forked from portelli/lattice-benchmarks
		
	fix scaling conventions for multi-gpu
This commit is contained in:
		@@ -1,56 +1,58 @@
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
#include <array>
 | 
			
		||||
#include <blas_quda.h>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <color_spinor_field.h>
 | 
			
		||||
#include <mpi.h>
 | 
			
		||||
// #include <quda_internal.h>
 | 
			
		||||
#include <dirac_quda.h>
 | 
			
		||||
#include <gauge_tools.h>
 | 
			
		||||
#include <memory>
 | 
			
		||||
#include <mpi.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <dirac_quda.h>
 | 
			
		||||
#include <gauge_tools.h>
 | 
			
		||||
 | 
			
		||||
using namespace quda;
 | 
			
		||||
 | 
			
		||||
QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION;
 | 
			
		||||
// This is the MPI grid, i.e. the layout of ranks
 | 
			
		||||
int nranks = -1;
 | 
			
		||||
std::array<int, 4> mpi_grid = {1, 1, 1, 1};
 | 
			
		||||
 | 
			
		||||
// This is the MPI grid, i.e. the layout of ranks, not the lattice volume
 | 
			
		||||
std::array<int, 4> gridsize = {1, 1, 1, 4};
 | 
			
		||||
 | 
			
		||||
void initComms(int argc, char **argv, std::array<int, 4> const &commDims)
 | 
			
		||||
void initComms(int argc, char **argv)
 | 
			
		||||
{
 | 
			
		||||
  // init MPI communication
 | 
			
		||||
  MPI_Init(&argc, &argv);
 | 
			
		||||
 | 
			
		||||
  MPI_Comm_size(MPI_COMM_WORLD, &nranks);
 | 
			
		||||
  assert(1 <= nranks && nranks <= 100000);
 | 
			
		||||
 | 
			
		||||
  mpi_grid[3] = nranks;
 | 
			
		||||
 | 
			
		||||
  // this maps coordinates to rank number
 | 
			
		||||
  auto lex_rank_from_coords = [](int const *coords, void *)
 | 
			
		||||
  {
 | 
			
		||||
    int rank = coords[0];
 | 
			
		||||
    for (int i = 1; i < 4; i++)
 | 
			
		||||
      rank = gridsize[i] * rank + coords[i];
 | 
			
		||||
      rank = mpi_grid[i] * rank + coords[i];
 | 
			
		||||
    return rank;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr);
 | 
			
		||||
  initCommsGridQuda(4, mpi_grid.data(), lex_rank_from_coords, nullptr);
 | 
			
		||||
 | 
			
		||||
  for (int d = 0; d < 4; d++)
 | 
			
		||||
    if (gridsize[d] > 1)
 | 
			
		||||
    if (mpi_grid[d] > 1)
 | 
			
		||||
      commDimPartitionedSet(d);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// creates a random gauge field
 | 
			
		||||
cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
 | 
			
		||||
// creates a random gauge field. L = local(!) size
 | 
			
		||||
cudaGaugeField make_gauge_field(int L)
 | 
			
		||||
{
 | 
			
		||||
  GaugeFieldParam param;
 | 
			
		||||
 | 
			
		||||
  // dimension and type of the lattice object
 | 
			
		||||
  param.nDim = 4;
 | 
			
		||||
  param.x[0] = geom[0];
 | 
			
		||||
  param.x[1] = geom[1];
 | 
			
		||||
  param.x[2] = geom[2];
 | 
			
		||||
  param.x[3] = geom[3];
 | 
			
		||||
  param.x[0] = L;
 | 
			
		||||
  param.x[1] = L;
 | 
			
		||||
  param.x[2] = L;
 | 
			
		||||
  param.x[3] = L;
 | 
			
		||||
 | 
			
		||||
  // number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
 | 
			
		||||
  // things unrelated with physical color. things like "nColor=32" do pop up in deflation
 | 
			
		||||
@@ -101,8 +103,8 @@ cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
 | 
			
		||||
  return U;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// create a random source vector
 | 
			
		||||
ColorSpinorField make_source(std::array<int, 4> const &geom)
 | 
			
		||||
// create a random source vector (L = local size)
 | 
			
		||||
ColorSpinorField make_source(int L)
 | 
			
		||||
{
 | 
			
		||||
  ColorSpinorParam param;
 | 
			
		||||
  param.nColor = 3;
 | 
			
		||||
@@ -111,10 +113,10 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
 | 
			
		||||
  param.pad = 0;
 | 
			
		||||
  param.siteSubset = QUDA_FULL_SITE_SUBSET;
 | 
			
		||||
  param.nDim = 4;
 | 
			
		||||
  param.x[0] = geom[0];
 | 
			
		||||
  param.x[1] = geom[1];
 | 
			
		||||
  param.x[2] = geom[2];
 | 
			
		||||
  param.x[3] = geom[3];
 | 
			
		||||
  param.x[0] = L;
 | 
			
		||||
  param.x[1] = L;
 | 
			
		||||
  param.x[2] = L;
 | 
			
		||||
  param.x[3] = L;
 | 
			
		||||
  param.x[4] = 1; // no fifth dimension
 | 
			
		||||
  param.pc_type = QUDA_4D_PC;
 | 
			
		||||
  param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
 | 
			
		||||
@@ -136,130 +138,151 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
 | 
			
		||||
  return src;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void benchmark(int L, int niter)
 | 
			
		||||
void benchmark_wilson()
 | 
			
		||||
{
 | 
			
		||||
  std::array<int, 4> geom = {L, L, L, L};
 | 
			
		||||
  int niter = 20;
 | 
			
		||||
  int niter_warmup = 10;
 | 
			
		||||
 | 
			
		||||
  printfQuda("=======================  benchmarking L=%d =======================\n", L);
 | 
			
		||||
  printfQuda("==================== wilson dirac operator ====================\n");
 | 
			
		||||
  printfQuda("IMPORTANT: QUDAs own flop counting. Probably not the same as in Grid.\n");
 | 
			
		||||
  printfQuda("%5s %15s %15s\n", "L", "time (usec)", "Gflop/s/rank");
 | 
			
		||||
 | 
			
		||||
  auto U = make_gauge_field(geom);
 | 
			
		||||
  printfQuda("created random gauge field, %.3f GiB (sanity check: should be %.3f)\n",
 | 
			
		||||
             U.Bytes() / 1024. / 1024. / 1024.,
 | 
			
		||||
             1.0 * L * L * L * L * 4 * 18 * 8 / 1024. / 1024. / 1024.);
 | 
			
		||||
  auto src = make_source(geom);
 | 
			
		||||
  printfQuda("created random source, %.3f GiB (sanity check: should be %.3f)\n",
 | 
			
		||||
             src.Bytes() / 1024. / 1024. / 1024.,
 | 
			
		||||
             1.0 * L * L * L * L * 12 * 2 * 8 / 1024. / 1024. / 1024.);
 | 
			
		||||
  for (int L : {8, 12, 16, 24, 32})
 | 
			
		||||
  {
 | 
			
		||||
    auto U = make_gauge_field(L);
 | 
			
		||||
    auto src = make_source(L);
 | 
			
		||||
 | 
			
		||||
  // create (Wilson) dirac operator
 | 
			
		||||
  DiracParam param;
 | 
			
		||||
  param.kappa = 0.10;
 | 
			
		||||
  param.dagger = QUDA_DAG_NO;
 | 
			
		||||
  param.matpcType = QUDA_MATPC_EVEN_EVEN;
 | 
			
		||||
  auto dirac = DiracWilson(param);
 | 
			
		||||
    // create (Wilson) dirac operator
 | 
			
		||||
    DiracParam param;
 | 
			
		||||
    param.kappa = 0.10;
 | 
			
		||||
    param.dagger = QUDA_DAG_NO;
 | 
			
		||||
    param.matpcType = QUDA_MATPC_EVEN_EVEN;
 | 
			
		||||
    auto dirac = DiracWilson(param);
 | 
			
		||||
 | 
			
		||||
  // insert gauge field into the dirac operator
 | 
			
		||||
  // (the additional nullptr's are for smeared links and fancy preconditioners and such.
 | 
			
		||||
  // Not used for simple Wilson fermions)
 | 
			
		||||
  dirac.updateFields(&U, nullptr, nullptr, nullptr);
 | 
			
		||||
    // insert gauge field into the dirac operator
 | 
			
		||||
    // (the additional nullptr's are for smeared links and fancy preconditioners and such.
 | 
			
		||||
    // Not used for simple Wilson fermions)
 | 
			
		||||
    dirac.updateFields(&U, nullptr, nullptr, nullptr);
 | 
			
		||||
 | 
			
		||||
  auto tmp = ColorSpinorField(ColorSpinorParam(src));
 | 
			
		||||
    auto tmp = ColorSpinorField(ColorSpinorParam(src));
 | 
			
		||||
 | 
			
		||||
  printfQuda("benchmarking Dirac operator. geom=(%d,%d,%d,%d), niter=%d\n", geom[0],
 | 
			
		||||
             geom[1], geom[2], geom[3], niter);
 | 
			
		||||
    // couple iterations without timing to warm up
 | 
			
		||||
    for (int iter = 0; iter < niter_warmup; ++iter)
 | 
			
		||||
      dirac.M(tmp, src);
 | 
			
		||||
 | 
			
		||||
  // couple iterations without timing to warm up
 | 
			
		||||
  printfQuda("warmup...\n");
 | 
			
		||||
  for (int iter = 0; iter < 20; ++iter)
 | 
			
		||||
    dirac.M(tmp, src);
 | 
			
		||||
    // actual benchmark with timings
 | 
			
		||||
    dirac.Flops(); // reset flops counter
 | 
			
		||||
    device_timer_t device_timer;
 | 
			
		||||
    device_timer.start();
 | 
			
		||||
    for (int iter = 0; iter < niter; ++iter)
 | 
			
		||||
      dirac.M(tmp, src);
 | 
			
		||||
    device_timer.stop();
 | 
			
		||||
 | 
			
		||||
  printfQuda("running...\n");
 | 
			
		||||
  dirac.Flops(); // reset flops counter
 | 
			
		||||
  device_timer_t device_timer;
 | 
			
		||||
  device_timer.start();
 | 
			
		||||
  for (int iter = 0; iter < niter; ++iter)
 | 
			
		||||
    dirac.M(tmp, src);
 | 
			
		||||
  device_timer.stop();
 | 
			
		||||
    double secs = device_timer.last() / niter;
 | 
			
		||||
    double flops = 1.0 * dirac.Flops() / niter;
 | 
			
		||||
 | 
			
		||||
  double secs = device_timer.last();
 | 
			
		||||
  double gflops = (dirac.Flops() * 1e-9) / secs;
 | 
			
		||||
  printfQuda("Gflops = %6.2f\n", gflops);
 | 
			
		||||
    printfQuda("%5d %15.2f %15.2f\n", L, secs * 1e6, flops / secs * 1e-9);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void benchmark_axpy(int L)
 | 
			
		||||
void benchmark_axpy()
 | 
			
		||||
{
 | 
			
		||||
  printfQuda("================ axpy L=%d ==============\n", L);
 | 
			
		||||
  // number of iterations for warmup / measurement
 | 
			
		||||
  // (feel free to change for noise/time tradeoff)
 | 
			
		||||
  constexpr int niter_warmup = 10;
 | 
			
		||||
  constexpr int niter = 20;
 | 
			
		||||
 | 
			
		||||
  printfQuda("==================== axpy / memory ====================\n");
 | 
			
		||||
 | 
			
		||||
  ColorSpinorParam param;
 | 
			
		||||
  param.nColor = 3;
 | 
			
		||||
  param.nDim = 4;   // 4-dimensional lattice
 | 
			
		||||
  param.x[4] = 1;   // no fifth dimension
 | 
			
		||||
  param.nColor = 3; // supported values for nSpin/nColor are configured when compiling
 | 
			
		||||
                    // QUDA. "3*4" will probably always be enabled, so we stick with this
 | 
			
		||||
  param.nSpin = 4;
 | 
			
		||||
  param.nVec = 1;
 | 
			
		||||
  param.pad = 0;
 | 
			
		||||
  param.siteSubset = QUDA_FULL_SITE_SUBSET;
 | 
			
		||||
  param.nDim = 4;
 | 
			
		||||
  param.x[0] = L;
 | 
			
		||||
  param.x[1] = L;
 | 
			
		||||
  param.x[2] = L;
 | 
			
		||||
  param.x[3] = L;
 | 
			
		||||
  param.x[4] = 1; // no fifth dimension
 | 
			
		||||
  param.nVec = 1;                            // just a single vector
 | 
			
		||||
  param.siteSubset = QUDA_FULL_SITE_SUBSET;  // full lattice = no odd/even
 | 
			
		||||
  param.pad = 0;                             // no padding
 | 
			
		||||
  param.create = QUDA_NULL_FIELD_CREATE;     // do not (zero-) initilize the field
 | 
			
		||||
  param.location = QUDA_CUDA_FIELD_LOCATION; // field should reside on GPU
 | 
			
		||||
  param.setPrecision(QUDA_DOUBLE_PRECISION);
 | 
			
		||||
 | 
			
		||||
  // the following dont matter for an axpy benchmark, but need to choose something
 | 
			
		||||
  param.pc_type = QUDA_4D_PC;
 | 
			
		||||
  param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
 | 
			
		||||
  param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
 | 
			
		||||
  param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
 | 
			
		||||
  param.setPrecision(QUDA_DOUBLE_PRECISION);
 | 
			
		||||
  param.location = QUDA_CUDA_FIELD_LOCATION;
 | 
			
		||||
 | 
			
		||||
  // create the field and fill it with random values
 | 
			
		||||
  auto fieldA = ColorSpinorField(param);
 | 
			
		||||
  auto fieldB = ColorSpinorField(param);
 | 
			
		||||
  quda::RNG rng(fieldA, 1234);
 | 
			
		||||
  auto size_bytes = size_t(8) * 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
 | 
			
		||||
                    param.nColor * param.nSpin;
 | 
			
		||||
  assert(fieldA.Bytes() == size_bytes); // sanity check
 | 
			
		||||
  assert(fieldB.Bytes() == size_bytes); // sanity check
 | 
			
		||||
  spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
 | 
			
		||||
  spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
 | 
			
		||||
  printfQuda("%5s %15s %15s %15s %15s\n", "L", "size (MiB/rank)", "time (usec)",
 | 
			
		||||
             "GiB/s/rank", "Gflop/s/rank");
 | 
			
		||||
  std::vector L_list = {8, 12, 16, 24, 32};
 | 
			
		||||
  for (int L : L_list)
 | 
			
		||||
  {
 | 
			
		||||
    // IMPORTANT: all of `param.x`, `field_elements`, `field.Bytes()`
 | 
			
		||||
    //            are LOCAL, i.e. per rank / per GPU
 | 
			
		||||
 | 
			
		||||
  // number of (real) elements in the field = number of fma instructions to do
 | 
			
		||||
  double flops_per_iter =
 | 
			
		||||
      2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin;
 | 
			
		||||
    param.x[0] = L;
 | 
			
		||||
    param.x[1] = L;
 | 
			
		||||
    param.x[2] = L;
 | 
			
		||||
    param.x[3] = L;
 | 
			
		||||
 | 
			
		||||
  int niter = 20;
 | 
			
		||||
    // number of (real) elements in one (local) field
 | 
			
		||||
    size_t field_elements = 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
 | 
			
		||||
                            param.nColor * param.nSpin;
 | 
			
		||||
 | 
			
		||||
  printfQuda("warmup...\n");
 | 
			
		||||
  for (int iter = 0; iter < 10; ++iter)
 | 
			
		||||
    blas::axpy(1.234, fieldA, fieldB);
 | 
			
		||||
    // create the field(s)
 | 
			
		||||
    auto fieldA = ColorSpinorField(param);
 | 
			
		||||
    auto fieldB = ColorSpinorField(param);
 | 
			
		||||
    assert(fieldA.Bytes() == sizeof(double) * field_elements); // sanity check
 | 
			
		||||
    assert(fieldB.Bytes() == sizeof(double) * field_elements); // sanity check
 | 
			
		||||
 | 
			
		||||
  printfQuda("running...\n");
 | 
			
		||||
  device_timer_t device_timer;
 | 
			
		||||
  device_timer.start();
 | 
			
		||||
  for (int iter = 0; iter < niter; ++iter)
 | 
			
		||||
    blas::axpy(1.234, fieldA, fieldB); // fieldB += 1.234*fieldA
 | 
			
		||||
  device_timer.stop();
 | 
			
		||||
    // fill fields with random values
 | 
			
		||||
    quda::RNG rng(fieldA, 1234);
 | 
			
		||||
    spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
 | 
			
		||||
    spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
 | 
			
		||||
 | 
			
		||||
  double secs = device_timer.last();
 | 
			
		||||
  double gflops = (flops_per_iter * niter) * 1e-9 / secs;
 | 
			
		||||
  printfQuda("Gflops = %6.2f\n", gflops);
 | 
			
		||||
  printfQuda("bytes = %6.2f GiB\n", 3. * fieldA.Bytes() / 1024. / 1024. / 1024.);
 | 
			
		||||
  printfQuda("bandwidth = %6.2f GiB/s\n",
 | 
			
		||||
             fieldA.Bytes() * 3 / 1024. / 1024. / 1024. * niter / secs);
 | 
			
		||||
    // number of operations / bytes per iteration
 | 
			
		||||
    // axpy is one addition, one multiplication, two read, one write
 | 
			
		||||
    double flops = 2 * field_elements;
 | 
			
		||||
    double memory = 3 * sizeof(double) * field_elements;
 | 
			
		||||
 | 
			
		||||
    // do some iterations to to let QUDA do its internal tuning and also stabilize cache
 | 
			
		||||
    // behaviour and such
 | 
			
		||||
    for (int iter = 0; iter < niter_warmup; ++iter)
 | 
			
		||||
      blas::axpy(1.234, fieldA, fieldB);
 | 
			
		||||
 | 
			
		||||
    // running the actual benchmark
 | 
			
		||||
    device_timer_t device_timer;
 | 
			
		||||
    device_timer.start();
 | 
			
		||||
    for (int iter = 0; iter < niter; ++iter)
 | 
			
		||||
      blas::axpy(1.234, fieldA, fieldB);
 | 
			
		||||
    device_timer.stop();
 | 
			
		||||
    double secs = device_timer.last() / niter; // seconds per iteration
 | 
			
		||||
 | 
			
		||||
    printfQuda("%5d %15.2f %15.2f %15.2f %15.2f\n", L, memory / 1024. / 1024., secs * 1e6,
 | 
			
		||||
               memory / secs / 1024. / 1024. / 1024., flops / secs * 1e-9);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main(int argc, char **argv)
 | 
			
		||||
{
 | 
			
		||||
  initComms(argc, argv, gridsize);
 | 
			
		||||
  initComms(argc, argv);
 | 
			
		||||
 | 
			
		||||
  initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
 | 
			
		||||
 | 
			
		||||
  //  verbosity options are:
 | 
			
		||||
  //  SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
 | 
			
		||||
  setVerbosity(QUDA_VERBOSE);
 | 
			
		||||
  setVerbosity(QUDA_SUMMARIZE);
 | 
			
		||||
 | 
			
		||||
  for (int L : {8, 12, 16, 24, 32})
 | 
			
		||||
    benchmark_axpy(L);
 | 
			
		||||
  for (int L : {16, 24, 32, 48, 64})
 | 
			
		||||
    benchmark(L, 100);
 | 
			
		||||
  printfQuda("MPI layout = %d %d %d %d\n", mpi_grid[0], mpi_grid[1], mpi_grid[2],
 | 
			
		||||
             mpi_grid[3]);
 | 
			
		||||
 | 
			
		||||
  benchmark_axpy();
 | 
			
		||||
 | 
			
		||||
  setVerbosity(QUDA_SILENT);
 | 
			
		||||
  benchmark_wilson();
 | 
			
		||||
  setVerbosity(QUDA_SUMMARIZE);
 | 
			
		||||
 | 
			
		||||
  printfQuda("==================== done with all benchmarks ====================\n");
 | 
			
		||||
  endQuda();
 | 
			
		||||
  quda::comm_finalize();
 | 
			
		||||
  MPI_Finalize();
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user