add quda axpy/memory benchmark
This commit is contained in:
parent
abb5fcfbb1
commit
b95984c230
@ -16,6 +16,7 @@ using namespace quda;
|
|||||||
|
|
||||||
QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION;
|
QudaPrecision smoother_halo_prec = QUDA_INVALID_PRECISION;
|
||||||
|
|
||||||
|
// This is the MPI grid, i.e. the layout of ranks, not the lattice volume
|
||||||
std::array<int, 4> gridsize = {1, 1, 1, 4};
|
std::array<int, 4> gridsize = {1, 1, 1, 4};
|
||||||
|
|
||||||
void initComms(int argc, char **argv, std::array<int, 4> const &commDims)
|
void initComms(int argc, char **argv, std::array<int, 4> const &commDims)
|
||||||
@ -31,6 +32,7 @@ void initComms(int argc, char **argv, std::array<int, 4> const &commDims)
|
|||||||
rank = gridsize[i] * rank + coords[i];
|
rank = gridsize[i] * rank + coords[i];
|
||||||
return rank;
|
return rank;
|
||||||
};
|
};
|
||||||
|
|
||||||
initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr);
|
initCommsGridQuda(4, commDims.data(), lex_rank_from_coords, nullptr);
|
||||||
|
|
||||||
for (int d = 0; d < 4; d++)
|
for (int d = 0; d < 4; d++)
|
||||||
@ -45,32 +47,57 @@ cudaGaugeField make_gauge_field(std::array<int, 4> const &geom)
|
|||||||
|
|
||||||
// dimension and type of the lattice object
|
// dimension and type of the lattice object
|
||||||
param.nDim = 4;
|
param.nDim = 4;
|
||||||
param.nColor = 3;
|
|
||||||
param.x[0] = geom[0];
|
param.x[0] = geom[0];
|
||||||
param.x[1] = geom[1];
|
param.x[1] = geom[1];
|
||||||
param.x[2] = geom[2];
|
param.x[2] = geom[2];
|
||||||
param.x[3] = geom[3];
|
param.x[3] = geom[3];
|
||||||
|
|
||||||
|
// number of colors. potentially confusingly, QUDA sometimes uses the word "color" to
|
||||||
|
// things unrelated with physical color. things like "nColor=32" do pop up in deflation
|
||||||
|
// solvers where it (to my understanding) refers to the number of (parallely processed)
|
||||||
|
// deflation vectors.
|
||||||
|
param.nColor = 3;
|
||||||
|
|
||||||
|
// boundary conditions (dont really care for benchmark)
|
||||||
param.t_boundary = QUDA_PERIODIC_T;
|
param.t_boundary = QUDA_PERIODIC_T;
|
||||||
param.siteSubset = QUDA_FULL_SITE_SUBSET; // no even/odd, just a full lattice
|
|
||||||
param.link_type = QUDA_SU3_LINKS;
|
// for this benchmark we only need "SINGLE" and/or "DOUBLE" precision. But smaller
|
||||||
|
// precisions are available in QUDA too
|
||||||
param.setPrecision(QUDA_DOUBLE_PRECISION);
|
param.setPrecision(QUDA_DOUBLE_PRECISION);
|
||||||
|
|
||||||
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the fields
|
// no even/odd subset, we want a full lattice
|
||||||
param.location = QUDA_CUDA_FIELD_LOCATION; // field should live on the accelerator
|
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
||||||
|
|
||||||
// turn off advanced features we dont care about for this benchmark
|
// what kind of 3x3 matrices the field contains. A proper gauge field has SU(3)
|
||||||
|
// matrices, but (for example) smeared/thick links could have non-unitary links.
|
||||||
|
param.link_type = QUDA_SU3_LINKS;
|
||||||
|
|
||||||
|
// "NULL" does not initialize the field upon creation, "ZERO" would set everything to 0
|
||||||
|
param.create = QUDA_NULL_FIELD_CREATE;
|
||||||
|
|
||||||
|
// field should be allocated directly on the accelerator/GPU
|
||||||
|
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||||
|
|
||||||
|
// "reconstruct" here means reconstructing a SU(3) matrix from fewer than 18 real
|
||||||
|
// numbers (=3x3 complex numbers). Great feature in production (saving
|
||||||
|
// memory/cache/network bandwidth), not used for this benchmark.
|
||||||
param.reconstruct = QUDA_RECONSTRUCT_NO;
|
param.reconstruct = QUDA_RECONSTRUCT_NO;
|
||||||
|
|
||||||
|
// "ghostExchange" would often be called "halo exchange" outside of Quda. This has
|
||||||
|
// nothing to do with ghost fields from continuum/perturbative qcd.
|
||||||
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
|
param.ghostExchange = QUDA_GHOST_EXCHANGE_NO;
|
||||||
|
|
||||||
// these control the physical data layout. Might be interesting to try out different
|
// This controls the physical order of elements. "float2" is the the default
|
||||||
// settings
|
|
||||||
param.order = QUDA_FLOAT2_GAUGE_ORDER;
|
param.order = QUDA_FLOAT2_GAUGE_ORDER;
|
||||||
param.geometry = QUDA_SCALAR_GEOMETRY;
|
|
||||||
|
// this means the field is a LORENTZ vector (which a gauge field must be). Has nothing
|
||||||
|
// to do with spin.
|
||||||
|
param.geometry = QUDA_VECTOR_GEOMETRY;
|
||||||
|
|
||||||
// create the field and fill with random SU(3) matrices
|
// create the field and fill with random SU(3) matrices
|
||||||
|
// std::cout << param << std::endl; // double-check parameters
|
||||||
auto U = cudaGaugeField(param);
|
auto U = cudaGaugeField(param);
|
||||||
quda::RNG rng(U, /*seed=*/1234);
|
gaugeGauss(U, /*seed=*/1234, 1.0);
|
||||||
gaugeGauss(U, rng, 1.0);
|
|
||||||
return U;
|
return U;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -100,11 +127,11 @@ ColorSpinorField make_source(std::array<int, 4> const &geom)
|
|||||||
auto src = ColorSpinorField(param);
|
auto src = ColorSpinorField(param);
|
||||||
quda::RNG rng(src, 1234);
|
quda::RNG rng(src, 1234);
|
||||||
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
|
spinorNoise(src, rng, QUDA_NOISE_GAUSS);
|
||||||
printfQuda(
|
/*printfQuda(
|
||||||
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
|
"created src with norm = %f (sanity check: should be close to %f) and %f bytes\n",
|
||||||
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
|
blas::norm2(src), 2.0 * 12 * geom[0] * geom[1] * geom[2] * geom[3],
|
||||||
src.Bytes() * 1.0);
|
src.Bytes() * 1.0);*/
|
||||||
src.PrintDims();
|
// src.PrintDims();
|
||||||
|
|
||||||
return src;
|
return src;
|
||||||
}
|
}
|
||||||
@ -113,8 +140,16 @@ void benchmark(int L, int niter)
|
|||||||
{
|
{
|
||||||
std::array<int, 4> geom = {L, L, L, L};
|
std::array<int, 4> geom = {L, L, L, L};
|
||||||
|
|
||||||
|
printfQuda("======================= benchmarking L=%d =======================\n", L);
|
||||||
|
|
||||||
auto U = make_gauge_field(geom);
|
auto U = make_gauge_field(geom);
|
||||||
|
printfQuda("created random gauge field, %.3f GiB (sanity check: should be %.3f)\n",
|
||||||
|
U.Bytes() / 1024. / 1024. / 1024.,
|
||||||
|
1.0 * L * L * L * L * 4 * 18 * 8 / 1024. / 1024. / 1024.);
|
||||||
auto src = make_source(geom);
|
auto src = make_source(geom);
|
||||||
|
printfQuda("created random source, %.3f GiB (sanity check: should be %.3f)\n",
|
||||||
|
src.Bytes() / 1024. / 1024. / 1024.,
|
||||||
|
1.0 * L * L * L * L * 12 * 2 * 8 / 1024. / 1024. / 1024.);
|
||||||
|
|
||||||
// create (Wilson) dirac operator
|
// create (Wilson) dirac operator
|
||||||
DiracParam param;
|
DiracParam param;
|
||||||
@ -134,9 +169,11 @@ void benchmark(int L, int niter)
|
|||||||
geom[1], geom[2], geom[3], niter);
|
geom[1], geom[2], geom[3], niter);
|
||||||
|
|
||||||
// couple iterations without timing to warm up
|
// couple iterations without timing to warm up
|
||||||
|
printfQuda("warmup...\n");
|
||||||
for (int iter = 0; iter < 20; ++iter)
|
for (int iter = 0; iter < 20; ++iter)
|
||||||
dirac.M(tmp, src);
|
dirac.M(tmp, src);
|
||||||
|
|
||||||
|
printfQuda("running...\n");
|
||||||
dirac.Flops(); // reset flops counter
|
dirac.Flops(); // reset flops counter
|
||||||
device_timer_t device_timer;
|
device_timer_t device_timer;
|
||||||
device_timer.start();
|
device_timer.start();
|
||||||
@ -146,22 +183,82 @@ void benchmark(int L, int niter)
|
|||||||
|
|
||||||
double secs = device_timer.last();
|
double secs = device_timer.last();
|
||||||
double gflops = (dirac.Flops() * 1e-9) / secs;
|
double gflops = (dirac.Flops() * 1e-9) / secs;
|
||||||
printfQuda("Gflops = %6.1f\n", gflops);
|
printfQuda("Gflops = %6.2f\n", gflops);
|
||||||
|
}
|
||||||
|
|
||||||
|
void benchmark_axpy(int L)
|
||||||
|
{
|
||||||
|
printfQuda("================ axpy L=%d ==============\n", L);
|
||||||
|
|
||||||
|
ColorSpinorParam param;
|
||||||
|
param.nColor = 3;
|
||||||
|
param.nSpin = 4;
|
||||||
|
param.nVec = 1;
|
||||||
|
param.pad = 0;
|
||||||
|
param.siteSubset = QUDA_FULL_SITE_SUBSET;
|
||||||
|
param.nDim = 4;
|
||||||
|
param.x[0] = L;
|
||||||
|
param.x[1] = L;
|
||||||
|
param.x[2] = L;
|
||||||
|
param.x[3] = L;
|
||||||
|
param.x[4] = 1; // no fifth dimension
|
||||||
|
param.pc_type = QUDA_4D_PC;
|
||||||
|
param.siteOrder = QUDA_EVEN_ODD_SITE_ORDER;
|
||||||
|
param.gammaBasis = QUDA_DEGRAND_ROSSI_GAMMA_BASIS;
|
||||||
|
param.create = QUDA_NULL_FIELD_CREATE; // do not (zero-) initilize the field
|
||||||
|
param.setPrecision(QUDA_DOUBLE_PRECISION);
|
||||||
|
param.location = QUDA_CUDA_FIELD_LOCATION;
|
||||||
|
|
||||||
|
// create the field and fill it with random values
|
||||||
|
auto fieldA = ColorSpinorField(param);
|
||||||
|
auto fieldB = ColorSpinorField(param);
|
||||||
|
quda::RNG rng(fieldA, 1234);
|
||||||
|
auto size_bytes = size_t(8) * 2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] *
|
||||||
|
param.nColor * param.nSpin;
|
||||||
|
assert(fieldA.Bytes() == size_bytes); // sanity check
|
||||||
|
assert(fieldB.Bytes() == size_bytes); // sanity check
|
||||||
|
spinorNoise(fieldA, rng, QUDA_NOISE_GAUSS);
|
||||||
|
spinorNoise(fieldB, rng, QUDA_NOISE_GAUSS);
|
||||||
|
|
||||||
|
// number of (real) elements in the field = number of fma instructions to do
|
||||||
|
double flops_per_iter =
|
||||||
|
2 * param.x[0] * param.x[1] * param.x[2] * param.x[3] * param.nColor * param.nSpin;
|
||||||
|
|
||||||
|
int niter = 20;
|
||||||
|
|
||||||
|
printfQuda("warmup...\n");
|
||||||
|
for (int iter = 0; iter < 10; ++iter)
|
||||||
|
blas::axpy(1.234, fieldA, fieldB);
|
||||||
|
|
||||||
|
printfQuda("running...\n");
|
||||||
|
device_timer_t device_timer;
|
||||||
|
device_timer.start();
|
||||||
|
for (int iter = 0; iter < niter; ++iter)
|
||||||
|
blas::axpy(1.234, fieldA, fieldB); // fieldB += 1.234*fieldA
|
||||||
|
device_timer.stop();
|
||||||
|
|
||||||
|
double secs = device_timer.last();
|
||||||
|
double gflops = (flops_per_iter * niter) * 1e-9 / secs;
|
||||||
|
printfQuda("Gflops = %6.2f\n", gflops);
|
||||||
|
printfQuda("bytes = %6.2f GiB\n", 3. * fieldA.Bytes() / 1024. / 1024. / 1024.);
|
||||||
|
printfQuda("bandwidth = %6.2f GiB/s\n",
|
||||||
|
fieldA.Bytes() * 3 / 1024. / 1024. / 1024. * niter / secs);
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(int argc, char **argv)
|
int main(int argc, char **argv)
|
||||||
{
|
{
|
||||||
initComms(argc, argv, gridsize);
|
initComms(argc, argv, gridsize);
|
||||||
|
|
||||||
// -1 for multi-gpu. otherwise this selects the device to be used
|
initQuda(-1); // -1 for multi-gpu. otherwise this selects the device to be used
|
||||||
initQuda(-1);
|
|
||||||
|
|
||||||
// verbosity options are:
|
// verbosity options are:
|
||||||
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
|
// SILENT, SUMMARIZE, VERBOSE, DEBUG_VERBOSE
|
||||||
setVerbosity(QUDA_SUMMARIZE);
|
setVerbosity(QUDA_VERBOSE);
|
||||||
|
|
||||||
for (int L : {8, 16, 24, 32})
|
for (int L : {8, 12, 16, 24, 32})
|
||||||
benchmark(L, 1000);
|
benchmark_axpy(L);
|
||||||
|
for (int L : {16, 24, 32, 48, 64})
|
||||||
|
benchmark(L, 100);
|
||||||
|
|
||||||
endQuda();
|
endQuda();
|
||||||
quda::comm_finalize();
|
quda::comm_finalize();
|
||||||
|
@ -1,11 +1,10 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
#CXX=/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/gcc-9.4.0-g3vyv3te4ah634euh7phyokb3fiurprp/bin/g++
|
||||||
|
QUDA_BUILD=/home/dp207/dp207/dc-burg2/quda_build
|
||||||
|
QUDA_SRC=/home/dp207/dp207/dc-burg2/quda
|
||||||
|
#QUDA_BUILD=
|
||||||
|
|
||||||
set -e
|
FLAGS="-DMPI_COMMS -DMULTI_GPU -DQUDA_PRECISION=14 -DQUDA_RECONSTRUCT=7 -g -O3 -Wall -Wextra -std=c++17 "
|
||||||
|
$CXX $FLAGS -I$QUDA_BUILD/include/targets/cuda -I$QUDA_SRC/include -I$QUDA_BUILD/include -isystem $QUDA_SRC/include/externals -isystem $QUDA_BUILD/_deps/eigen-src -c -o Benchmark_Quda.o Benchmark_Quda.cpp
|
||||||
|
LINK_FLAGS="-Wl,-rpath,$QUDA_BUILD/tests:$QUDA_BUILD/lib:/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs: $QUDA_BUILD/lib/libquda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libcuda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libnvidia-ml.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcudart_static.a -ldl /usr/lib64/librt.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcublas.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcufft.so -lpthread"
|
||||||
COMPILE_FLAGS="-DMPI_COMMS -DMULTI_GPU -DQUDA_PRECISION=14 -DQUDA_RECONSTRUCT=7 -g -O3 -Wall -Wextra -pthread -std=c++17"
|
$CXX -g -O3 Benchmark_Quda.o -o Benchmark_Quda $LINK_FLAGS -lmpi
|
||||||
LINK_FLAGS="-g -O3 -Wl,-rpath -Wl,/mnt/lustre/tursafs1/home/dp207/dp207/shared/env/versions/220428/prefix/ompi_gpu/lib -Wl,--enable-new-dtags -L/mnt/lustre/tursafs1/home/dp207/dp207/shared/env/versions/220428/prefix/ompi_gpu/lib -pthread -Wl,-rpath,/home/dp207/dp207/dc-burg2/quda_build/tests:/home/dp207/dp207/dc-burg2/quda_build/lib:/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs:/home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64: ../../quda_install/lib/libquda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libcuda.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/stubs/libnvidia-ml.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcudart_static.a -ldl /usr/lib64/librt.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcublas.so /home/dp207/dp207/shared/env/versions/220428/spack/opt/spack/linux-rhel8-zen2/gcc-9.4.0/cuda-11.4.0-etxow4jb23qdbs7j6txczy44cdatpj22/lib64/libcufft.so -lpthread /home/dp207/dp207/shared/env/versions/220428/prefix/ompi_gpu/lib/libmpi.so"
|
|
||||||
|
|
||||||
$CXX $COMPILE_FLAGS -I/home/dp207/dp207/dc-burg2/quda_install/include/ -o Benchmark_Quda.o -c Benchmark_Quda.cpp
|
|
||||||
$CXX $LINK_FLAGS Benchmark_Quda.o -o Benchmark_Quda
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user