1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/solver/Test_wilson_ddalphaamg.cc

667 lines
24 KiB
C++
Raw Normal View History

2017-07-21 12:39:03 +01:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
2017-11-28 14:03:02 +00:00
// #include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
2017-07-21 12:39:03 +01:00
//#include <algorithms/iterative/PrecConjugateResidual.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
2017-11-28 14:03:02 +00:00
template<class Field>
class TestVectorAnalyzer {
public:
void operator()(LinearOperatorBase<Field> &Linop, std::vector<Field> const & vectors)
{
// this function corresponds to testvector_analysis_PRECISION from the
// DD-αAMG codebase
2017-11-28 14:03:02 +00:00
std::vector<Field> tmp(4, vectors[0]._grid); // bit hacky?
Gamma g5(Gamma::Algebra::Gamma5);
std::cout << GridLogMessage << "Test vector analysis:" << std::endl;
for (auto i = 0; i < vectors.size(); ++i) {
Linop.Op(vectors[i], tmp[3]);
2017-11-28 14:03:02 +00:00
tmp[0] = g5 * tmp[3]; // is this the same as coarse_gamma5_PRECISION?
2017-11-28 14:03:02 +00:00
auto lambda = innerProduct(vectors[i], tmp[0]) / innerProduct(vectors[i], vectors[i]);
tmp[1] = tmp[0] - lambda * vectors[i];
2017-11-28 14:03:02 +00:00
auto mu = ::sqrt(norm2(tmp[1]) / norm2(vectors[i]));
2017-11-28 14:03:02 +00:00
std::cout << GridLogMessage << std::setprecision(2) << "vector " << i << ": "
<< "singular value: " << lambda
<< " singular vector precision: " << mu << std::endl;
2017-11-28 14:03:02 +00:00
}
}
};
2017-07-21 12:39:03 +01:00
class myclass: Serializable {
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
int, domaindecompose,
int, domainsize,
int, order,
int, Ls,
double, mq,
double, lo,
double, hi,
int, steps);
myclass(){};
};
myclass params;
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Fobj,class CComplex,int nbasis, class Matrix>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::siteVector siteVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseScalar CoarseScalar;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
// Constructor
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineOperator &Smooth,Matrix &SmootherMatrix)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_SmootherOperator(Smooth),
_SmootherMatrix(SmootherMatrix)
{
}
void PowerMethod(const FineField &in) {
FineField p1(in._grid);
FineField p2(in._grid);
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
p1=in;
RealD absp2;
for(int i=0;i<20;i++){
RealD absp1=std::sqrt(norm2(p1));
fMdagMOp.HermOp(p1,p2);// this is the G5 herm bit
// _FineOperator.Op(p1,p2);// this is the G5 herm bit
RealD absp2=std::sqrt(norm2(p2));
if(i%10==9)
std::cout<<GridLogMessage << "Power method on mdagm "<<i<<" " << absp2/absp1<<std::endl;
p1=p2*(1.0/std::sqrt(absp2));
}
}
void operator()(const FineField &in, FineField & out) {
if ( params.domaindecompose ) {
operatorSAP(in,out);
} else {
operatorCheby(in,out);
}
}
////////////////////////////////////////////////////////////////////////
// ADEF2: [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
////////////////////////////////////////////////////////////////////////
#if 1
void operatorADEF2(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
FineField tmp(in._grid);
FineField res(in._grid);
FineField Min(in._grid);
// Monitor completeness of low mode space
_Aggregates.ProjectToSubspace (Csrc,in);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
_FineOperator.Op(in,tmp);// this is the G5 herm bit
fCG(fMdagMOp,tmp,Min); // solves MdagM = g5 M g5M
// Monitor completeness of low mode space
_Aggregates.ProjectToSubspace (Csrc,Min);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Completeness Min: "<<std::sqrt(norm2(out)/norm2(Min))<<std::endl;
_FineOperator.Op(Min,tmp);
tmp = in - tmp; // in - A Min
Csol=zero;
_Aggregates.ProjectToSubspace (Csrc,tmp);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
HermOp.Op(Csol,Ctmp);
Ctmp=Ctmp-Csrc;
std::cout<<GridLogMessage<<"coarse space true residual "<<std::sqrt(norm2(Ctmp)/norm2(Csrc))<<std::endl;
_Aggregates.PromoteFromSubspace(Csol,out);
_FineOperator.Op(out,res);
res=res-tmp;
std::cout<<GridLogMessage<<"promoted sol residual "<<std::sqrt(norm2(res)/norm2(tmp))<<std::endl;
_Aggregates.ProjectToSubspace (Csrc,res);
std::cout<<GridLogMessage<<"coarse space proj of residual "<<norm2(Csrc)<<std::endl;
out = out+Min; // additive coarse space correction
// out = Min; // no additive coarse space correction
_FineOperator.Op(out,tmp);
tmp=tmp-in; // tmp is new residual
std::cout<<GridLogMessage<< " Preconditioner in " << norm2(in)<<std::endl;
std::cout<<GridLogMessage<< " Preconditioner out " << norm2(out)<<std::endl;
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
#if 1
void operatorADEF1(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix,0.1);
FineField tmp(in._grid);
FineField res(in._grid);
FineField Qin(in._grid);
// Monitor completeness of low mode space
// _Aggregates.ProjectToSubspace (Csrc,in);
// _Aggregates.PromoteFromSubspace(Csrc,out);
// std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
_Aggregates.ProjectToSubspace (Csrc,in);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,Qin);
// Qin=0;
_FineOperator.Op(Qin,tmp);// A Q in
tmp = in - tmp; // in - A Q in
_FineOperator.Op(tmp,res);// this is the G5 herm bit
fCG(fMdagMOp,res,out); // solves MdagM = g5 M g5M
out = out + Qin;
_FineOperator.Op(out,tmp);
tmp=tmp-in; // tmp is new residual
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
}
#endif
void SAP (const FineField & src,FineField & psi){
Lattice<iScalar<vInteger> > coor(src._grid);
Lattice<iScalar<vInteger> > subset(src._grid);
FineField r(src._grid);
FineField zz(src._grid); zz=zero;
FineField vec1(src._grid);
FineField vec2(src._grid);
const Integer block=params.domainsize;
subset=zero;
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu+1);
coor = div(coor,block);
subset = subset+coor;
}
subset = mod(subset,(Integer)2);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation);
RealD resid;
for(int i=0;i<params.steps;i++){
// Even domain residual
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
r= src - vec1 ;
resid = norm2(r) /norm2(src);
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
// Even domain solve
r= where(subset==(Integer)0,r,zz);
_SmootherOperator.AdjOp(r,vec1);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
psi = psi + vec2;
// Odd domain residual
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
r= src - vec1 ;
r= where(subset==(Integer)1,r,zz);
resid = norm2(r) /norm2(src);
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
// Odd domain solve
_SmootherOperator.AdjOp(r,vec1);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
psi = psi + vec2;
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
r= src - vec1 ;
resid = norm2(r) /norm2(src);
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
}
};
void SmootherTest (const FineField & in){
FineField vec1(in._grid);
FineField vec2(in._grid);
RealD lo[3] = { 0.5, 1.0, 2.0};
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
RealD Ni,r;
Ni = norm2(in);
for(int ilo=0;ilo<3;ilo++){
for(int ord=5;ord<50;ord*=2){
_SmootherOperator.AdjOp(in,vec1);
Chebyshev<FineField> Cheby (lo[ilo],70.0,ord,InverseApproximation);
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
_FineOperator.Op(vec2,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
}
}
void operatorCheby(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
ConjugateGradient<CoarseVector> CG(3.0e-3,100000);
// ConjugateGradient<FineField> fCG(3.0e-2,1000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
FineField vec1(in._grid);
FineField vec2(in._grid);
// Chebyshev<FineField> Cheby (0.5,70.0,30,InverseApproximation);
// Chebyshev<FineField> ChebyAccu(0.5,70.0,30,InverseApproximation);
Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation);
Chebyshev<FineField> ChebyAccu(params.lo,params.hi,params.order,InverseApproximation);
// Cheby.JacksonSmooth();
// ChebyAccu.JacksonSmooth();
// _Aggregates.ProjectToSubspace (Csrc,in);
// _Aggregates.PromoteFromSubspace(Csrc,out);
// std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// ofstream fout("smoother");
// Cheby.csv(fout);
// V11 multigrid.
// Use a fixed chebyshev and hope hermiticity helps.
// To make a working smoother for indefinite operator
// must multiply by "Mdag" (ouch loses all low mode content)
// and apply to poly approx of (mdagm)^-1.
// so that we end up with an odd polynomial.
RealD Ni = norm2(in);
_SmootherOperator.AdjOp(in,vec1);// this is the G5 herm bit
ChebyAccu(fMdagMOp,vec1,out); // solves MdagM = g5 M g5M
std::cout<<GridLogMessage << "Smoother norm "<<norm2(out)<<std::endl;
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
RealD r = norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
_Aggregates.ProjectToSubspace (Csrc,vec1);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
// Q = Q[in - A Min]
out = out+vec1;
// Three preconditioner smoothing -- hermitian if C3 = C1
// Recompute error
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
// Reapply smoother
_SmootherOperator.Op(vec1,vec2); // this is the G5 herm bit
ChebyAccu(fMdagMOp,vec2,vec1); // solves MdagM = g5 M g5M
out =out+vec1;
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
}
void operatorSAP(const FineField &in, FineField & out) {
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Ctmp(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
ConjugateGradient<CoarseVector> CG(1.0e-3,100000);
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
FineField vec1(in._grid);
FineField vec2(in._grid);
_Aggregates.ProjectToSubspace (Csrc,in);
_Aggregates.PromoteFromSubspace(Csrc,out);
std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
// To make a working smoother for indefinite operator
// must multiply by "Mdag" (ouch loses all low mode content)
// and apply to poly approx of (mdagm)^-1.
// so that we end up with an odd polynomial.
SAP(in,out);
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
RealD r = norm2(vec1);
RealD Ni = norm2(in);
std::cout<<GridLogMessage << "SAP resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
_Aggregates.ProjectToSubspace (Csrc,vec1);
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
CG(MdagMOp,Ctmp,Csol);
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
// Q = Q[in - A Min]
out = out+vec1;
// Three preconditioner smoothing -- hermitian if C3 = C1
// Recompute error
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r=norm2(vec1);
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
// Reapply smoother
SAP(vec1,vec2);
out =out+vec2;
// Update with residual for out
_FineOperator.Op(out,vec1);// this is the G5 herm bit
vec1 = in - vec1; // tmp = in - A Min
r = norm2(vec1);
Ni = norm2(in);
std::cout<<GridLogMessage << "SAP resid(post) "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
params.domaindecompose = 1;
params.domainsize= 1;
params.order = 1;
params.Ls = 1;
params.mq = 1;
params.lo = 1;
params.hi = 1;
params.steps = 1;
const int Ls=params.Ls;
2017-11-24 09:43:34 +00:00
const int ds=params.domainsize;
2017-07-21 12:39:03 +01:00
2017-11-24 09:43:34 +00:00
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
2017-07-21 12:39:03 +01:00
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
2017-11-24 09:43:34 +00:00
std::vector<int> blockSize({2,2,2,2});
const int nbasis= 16;
2017-07-21 12:39:03 +01:00
2017-11-24 09:43:34 +00:00
std::vector<int> cLattSize = GridDefaultLatt();
for(int d=0;d<cLattSize.size();d++){
cLattSize[d] = cLattSize[d]/blockSize[d];
2017-07-21 12:39:03 +01:00
}
2017-11-24 09:43:34 +00:00
GridCartesian *CGrid = SpaceTimeGrid::makeFourDimGrid(cLattSize, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
2017-07-21 12:39:03 +01:00
std::vector<int> seedsFine({1,2,3,4});
std::vector<int> seedsCoarse({5,6,7,8});
2017-11-24 09:43:34 +00:00
GridParallelRNG pRNGFine(FGrid); pRNGFine.SeedFixedIntegers(seedsFine);
GridParallelRNG pRNGCoarse(CGrid); pRNGCoarse.SeedFixedIntegers(seedsCoarse);
2017-07-21 12:39:03 +01:00
Gamma g5(Gamma::Algebra::Gamma5);
2017-11-24 09:43:34 +00:00
LatticeFermion src(FGrid); gaussian(pRNGFine,src);// src=src+g5*src;
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(pRNGFine,Umu);
LatticeGaugeField UmuDD(FGrid);
LatticeColourMatrix U(FGrid);
LatticeColourMatrix zz(FGrid);
2017-07-21 12:39:03 +01:00
2017-11-24 09:43:34 +00:00
if ( params.domaindecompose ) {
Lattice<iScalar<vInteger> > coor(FGrid);
2017-07-21 12:39:03 +01:00
zz=zero;
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
U = PeekIndex<LorentzIndex>(Umu,mu);
U = where(mod(coor,params.domainsize)==(Integer)0,zz,U);
PokeIndex<LorentzIndex>(UmuDD,U,mu);
}
} else {
UmuDD = Umu;
}
RealD mass=params.mq;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
2017-11-24 09:43:34 +00:00
std::cout<<GridLogMessage << "Params: "<< std::endl;
2017-07-21 12:39:03 +01:00
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout << params << std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building the wilson operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
2017-11-24 09:43:34 +00:00
WilsonFermionR Dw(Umu,*FGrid,*FrbGrid,mass);
WilsonFermionR DwDD(UmuDD,*FGrid,*FrbGrid,mass);
2017-07-21 12:39:03 +01:00
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
2017-11-28 14:03:02 +00:00
// • TODO: need some way to run the smoother on the "test vectors" for a few
// times before constructing the subspace from them
// • Maybe an application for an mrhs (true mrhs, no block) smoother?
// • In WMG, the vectors are normalized but not orthogonalized, but here they
// are constructed randomly and then orthogonalized (rather orthonormalized) against each other
2017-11-24 09:43:34 +00:00
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
Subspace Aggregates(CGrid,FGrid,0);
2017-11-28 14:03:02 +00:00
assert ((nbasis & 0x1)==0);
2017-07-21 12:39:03 +01:00
int nb=nbasis/2;
std::cout<<GridLogMessage << " nbasis/2 = "<<nb<<std::endl;
2017-11-24 09:43:34 +00:00
Aggregates.CreateSubspaceRandom(pRNGFine); // creates subspace randomly and orthogonalizes it
2017-11-28 14:03:02 +00:00
auto testVectorAnalyzer = TestVectorAnalyzer<LatticeFermion>{};
// tva(HermOp, Aggregates.subspace);
testVectorAnalyzer(HermOp, Aggregates.subspace);
2017-07-21 12:39:03 +01:00
for(int n=0;n<nb;n++){
Aggregates.subspace[n+nb] = g5 * Aggregates.subspace[n]; // multiply with g5 normally instead of G5R5 since this specific to DWF
2017-07-21 12:39:03 +01:00
std::cout<<GridLogMessage<<n<<" subspace "<<norm2(Aggregates.subspace[n+nb])<<" "<<norm2(Aggregates.subspace[n]) <<std::endl;
}
for(int n=0;n<nbasis;n++){
std::cout<<GridLogMessage << "vec["<<n<<"] = "<<norm2(Aggregates.subspace[n]) <<std::endl;
}
2017-11-28 14:03:02 +00:00
// tva(HermOp, Aggregates.subspace);
testVectorAnalyzer(HermOp, Aggregates.subspace);
2017-11-24 09:43:34 +00:00
result=zero;
2017-07-21 12:39:03 +01:00
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Dirac operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
2017-11-24 09:43:34 +00:00
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> Blah(Dw);
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> BlahDD(DwDD);
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*CGrid);
LDOp.CoarsenOperator(FGrid,Blah,Aggregates); // problem with this line since it enforces hermiticity
2017-07-21 12:39:03 +01:00
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Testing some coarse space solvers " <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
2017-11-24 09:43:34 +00:00
CoarseVector c_src (CGrid);
CoarseVector c_res (CGrid);
2017-07-21 12:39:03 +01:00
gaussian(pRNGCoarse,c_src);
c_res=zero;
2017-11-24 09:43:34 +00:00
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Solving posdef-CG on coarse space "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
// ConjugateGradient<CoarseVector> CG(1.0e-6,100000);
// // CG(PosdefLdop,c_src,c_res);
// // std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// // std::cout<<GridLogMessage << "Solving indef-MCR on coarse space "<< std::endl;
// // std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// // HermitianLinearOperator<CoarseOperator,CoarseVector> HermIndefLdop(LDOp);
// // ConjugateResidual<CoarseVector> MCR(1.0e-6,100000);
// //MCR(HermIndefLdop,c_src,c_res);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> Precon (Aggregates, LDOp,
Blah,Dw,
BlahDD,DwDD);
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> PreconDD(Aggregates, LDOp,
Blah,Dw,
BlahDD,DwDD);
// MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
// FineOperator &Fine,Matrix &FineMatrix,
// FineOperator &Smooth,Matrix &SmootherMatrix)
TrivialPrecon<LatticeFermion> simple;
2017-07-21 12:39:03 +01:00
Grid_finalize();
}