Compare commits

...

10 Commits

View File

@ -1,7 +1,7 @@
/* /*
Copyright © 2015 Peter Boyle <paboyle@ph.ed.ac.uk> Copyright © 2015 Peter Boyle <paboyle@ph.ed.ac.uk>
Copyright © 2022 Antonin Portelli <antonin.portelli@me.com> Copyright © 2022 Antonin Portelli <antonin.portelli@me.com>
Copyright © 2022 Simon Buerger <simon.buerger@rwth-aachen.de> Copyright © 2024 Simon Buerger <simon.buerger@rwth-aachen.de>
This is a fork of Benchmark_ITT.cpp from Grid This is a fork of Benchmark_ITT.cpp from Grid
@ -29,6 +29,43 @@ int NN_global;
nlohmann::json json_results; nlohmann::json json_results;
// NOTE: Grid::GridClock is just a typedef to
// `std::chrono::high_resolution_clock`, but `Grid::usecond` rounds to
// microseconds (no idea why, probably wasnt ever relevant before), so we need
// our own wrapper here.
double usecond_precise()
{
using namespace std::chrono;
auto nsecs = duration_cast<nanoseconds>(GridClock::now() - Grid::theProgramStart);
return nsecs.count() * 1e-3;
}
std::vector<std::string> get_mpi_hostnames()
{
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
char hostname[MPI_MAX_PROCESSOR_NAME];
int name_len = 0;
MPI_Get_processor_name(hostname, &name_len);
// Allocate buffer to gather all hostnames
std::vector<char> all_hostnames(world_size * MPI_MAX_PROCESSOR_NAME);
// Use MPI_Allgather to gather all hostnames on all ranks
MPI_Allgather(hostname, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, all_hostnames.data(),
MPI_MAX_PROCESSOR_NAME, MPI_CHAR, MPI_COMM_WORLD);
// Convert the gathered hostnames back into a vector of std::string
std::vector<std::string> hostname_list(world_size);
for (int i = 0; i < world_size; ++i)
{
hostname_list[i] = std::string(&all_hostnames[i * MPI_MAX_PROCESSOR_NAME]);
}
return hostname_list;
}
struct time_statistics struct time_statistics
{ {
double mean; double mean;
@ -73,7 +110,7 @@ class Benchmark
{local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]}); {local[0] * mpi[0], local[1] * mpi[1], local[2] * mpi[2], local[3] * mpi[3]});
GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid( GridCartesian *TmpGrid = SpaceTimeGrid::makeFourDimGrid(
latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi()); latt4, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
Grid::Coordinate shm; Grid::Coordinate shm(4, 1);
GlobalSharedMemory::GetShmDims(mpi, shm); GlobalSharedMemory::GetShmDims(mpi, shm);
uint64_t NP = TmpGrid->RankCount(); uint64_t NP = TmpGrid->RankCount();
@ -137,7 +174,7 @@ class Benchmark
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd()); Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi(); Coordinate mpi_layout = GridDefaultMpi();
Coordinate shm_layout; Coordinate shm_layout(Nd, 1);
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout); GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
for (int mu = 0; mu < Nd; mu++) for (int mu = 0; mu < Nd; mu++)
@ -266,124 +303,166 @@ class Benchmark
static void Latency(void) static void Latency(void)
{ {
int Nloop = 200; int Nwarmup = 100;
int nmu = 0; int Nloop = 300;
Coordinate simd_layout = GridDefaultSimd(Nd, vComplexD::Nsimd()); std::cout << GridLogMessage << "Benchmarking point-to-point latency" << std::endl;
Coordinate mpi_layout = GridDefaultMpi();
Coordinate shm_layout;
GlobalSharedMemory::GetShmDims(mpi_layout, shm_layout);
for (int mu = 0; mu < Nd; mu++)
if (mpi_layout[mu] > 1)
nmu++;
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout << GridLogMessage << "Benchmarking Latency to neighbors in " << nmu
<< " dimensions" << std::endl;
grid_small_sep(); grid_small_sep();
grid_printf("%5s %7s %15s %15s %15s\n", "dir", "shm", "time (usec)", "std dev", grid_printf("from to mean(usec) err max\n");
"min");
int lat = 8; // dummy lattice size. Not really used. int ranks;
Coordinate latt_size({lat * mpi_layout[0], lat * mpi_layout[1], lat * mpi_layout[2], int me;
lat * mpi_layout[3]}); MPI_Comm_size(MPI_COMM_WORLD, &ranks);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
GridCartesian Grid(latt_size, simd_layout, mpi_layout); int bytes = 8;
RealD Nrank = Grid._Nprocessors; void *buf_from = acceleratorAllocDevice(bytes);
RealD Nnode = Grid.NodeCount(); void *buf_to = acceleratorAllocDevice(bytes);
RealD ppn = Nrank / Nnode; nlohmann::json json_latency;
for (int from = 0; from < ranks; ++from)
std::vector<HalfSpinColourVectorD *> xbuf(8); for (int to = 0; to < ranks; ++to)
std::vector<HalfSpinColourVectorD *> rbuf(8);
uint64_t bytes = 8;
for (int d = 0; d < 8; d++)
{
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
}
double dbytes;
#define NWARMUP 50
for (int dir = 0; dir < 8; dir++)
{
int mu = dir % 4;
if (mpi_layout[mu] == 1) // skip directions that are not distributed
continue;
bool is_shm = mpi_layout[mu] == shm_layout[mu];
bool is_partial_shm = !is_shm && shm_layout[mu] != 1;
std::vector<double> times(Nloop);
for (int i = 0; i < NWARMUP; i++)
{ {
int xmit_to_rank; if (from == to)
int recv_from_rank; continue;
if (dir == mu) std::vector<double> t_time(Nloop);
time_statistics timestat;
MPI_Status status;
for (int i = -Nwarmup; i < Nloop; ++i)
{ {
int comm_proc = 1; double start = usecond_precise();
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank); if (from == me)
{
auto err = MPI_Send(buf_from, bytes, MPI_CHAR, to, 0, MPI_COMM_WORLD);
assert(err == MPI_SUCCESS);
}
if (to == me)
{
auto err =
MPI_Recv(buf_to, bytes, MPI_CHAR, from, 0, MPI_COMM_WORLD, &status);
assert(err == MPI_SUCCESS);
}
double stop = usecond_precise();
if (i >= 0)
t_time[i] = stop - start;
} }
else // important: only 'from' and 'to' have meaningful timings. we use
{ // 'from's.
int comm_proc = mpi_layout[mu] - 1; MPI_Bcast(t_time.data(), Nloop, MPI_DOUBLE, from, MPI_COMM_WORLD);
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
} timestat.statistics(t_time);
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0], grid_printf("%2d %2d %15.4f %15.3f %15.4f\n", from, to, timestat.mean,
recv_from_rank, bytes); timestat.err, timestat.max);
nlohmann::json tmp;
tmp["from"] = from;
tmp["to"] = to;
tmp["time_usec"] = timestat.mean;
tmp["time_usec_error"] = timestat.err;
tmp["time_usec_min"] = timestat.min;
tmp["time_usec_max"] = timestat.max;
tmp["time_usec_full"] = t_time;
json_latency.push_back(tmp);
} }
for (int i = 0; i < Nloop; i++) json_results["latency"] = json_latency;
acceleratorFreeDevice(buf_from);
acceleratorFreeDevice(buf_to);
}
static void P2P(void)
{
// IMPORTANT: The P2P benchmark uses "MPI_COMM_WORLD" communicator, which is
// not the quite the same as Grid.communicator. Practically speaking, the
// latter one contains the same MPI-ranks but in a different order. Grid
// does this make sure it can exploit ranks with shared memory (i.e.
// multiple ranks on the same node) as best as possible.
// buffer-size to benchmark. This number is the same as the largest one used
// in the "Comms()" benchmark. ( L=48, Ls=12, double-prec-complex,
// half-color-spin-vector. ). Mostly an arbitrary choice, but nice to match
// it here
size_t bytes = 127401984;
int Nwarmup = 20;
int Nloop = 100;
std::cout << GridLogMessage << "Benchmarking point-to-point bandwidth" << std::endl;
grid_small_sep();
grid_printf("from to mean(usec) err min "
"bytes rate (GiB/s)\n");
int ranks;
int me;
MPI_Comm_size(MPI_COMM_WORLD, &ranks);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
void *buf_from = acceleratorAllocDevice(bytes);
void *buf_to = acceleratorAllocDevice(bytes);
nlohmann::json json_p2p;
for (int from = 0; from < ranks; ++from)
for (int to = 0; to < ranks; ++to)
{ {
if (from == to)
continue;
dbytes = 0; std::vector<double> t_time(Nloop);
double start = usecond(); time_statistics timestat;
int xmit_to_rank; MPI_Status status;
int recv_from_rank;
if (dir == mu) for (int i = -Nwarmup; i < Nloop; ++i)
{ {
int comm_proc = 1; double start = usecond_precise();
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank); if (from == me)
{
auto err = MPI_Send(buf_from, bytes, MPI_CHAR, to, 0, MPI_COMM_WORLD);
assert(err == MPI_SUCCESS);
}
if (to == me)
{
auto err =
MPI_Recv(buf_to, bytes, MPI_CHAR, from, 0, MPI_COMM_WORLD, &status);
assert(err == MPI_SUCCESS);
}
double stop = usecond_precise();
if (i >= 0)
t_time[i] = stop - start;
} }
else // important: only 'from' and 'to' have meaningful timings. we use
{ // 'from's.
int comm_proc = mpi_layout[mu] - 1; MPI_Bcast(t_time.data(), Nloop, MPI_DOUBLE, from, MPI_COMM_WORLD);
Grid.ShiftedRanks(mu, comm_proc, xmit_to_rank, recv_from_rank);
}
Grid.SendToRecvFrom((void *)&xbuf[dir][0], xmit_to_rank, (void *)&rbuf[dir][0],
recv_from_rank, bytes);
dbytes += bytes;
double stop = usecond(); timestat.statistics(t_time);
t_time[i] = stop - start; // microseconds double rate = bytes / (timestat.mean / 1.e6) / 1024. / 1024. / 1024.;
double rate_err = rate * timestat.err / timestat.mean;
double rate_max = rate * timestat.mean / timestat.min;
double rate_min = rate * timestat.mean / timestat.max;
grid_printf("%2d %2d %15.4f %15.3f %15.4f %15d %15.2f\n", from, to, timestat.mean,
timestat.err, timestat.min, bytes, rate);
nlohmann::json tmp;
tmp["from"] = from;
tmp["to"] = to;
tmp["bytes"] = bytes;
tmp["time_usec"] = timestat.mean;
tmp["time_usec_error"] = timestat.err;
tmp["time_usec_min"] = timestat.min;
tmp["time_usec_max"] = timestat.max;
tmp["time_usec_full"] = t_time;
nlohmann::json tmp_rate;
tmp_rate["mean"] = rate;
tmp_rate["error"] = rate_err;
tmp_rate["max"] = rate_max;
tmp_rate["min"] = rate_min;
tmp["rate_GBps"] = tmp_rate;
json_p2p.push_back(tmp);
} }
timestat.statistics(t_time); json_results["p2p"] = json_p2p;
grid_printf("%5d %7s %15.2f %15.1f %15.2f\n", dir, acceleratorFreeDevice(buf_from);
is_shm ? "yes" acceleratorFreeDevice(buf_to);
: is_partial_shm ? "partial"
: "no",
timestat.mean, timestat.err, timestat.min);
nlohmann::json tmp;
nlohmann::json tmp_rate;
tmp["dir"] = dir;
tmp["shared_mem"] = is_shm;
tmp["partial_shared_mem"] = is_partial_shm;
tmp["time_usec"] = timestat.mean;
tmp["time_usec_error"] = timestat.err;
tmp["time_usec_max"] = timestat.min;
json_results["latency"].push_back(tmp);
}
for (int d = 0; d < 8; d++)
{
acceleratorFreeDevice(xbuf[d]);
acceleratorFreeDevice(rbuf[d]);
}
return;
} }
static void Memory(void) static void Memory(void)
@ -908,11 +987,47 @@ int main(int argc, char **argv)
{ {
Grid_init(&argc, &argv); Grid_init(&argc, &argv);
int Ls = 1;
bool do_su4 = true;
bool do_memory = true;
bool do_comms = true;
bool do_flops = true;
// NOTE: these two take O((number of ranks)^2) time, which might be a lot, so they are
// off by default
bool do_latency = false;
bool do_p2p = false;
std::string json_filename = ""; // empty indicates no json output std::string json_filename = ""; // empty indicates no json output
for (int i = 0; i < argc; i++) for (int i = 0; i < argc; i++)
{ {
if (std::string(argv[i]) == "--json-out") auto arg = std::string(argv[i]);
if (arg == "--json-out")
json_filename = argv[i + 1]; json_filename = argv[i + 1];
if (arg == "--benchmark-su4")
do_su4 = true;
if (arg == "--benchmark-memory")
do_memory = true;
if (arg == "--benchmark-comms")
do_comms = true;
if (arg == "--benchmark-flops")
do_flops = true;
if (arg == "--benchmark-latency")
do_latency = true;
if (arg == "--benchmark-p2p")
do_p2p = true;
if (arg == "--no-benchmark-su4")
do_su4 = false;
if (arg == "--no-benchmark-memory")
do_memory = false;
if (arg == "--no-benchmark-comms")
do_comms = false;
if (arg == "--no-benchmark-flops")
do_flops = false;
if (arg == "--no-benchmark-latency")
do_latency = false;
if (arg == "--no-benchmark-p2p")
do_p2p = false;
} }
CartesianCommunicator::SetCommunicatorPolicy( CartesianCommunicator::SetCommunicatorPolicy(
@ -924,13 +1039,6 @@ int main(int argc, char **argv)
#endif #endif
Benchmark::Decomposition(); Benchmark::Decomposition();
int do_su4 = 1;
int do_memory = 1;
int do_comms = 1;
int do_latency = 1;
int do_flops = 1;
int Ls = 1;
int sel = 4; int sel = 4;
std::vector<int> L_list({8, 12, 16, 24, 32}); std::vector<int> L_list({8, 12, 16, 24, 32});
int selm1 = sel - 1; int selm1 = sel - 1;
@ -971,6 +1079,14 @@ int main(int argc, char **argv)
Benchmark::Latency(); Benchmark::Latency();
} }
if (do_p2p)
{
grid_big_sep();
std::cout << GridLogMessage << " Point-To-Point benchmark " << std::endl;
grid_big_sep();
Benchmark::P2P();
}
if (do_flops) if (do_flops)
{ {
Ls = 1; Ls = 1;
@ -1030,6 +1146,8 @@ int main(int argc, char **argv)
json_results["flops"] = tmp_flops; json_results["flops"] = tmp_flops;
} }
json_results["hostnames"] = get_mpi_hostnames();
if (!json_filename.empty()) if (!json_filename.empty())
{ {
std::cout << GridLogMessage << "writing benchmark results to " << json_filename std::cout << GridLogMessage << "writing benchmark results to " << json_filename