mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
667 lines
24 KiB
C++
667 lines
24 KiB
C++
/*************************************************************************************
|
||
|
||
Grid physics library, www.github.com/paboyle/Grid
|
||
|
||
Source file: ./tests/Test_dwf_hdcr.cc
|
||
|
||
Copyright (C) 2015
|
||
|
||
Author: Daniel Richtmann <daniel.richtmann@ur.de>
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
||
See the full license in the file "LICENSE" in the top level distribution directory
|
||
*************************************************************************************/
|
||
/* END LEGAL */
|
||
#include <Grid/Grid.h>
|
||
// #include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
|
||
//#include <algorithms/iterative/PrecConjugateResidual.h>
|
||
|
||
using namespace std;
|
||
using namespace Grid;
|
||
using namespace Grid::QCD;
|
||
|
||
template<class Field>
|
||
class TestVectorAnalyzer {
|
||
public:
|
||
void operator()(LinearOperatorBase<Field> &Linop, std::vector<Field> const & vectors)
|
||
{
|
||
// this function corresponds to testvector_analysis_PRECISION from the
|
||
// DD-αAMG codebase
|
||
|
||
std::vector<Field> tmp(4, vectors[0]._grid); // bit hacky?
|
||
Gamma g5(Gamma::Algebra::Gamma5);
|
||
|
||
std::cout << GridLogMessage << "Test vector analysis:" << std::endl;
|
||
|
||
for (auto i = 0; i < vectors.size(); ++i) {
|
||
|
||
Linop.Op(vectors[i], tmp[3]);
|
||
|
||
tmp[0] = g5 * tmp[3]; // is this the same as coarse_gamma5_PRECISION?
|
||
|
||
auto lambda = innerProduct(vectors[i], tmp[0]) / innerProduct(vectors[i], vectors[i]);
|
||
|
||
tmp[1] = tmp[0] - lambda * vectors[i];
|
||
|
||
auto mu = ::sqrt(norm2(tmp[1]) / norm2(vectors[i]));
|
||
|
||
std::cout << GridLogMessage << std::setprecision(2) << "vector " << i << ": "
|
||
<< "singular value: " << lambda
|
||
<< " singular vector precision: " << mu << std::endl;
|
||
}
|
||
}
|
||
};
|
||
|
||
class myclass: Serializable {
|
||
public:
|
||
|
||
GRID_SERIALIZABLE_CLASS_MEMBERS(myclass,
|
||
int, domaindecompose,
|
||
int, domainsize,
|
||
int, order,
|
||
int, Ls,
|
||
double, mq,
|
||
double, lo,
|
||
double, hi,
|
||
int, steps);
|
||
|
||
myclass(){};
|
||
|
||
};
|
||
myclass params;
|
||
|
||
RealD InverseApproximation(RealD x){
|
||
return 1.0/x;
|
||
}
|
||
|
||
template<class Fobj,class CComplex,int nbasis, class Matrix>
|
||
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
|
||
public:
|
||
|
||
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
|
||
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
|
||
|
||
typedef typename Aggregation<Fobj,CComplex,nbasis>::siteVector siteVector;
|
||
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseScalar CoarseScalar;
|
||
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
|
||
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
|
||
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
|
||
typedef LinearOperatorBase<FineField> FineOperator;
|
||
|
||
Aggregates & _Aggregates;
|
||
CoarseOperator & _CoarseOperator;
|
||
Matrix & _FineMatrix;
|
||
FineOperator & _FineOperator;
|
||
Matrix & _SmootherMatrix;
|
||
FineOperator & _SmootherOperator;
|
||
|
||
// Constructor
|
||
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
|
||
FineOperator &Fine,Matrix &FineMatrix,
|
||
FineOperator &Smooth,Matrix &SmootherMatrix)
|
||
: _Aggregates(Agg),
|
||
_CoarseOperator(Coarse),
|
||
_FineOperator(Fine),
|
||
_FineMatrix(FineMatrix),
|
||
_SmootherOperator(Smooth),
|
||
_SmootherMatrix(SmootherMatrix)
|
||
{
|
||
}
|
||
|
||
void PowerMethod(const FineField &in) {
|
||
|
||
FineField p1(in._grid);
|
||
FineField p2(in._grid);
|
||
|
||
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
|
||
|
||
p1=in;
|
||
RealD absp2;
|
||
for(int i=0;i<20;i++){
|
||
RealD absp1=std::sqrt(norm2(p1));
|
||
fMdagMOp.HermOp(p1,p2);// this is the G5 herm bit
|
||
// _FineOperator.Op(p1,p2);// this is the G5 herm bit
|
||
RealD absp2=std::sqrt(norm2(p2));
|
||
if(i%10==9)
|
||
std::cout<<GridLogMessage << "Power method on mdagm "<<i<<" " << absp2/absp1<<std::endl;
|
||
p1=p2*(1.0/std::sqrt(absp2));
|
||
}
|
||
}
|
||
|
||
void operator()(const FineField &in, FineField & out) {
|
||
if ( params.domaindecompose ) {
|
||
operatorSAP(in,out);
|
||
} else {
|
||
operatorCheby(in,out);
|
||
}
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////
|
||
// ADEF2: [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
|
||
////////////////////////////////////////////////////////////////////////
|
||
#if 1
|
||
void operatorADEF2(const FineField &in, FineField & out) {
|
||
|
||
CoarseVector Csrc(_CoarseOperator.Grid());
|
||
CoarseVector Ctmp(_CoarseOperator.Grid());
|
||
CoarseVector Csol(_CoarseOperator.Grid());
|
||
|
||
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
|
||
ConjugateGradient<FineField> fCG(3.0e-2,1000);
|
||
|
||
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
|
||
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
|
||
MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
|
||
|
||
FineField tmp(in._grid);
|
||
FineField res(in._grid);
|
||
FineField Min(in._grid);
|
||
|
||
// Monitor completeness of low mode space
|
||
_Aggregates.ProjectToSubspace (Csrc,in);
|
||
_Aggregates.PromoteFromSubspace(Csrc,out);
|
||
std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
|
||
|
||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||
_FineOperator.Op(in,tmp);// this is the G5 herm bit
|
||
fCG(fMdagMOp,tmp,Min); // solves MdagM = g5 M g5M
|
||
|
||
// Monitor completeness of low mode space
|
||
_Aggregates.ProjectToSubspace (Csrc,Min);
|
||
_Aggregates.PromoteFromSubspace(Csrc,out);
|
||
std::cout<<GridLogMessage<<"Completeness Min: "<<std::sqrt(norm2(out)/norm2(Min))<<std::endl;
|
||
|
||
_FineOperator.Op(Min,tmp);
|
||
tmp = in - tmp; // in - A Min
|
||
|
||
Csol=zero;
|
||
_Aggregates.ProjectToSubspace (Csrc,tmp);
|
||
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
|
||
CG(MdagMOp,Ctmp,Csol);
|
||
|
||
HermOp.Op(Csol,Ctmp);
|
||
Ctmp=Ctmp-Csrc;
|
||
std::cout<<GridLogMessage<<"coarse space true residual "<<std::sqrt(norm2(Ctmp)/norm2(Csrc))<<std::endl;
|
||
_Aggregates.PromoteFromSubspace(Csol,out);
|
||
|
||
_FineOperator.Op(out,res);
|
||
res=res-tmp;
|
||
std::cout<<GridLogMessage<<"promoted sol residual "<<std::sqrt(norm2(res)/norm2(tmp))<<std::endl;
|
||
_Aggregates.ProjectToSubspace (Csrc,res);
|
||
std::cout<<GridLogMessage<<"coarse space proj of residual "<<norm2(Csrc)<<std::endl;
|
||
|
||
|
||
out = out+Min; // additive coarse space correction
|
||
// out = Min; // no additive coarse space correction
|
||
|
||
_FineOperator.Op(out,tmp);
|
||
tmp=tmp-in; // tmp is new residual
|
||
|
||
std::cout<<GridLogMessage<< " Preconditioner in " << norm2(in)<<std::endl;
|
||
std::cout<<GridLogMessage<< " Preconditioner out " << norm2(out)<<std::endl;
|
||
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
|
||
|
||
}
|
||
#endif
|
||
// ADEF1: [MP+Q ] in =M [1 - A Q] in + Q in
|
||
#if 1
|
||
void operatorADEF1(const FineField &in, FineField & out) {
|
||
|
||
CoarseVector Csrc(_CoarseOperator.Grid());
|
||
CoarseVector Ctmp(_CoarseOperator.Grid());
|
||
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
|
||
|
||
ConjugateGradient<CoarseVector> CG(1.0e-10,100000);
|
||
ConjugateGradient<FineField> fCG(3.0e-2,1000);
|
||
|
||
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
|
||
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
|
||
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix,0.1);
|
||
|
||
FineField tmp(in._grid);
|
||
FineField res(in._grid);
|
||
FineField Qin(in._grid);
|
||
|
||
// Monitor completeness of low mode space
|
||
// _Aggregates.ProjectToSubspace (Csrc,in);
|
||
// _Aggregates.PromoteFromSubspace(Csrc,out);
|
||
// std::cout<<GridLogMessage<<"Coarse Grid Preconditioner\nCompleteness in: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
|
||
|
||
_Aggregates.ProjectToSubspace (Csrc,in);
|
||
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
|
||
CG(MdagMOp,Ctmp,Csol);
|
||
_Aggregates.PromoteFromSubspace(Csol,Qin);
|
||
|
||
// Qin=0;
|
||
_FineOperator.Op(Qin,tmp);// A Q in
|
||
tmp = in - tmp; // in - A Q in
|
||
|
||
_FineOperator.Op(tmp,res);// this is the G5 herm bit
|
||
fCG(fMdagMOp,res,out); // solves MdagM = g5 M g5M
|
||
|
||
out = out + Qin;
|
||
|
||
_FineOperator.Op(out,tmp);
|
||
tmp=tmp-in; // tmp is new residual
|
||
|
||
std::cout<<GridLogMessage<<"preconditioner thinks residual is "<<std::sqrt(norm2(tmp)/norm2(in))<<std::endl;
|
||
|
||
}
|
||
#endif
|
||
|
||
void SAP (const FineField & src,FineField & psi){
|
||
|
||
Lattice<iScalar<vInteger> > coor(src._grid);
|
||
Lattice<iScalar<vInteger> > subset(src._grid);
|
||
|
||
FineField r(src._grid);
|
||
FineField zz(src._grid); zz=zero;
|
||
FineField vec1(src._grid);
|
||
FineField vec2(src._grid);
|
||
|
||
const Integer block=params.domainsize;
|
||
|
||
subset=zero;
|
||
for(int mu=0;mu<Nd;mu++){
|
||
LatticeCoordinate(coor,mu+1);
|
||
coor = div(coor,block);
|
||
subset = subset+coor;
|
||
}
|
||
subset = mod(subset,(Integer)2);
|
||
|
||
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
|
||
Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation);
|
||
|
||
RealD resid;
|
||
for(int i=0;i<params.steps;i++){
|
||
|
||
// Even domain residual
|
||
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
|
||
r= src - vec1 ;
|
||
resid = norm2(r) /norm2(src);
|
||
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
|
||
|
||
// Even domain solve
|
||
r= where(subset==(Integer)0,r,zz);
|
||
_SmootherOperator.AdjOp(r,vec1);
|
||
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
|
||
psi = psi + vec2;
|
||
|
||
// Odd domain residual
|
||
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
|
||
r= src - vec1 ;
|
||
r= where(subset==(Integer)1,r,zz);
|
||
|
||
resid = norm2(r) /norm2(src);
|
||
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
|
||
|
||
// Odd domain solve
|
||
_SmootherOperator.AdjOp(r,vec1);
|
||
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
|
||
psi = psi + vec2;
|
||
|
||
_FineOperator.Op(psi,vec1);// this is the G5 herm bit
|
||
r= src - vec1 ;
|
||
resid = norm2(r) /norm2(src);
|
||
std::cout << "SAP "<<i<<" resid "<<resid<<std::endl;
|
||
|
||
}
|
||
|
||
};
|
||
|
||
void SmootherTest (const FineField & in){
|
||
|
||
FineField vec1(in._grid);
|
||
FineField vec2(in._grid);
|
||
RealD lo[3] = { 0.5, 1.0, 2.0};
|
||
|
||
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
|
||
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
|
||
|
||
RealD Ni,r;
|
||
|
||
Ni = norm2(in);
|
||
|
||
for(int ilo=0;ilo<3;ilo++){
|
||
for(int ord=5;ord<50;ord*=2){
|
||
|
||
_SmootherOperator.AdjOp(in,vec1);
|
||
|
||
Chebyshev<FineField> Cheby (lo[ilo],70.0,ord,InverseApproximation);
|
||
Cheby(fMdagMOp,vec1,vec2); // solves MdagM = g5 M g5M
|
||
|
||
_FineOperator.Op(vec2,vec1);// this is the G5 herm bit
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
r=norm2(vec1);
|
||
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
void operatorCheby(const FineField &in, FineField & out) {
|
||
|
||
CoarseVector Csrc(_CoarseOperator.Grid());
|
||
CoarseVector Ctmp(_CoarseOperator.Grid());
|
||
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
|
||
|
||
ConjugateGradient<CoarseVector> CG(3.0e-3,100000);
|
||
// ConjugateGradient<FineField> fCG(3.0e-2,1000);
|
||
|
||
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
|
||
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
|
||
// MdagMLinearOperator<Matrix,FineField> fMdagMOp(_FineMatrix);
|
||
ShiftedMdagMLinearOperator<Matrix,FineField> fMdagMOp(_SmootherMatrix,0.0);
|
||
|
||
FineField vec1(in._grid);
|
||
FineField vec2(in._grid);
|
||
|
||
// Chebyshev<FineField> Cheby (0.5,70.0,30,InverseApproximation);
|
||
// Chebyshev<FineField> ChebyAccu(0.5,70.0,30,InverseApproximation);
|
||
Chebyshev<FineField> Cheby (params.lo,params.hi,params.order,InverseApproximation);
|
||
Chebyshev<FineField> ChebyAccu(params.lo,params.hi,params.order,InverseApproximation);
|
||
// Cheby.JacksonSmooth();
|
||
// ChebyAccu.JacksonSmooth();
|
||
|
||
// _Aggregates.ProjectToSubspace (Csrc,in);
|
||
// _Aggregates.PromoteFromSubspace(Csrc,out);
|
||
// std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
|
||
|
||
// ofstream fout("smoother");
|
||
// Cheby.csv(fout);
|
||
|
||
// V11 multigrid.
|
||
// Use a fixed chebyshev and hope hermiticity helps.
|
||
|
||
// To make a working smoother for indefinite operator
|
||
// must multiply by "Mdag" (ouch loses all low mode content)
|
||
// and apply to poly approx of (mdagm)^-1.
|
||
// so that we end up with an odd polynomial.
|
||
|
||
RealD Ni = norm2(in);
|
||
|
||
_SmootherOperator.AdjOp(in,vec1);// this is the G5 herm bit
|
||
ChebyAccu(fMdagMOp,vec1,out); // solves MdagM = g5 M g5M
|
||
|
||
std::cout<<GridLogMessage << "Smoother norm "<<norm2(out)<<std::endl;
|
||
|
||
// Update with residual for out
|
||
_FineOperator.Op(out,vec1);// this is the G5 herm bit
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
|
||
RealD r = norm2(vec1);
|
||
|
||
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
|
||
|
||
_Aggregates.ProjectToSubspace (Csrc,vec1);
|
||
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
|
||
CG(MdagMOp,Ctmp,Csol);
|
||
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
|
||
// Q = Q[in - A Min]
|
||
out = out+vec1;
|
||
|
||
// Three preconditioner smoothing -- hermitian if C3 = C1
|
||
// Recompute error
|
||
_FineOperator.Op(out,vec1);// this is the G5 herm bit
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
r=norm2(vec1);
|
||
|
||
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
|
||
|
||
// Reapply smoother
|
||
_SmootherOperator.Op(vec1,vec2); // this is the G5 herm bit
|
||
ChebyAccu(fMdagMOp,vec2,vec1); // solves MdagM = g5 M g5M
|
||
|
||
out =out+vec1;
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
r=norm2(vec1);
|
||
std::cout<<GridLogMessage << "Smoother resid "<<std::sqrt(r/Ni)<<std::endl;
|
||
|
||
}
|
||
|
||
void operatorSAP(const FineField &in, FineField & out) {
|
||
|
||
CoarseVector Csrc(_CoarseOperator.Grid());
|
||
CoarseVector Ctmp(_CoarseOperator.Grid());
|
||
CoarseVector Csol(_CoarseOperator.Grid()); Csol=zero;
|
||
|
||
ConjugateGradient<CoarseVector> CG(1.0e-3,100000);
|
||
|
||
HermitianLinearOperator<CoarseOperator,CoarseVector> HermOp(_CoarseOperator);
|
||
MdagMLinearOperator<CoarseOperator,CoarseVector> MdagMOp(_CoarseOperator);
|
||
|
||
FineField vec1(in._grid);
|
||
FineField vec2(in._grid);
|
||
|
||
_Aggregates.ProjectToSubspace (Csrc,in);
|
||
_Aggregates.PromoteFromSubspace(Csrc,out);
|
||
std::cout<<GridLogMessage<<"Completeness: "<<std::sqrt(norm2(out)/norm2(in))<<std::endl;
|
||
|
||
|
||
// To make a working smoother for indefinite operator
|
||
// must multiply by "Mdag" (ouch loses all low mode content)
|
||
// and apply to poly approx of (mdagm)^-1.
|
||
// so that we end up with an odd polynomial.
|
||
SAP(in,out);
|
||
|
||
// Update with residual for out
|
||
_FineOperator.Op(out,vec1);// this is the G5 herm bit
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
|
||
RealD r = norm2(vec1);
|
||
RealD Ni = norm2(in);
|
||
std::cout<<GridLogMessage << "SAP resid "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
|
||
|
||
_Aggregates.ProjectToSubspace (Csrc,vec1);
|
||
HermOp.AdjOp(Csrc,Ctmp);// Normal equations
|
||
CG(MdagMOp,Ctmp,Csol);
|
||
_Aggregates.PromoteFromSubspace(Csol,vec1); // Ass^{-1} [in - A Min]_s
|
||
// Q = Q[in - A Min]
|
||
out = out+vec1;
|
||
|
||
// Three preconditioner smoothing -- hermitian if C3 = C1
|
||
// Recompute error
|
||
_FineOperator.Op(out,vec1);// this is the G5 herm bit
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
r=norm2(vec1);
|
||
|
||
std::cout<<GridLogMessage << "Coarse resid "<<std::sqrt(r/Ni)<<std::endl;
|
||
|
||
// Reapply smoother
|
||
SAP(vec1,vec2);
|
||
out =out+vec2;
|
||
|
||
|
||
// Update with residual for out
|
||
_FineOperator.Op(out,vec1);// this is the G5 herm bit
|
||
vec1 = in - vec1; // tmp = in - A Min
|
||
|
||
r = norm2(vec1);
|
||
Ni = norm2(in);
|
||
std::cout<<GridLogMessage << "SAP resid(post) "<<std::sqrt(r/Ni)<< " " << r << " " << Ni <<std::endl;
|
||
|
||
}
|
||
|
||
};
|
||
|
||
int main (int argc, char ** argv)
|
||
{
|
||
Grid_init(&argc,&argv);
|
||
|
||
params.domaindecompose = 1;
|
||
params.domainsize= 1;
|
||
params.order = 1;
|
||
params.Ls = 1;
|
||
params.mq = 1;
|
||
params.lo = 1;
|
||
params.hi = 1;
|
||
params.steps = 1;
|
||
|
||
const int Ls=params.Ls;
|
||
const int ds=params.domainsize;
|
||
|
||
GridCartesian * FGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
|
||
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid);
|
||
|
||
///////////////////////////////////////////////////
|
||
// Construct a coarsened grid; utility for this?
|
||
///////////////////////////////////////////////////
|
||
std::vector<int> blockSize({2,2,2,2});
|
||
const int nbasis= 16;
|
||
|
||
std::vector<int> cLattSize = GridDefaultLatt();
|
||
for(int d=0;d<cLattSize.size();d++){
|
||
cLattSize[d] = cLattSize[d]/blockSize[d];
|
||
}
|
||
GridCartesian *CGrid = SpaceTimeGrid::makeFourDimGrid(cLattSize, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
|
||
|
||
std::vector<int> seedsFine({1,2,3,4});
|
||
std::vector<int> seedsCoarse({5,6,7,8});
|
||
|
||
GridParallelRNG pRNGFine(FGrid); pRNGFine.SeedFixedIntegers(seedsFine);
|
||
GridParallelRNG pRNGCoarse(CGrid); pRNGCoarse.SeedFixedIntegers(seedsCoarse);
|
||
|
||
Gamma g5(Gamma::Algebra::Gamma5);
|
||
|
||
LatticeFermion src(FGrid); gaussian(pRNGFine,src);// src=src+g5*src;
|
||
LatticeFermion result(FGrid); result=zero;
|
||
LatticeFermion ref(FGrid); ref=zero;
|
||
LatticeFermion tmp(FGrid);
|
||
LatticeFermion err(FGrid);
|
||
LatticeGaugeField Umu(FGrid); SU3::HotConfiguration(pRNGFine,Umu);
|
||
LatticeGaugeField UmuDD(FGrid);
|
||
LatticeColourMatrix U(FGrid);
|
||
LatticeColourMatrix zz(FGrid);
|
||
|
||
if ( params.domaindecompose ) {
|
||
Lattice<iScalar<vInteger> > coor(FGrid);
|
||
zz=zero;
|
||
for(int mu=0;mu<Nd;mu++){
|
||
LatticeCoordinate(coor,mu);
|
||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||
U = where(mod(coor,params.domainsize)==(Integer)0,zz,U);
|
||
PokeIndex<LorentzIndex>(UmuDD,U,mu);
|
||
}
|
||
} else {
|
||
UmuDD = Umu;
|
||
}
|
||
|
||
RealD mass=params.mq;
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Params: "<< std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
std::cout << params << std::endl;
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Building the wilson operator" <<std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
WilsonFermionR Dw(Umu,*FGrid,*FrbGrid,mass);
|
||
WilsonFermionR DwDD(UmuDD,*FGrid,*FrbGrid,mass);
|
||
|
||
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
|
||
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
|
||
typedef CoarseOperator::CoarseVector CoarseVector;
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
// • TODO: need some way to run the smoother on the "test vectors" for a few
|
||
// times before constructing the subspace from them
|
||
// • Maybe an application for an mrhs (true mrhs, no block) smoother?
|
||
// • In WMG, the vectors are normalized but not orthogonalized, but here they
|
||
// are constructed randomly and then orthogonalized (rather orthonormalized) against each other
|
||
MdagMLinearOperator<WilsonFermionR,LatticeFermion> HermOp(Dw);
|
||
Subspace Aggregates(CGrid,FGrid,0);
|
||
assert ((nbasis & 0x1)==0);
|
||
int nb=nbasis/2;
|
||
std::cout<<GridLogMessage << " nbasis/2 = "<<nb<<std::endl;
|
||
|
||
Aggregates.CreateSubspaceRandom(pRNGFine); // creates subspace randomly and orthogonalizes it
|
||
auto testVectorAnalyzer = TestVectorAnalyzer<LatticeFermion>{};
|
||
|
||
// tva(HermOp, Aggregates.subspace);
|
||
testVectorAnalyzer(HermOp, Aggregates.subspace);
|
||
|
||
for(int n=0;n<nb;n++){
|
||
Aggregates.subspace[n+nb] = g5 * Aggregates.subspace[n]; // multiply with g5 normally instead of G5R5 since this specific to DWF
|
||
std::cout<<GridLogMessage<<n<<" subspace "<<norm2(Aggregates.subspace[n+nb])<<" "<<norm2(Aggregates.subspace[n]) <<std::endl;
|
||
}
|
||
for(int n=0;n<nbasis;n++){
|
||
std::cout<<GridLogMessage << "vec["<<n<<"] = "<<norm2(Aggregates.subspace[n]) <<std::endl;
|
||
}
|
||
|
||
// tva(HermOp, Aggregates.subspace);
|
||
testVectorAnalyzer(HermOp, Aggregates.subspace);
|
||
|
||
result=zero;
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Building coarse representation of Dirac operator" <<std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> Blah(Dw);
|
||
Gamma5HermitianLinearOperator<WilsonFermionR,LatticeFermion> BlahDD(DwDD);
|
||
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LDOp(*CGrid);
|
||
LDOp.CoarsenOperator(FGrid,Blah,Aggregates); // problem with this line since it enforces hermiticity
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Testing some coarse space solvers " <<std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
CoarseVector c_src (CGrid);
|
||
CoarseVector c_res (CGrid);
|
||
gaussian(pRNGCoarse,c_src);
|
||
c_res=zero;
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Solving posdef-CG on coarse space "<< std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
// MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
|
||
// ConjugateGradient<CoarseVector> CG(1.0e-6,100000);
|
||
// // CG(PosdefLdop,c_src,c_res);
|
||
|
||
// // std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
// // std::cout<<GridLogMessage << "Solving indef-MCR on coarse space "<< std::endl;
|
||
// // std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
// // HermitianLinearOperator<CoarseOperator,CoarseVector> HermIndefLdop(LDOp);
|
||
// // ConjugateResidual<CoarseVector> MCR(1.0e-6,100000);
|
||
// //MCR(HermIndefLdop,c_src,c_res);
|
||
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
std::cout<<GridLogMessage << "Building deflation preconditioner "<< std::endl;
|
||
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
|
||
|
||
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> Precon (Aggregates, LDOp,
|
||
Blah,Dw,
|
||
BlahDD,DwDD);
|
||
|
||
MultiGridPreconditioner <vSpinColourVector,vTComplex,nbasis,WilsonFermionR> PreconDD(Aggregates, LDOp,
|
||
Blah,Dw,
|
||
BlahDD,DwDD);
|
||
// MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
|
||
// FineOperator &Fine,Matrix &FineMatrix,
|
||
// FineOperator &Smooth,Matrix &SmootherMatrix)
|
||
TrivialPrecon<LatticeFermion> simple;
|
||
|
||
Grid_finalize();
|
||
}
|