(src)); | ||||||
|  |  | ||||||
|  |     // couple iterations without timing to warm up | ||||||
|  |     for (int iter = 0; iter < niter_warmup; ++iter) | ||||||
|  |       dirac.Dslash(tmp, src, QUDA_EVEN_PARITY); | ||||||
|  |  | ||||||
|  |     // actual benchmark with timings | ||||||
|  |     dirac.Flops(); // reset flops counter | ||||||
|  |     device_timer_t device_timer; | ||||||
|  |     device_timer.start(); | ||||||
|  |     for (int iter = 0; iter < niter; ++iter) | ||||||
|  |       dirac.Dslash(tmp, src, QUDA_EVEN_PARITY); | ||||||
|  |     device_timer.stop(); | ||||||
|  |  | ||||||
|  |     double secs = device_timer.last() / niter; | ||||||
|  |  | ||||||
|  | #ifdef FLOP_COUNTING_GRID | ||||||
|  |     // this is the flop counting from Benchmark_Grid | ||||||
|  |     double Nc = 3; | ||||||
|  |     double Nd = 4; | ||||||
|  |     double Ns = 4; | ||||||
|  |     double flops = | ||||||
|  |         (Nc * (6 + (Nc - 1) * 8) * Ns * Nd + 2 * Nd * Nc * Ns + 2 * Nd * Nc * Ns * 2); | ||||||
|  |     flops *= L * L * L * L * Ls / 2.0; | ||||||
|  | #else | ||||||
|  |     double flops = 1.0 * dirac.Flops() / niter; | ||||||
|  | #endif | ||||||
|  |  | ||||||
|     printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9); |     printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9); | ||||||
|   } |   } | ||||||
| @@ -213,7 +296,7 @@ void benchmark_axpy() | |||||||
|   param.pad = 0;                             // no padding |   param.pad = 0;                             // no padding | ||||||
|   param.create = QUDA_NULL_FIELD_CREATE;     // do not (zero-) initilize the field |   param.create = QUDA_NULL_FIELD_CREATE;     // do not (zero-) initilize the field | ||||||
|   param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU |   param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU | ||||||
|   param.setPrecision(QUDA_DOUBLE_PRECISION); |   param.setPrecision(QUDA_SINGLE_PRECISION); | ||||||
|  |  | ||||||
|   // the following dont matter for an axpy benchmark, but need to choose something |   // the following dont matter for an axpy benchmark, but need to choose something | ||||||
|   param.pc_type = QUDA_4D_PC; |   param.pc_type = QUDA_4D_PC; | ||||||
| @@ -240,8 +323,8 @@ void benchmark_axpy() | |||||||
|     // create the field(s) |     // create the field(s) | ||||||
|     auto fieldA = ColorSpinorField(param); |     auto fieldA = ColorSpinorField(param); | ||||||
|     auto fieldB = ColorSpinorField(param); |     auto fieldB = ColorSpinorField(param); | ||||||
|     assert(fieldA.Bytes() == sizeof(double) * field_elements); // sanity check |     assert(fieldA.Bytes() == sizeof(float) * field_elements); // sanity check | ||||||
|     assert(fieldB.Bytes() == sizeof(double) * field_elements); // sanity check |     assert(fieldB.Bytes() == sizeof(float) * field_elements); // sanity check | ||||||
|  |  | ||||||
|     // fill fields with random values |     // fill fields with random values | ||||||
|     quda::RNG rng(fieldA, 1234); |     quda::RNG rng(fieldA, 1234); | ||||||
| @@ -251,7 +334,7 @@ void benchmark_axpy() | |||||||
|     // number of operations / bytes per iteration |     // number of operations / bytes per iteration | ||||||
|     // axpy is one addition, one multiplication, two read, one write |     // axpy is one addition, one multiplication, two read, one write | ||||||
|     double flops = 2 * field_elements; |     double flops = 2 * field_elements; | ||||||
|     double memory = 3 * sizeof(double) * field_elements; |     double memory = 3 * sizeof(float) * field_elements; | ||||||
|  |  | ||||||
|     // do some iterations to to let QUDA do its internal tuning and also stabilize cache |     // do some iterations to to let QUDA do its internal tuning and also stabilize cache | ||||||
|     // behaviour and such |     // behaviour and such | ||||||
| @@ -288,6 +371,7 @@ int main(int argc, char **argv) | |||||||
|  |  | ||||||
|   setVerbosity(QUDA_SILENT); |   setVerbosity(QUDA_SILENT); | ||||||
|   benchmark_wilson(); |   benchmark_wilson(); | ||||||
|  |   benchmark_dwf(); | ||||||
|   setVerbosity(QUDA_SUMMARIZE); |   setVerbosity(QUDA_SUMMARIZE); | ||||||
|  |  | ||||||
|   printfQuda("==================== done with all benchmarks ====================\n"); |   printfQuda("==================== done with all benchmarks ====================\n"); | ||||||
|   | |||||||
| @@ -2,6 +2,7 @@ module load gcc/9.3.0 | |||||||
| module load cuda/11.4.1 | module load cuda/11.4.1 | ||||||
| module load openmpi/4.1.1-cuda11.4 | module load openmpi/4.1.1-cuda11.4 | ||||||
|  |  | ||||||
|  | export QUDA_RESOURCE_PATH=$(pwd)/tuning | ||||||
| export OMP_NUM_THREADS=4 | export OMP_NUM_THREADS=4 | ||||||
| export OMPI_MCA_btl=^uct,openib | export OMPI_MCA_btl=^uct,openib | ||||||
| export OMPI_MCA_pml=ucx # by fabian. no idea what this is | export OMPI_MCA_pml=ucx # by fabian. no idea what this is | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user