1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/tests/hadrons/Test_hadrons.hpp

664 lines
29 KiB
C++
Raw Normal View History

2018-09-07 20:10:07 +01:00
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
2018-09-07 20:10:07 +01:00
Source file: Tests/Hadrons/Test_hadrons.hpp
2018-09-07 20:10:07 +01:00
Copyright (C) 2015-2018
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
2018-09-07 20:10:07 +01:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
2018-09-07 20:10:07 +01:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2018-09-07 20:10:07 +01:00
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2018-09-07 20:10:07 +01:00
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Application.hpp>
#include <Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
/*******************************************************************************
* Macros to reduce code duplication.
******************************************************************************/
// Common initialisation
#define HADRONS_DEFAULT_INIT \
Grid_init(&argc, &argv); \
HadronsLogError.Active(GridLogError.isActive()); \
HadronsLogWarning.Active(GridLogWarning.isActive()); \
HadronsLogMessage.Active(GridLogMessage.isActive()); \
HadronsLogIterative.Active(GridLogIterative.isActive()); \
HadronsLogDebug.Active(GridLogDebug.isActive()); \
LOG(Message) << "Grid initialized" << std::endl;
#define HADRONS_DEFAULT_GLOBALS(application) \
{ \
Application::GlobalPar globalPar; \
globalPar.trajCounter.start = 1500; \
globalPar.trajCounter.end = 1520; \
globalPar.trajCounter.step = 20; \
2018-09-10 15:32:13 +01:00
globalPar.runId = "test"; \
globalPar.genetic.maxGen = 1000; \
globalPar.genetic.maxCstGen = 200; \
globalPar.genetic.popSize = 20; \
globalPar.genetic.mutationRate = .1; \
application.setPar(globalPar); \
}
// Useful definitions
#define ZERO_MOM "0. 0. 0. 0."
#define INIT_INDEX(s, n) (std::string(s) + "_" + std::to_string(n))
#define ADD_INDEX(s, n) (s + "_" + std::to_string(n))
#define LABEL_3PT(s, t1, t2) ADD_INDEX(INIT_INDEX(s, t1), t2)
#define LABEL_4PT(s, t1, t2, t3) ADD_INDEX(ADD_INDEX(INIT_INDEX(s, t1), t2), t3)
#define LABEL_4PT_NOISE(s, t1, t2, t3, nn) ADD_INDEX(ADD_INDEX(ADD_INDEX(INIT_INDEX(s, t1), t2), t3), nn)
#define LABEL_5D(s) s + "_5d";
// Wall source/sink macros
#define NAME_3MOM_WALL_SOURCE(t, mom) ("wall_" + std::to_string(t) + "_" + mom)
#define NAME_WALL_SOURCE(t) NAME_3MOM_WALL_SOURCE(t, ZERO_MOM)
#define NAME_POINT_SOURCE(pos) ("point_" + pos)
// Meson module "gammas" special values
#define ALL_GAMMAS "all"
#define MAKE_3MOM_WALL_PROP(tW, mom, propName, solver)\
{\
std::string srcName = NAME_3MOM_WALL_SOURCE(tW, mom);\
makeWallSource(application, srcName, tW, mom);\
makePropagator(application, propName, srcName, solver);\
}
#define MAKE_WALL_PROP(tW, propName, solver)\
MAKE_3MOM_WALL_PROP(tW, ZERO_MOM, propName, solver)
// Sequential source macros
#define MAKE_SEQUENTIAL_PROP(tS, qSrc, mom, seqPropName, solver, gamma)\
{\
std::string srcName = seqPropName + "_src";\
makeSequentialSource(application, srcName, qSrc, tS, gamma, mom);\
makePropagator(application, seqPropName, srcName, solver);\
}
// Point source macros
#define MAKE_POINT_PROP(pos, propName, solver)\
{\
std::string srcName = NAME_POINT_SOURCE(pos);\
makePointSource(application, srcName, pos);\
makePropagator(application, propName, srcName, solver);\
}
/*******************************************************************************
* Action setups.
******************************************************************************/
/*******************************************************************************
* Name: makeWilsonAction
* Parameters: application - main application that stores modules.
* actionName - name of action module to create.
* gaugeField - gauge field module.
* mass - quark mass.
* boundary - fermion boundary conditions (default to periodic
* space, antiperiodic time).
* Returns: None.
******************************************************************************/
inline void makeWilsonAction(Application &application, std::string actionName,
std::string &gaugeField, double mass,
std::string boundary = "1 1 1 -1")
{
if (!(VirtualMachine::getInstance().hasModule(actionName)))
{
MAction::Wilson::Par actionPar;
actionPar.gauge = gaugeField;
actionPar.mass = mass;
actionPar.boundary = boundary;
application.createModule<MAction::Wilson>(actionName, actionPar);
}
}
/*******************************************************************************
* Name: makeDWFAction
* Parameters: application - main application that stores modules.
* actionName - name of action module to create.
* gaugeField - gauge field module.
* mass - quark mass.
* M5 - domain wall height.
* Ls - fifth dimension extent.
* boundary - fermion boundary conditions (default to periodic
* space, antiperiodic time).
* Returns: None.
******************************************************************************/
inline void makeDWFAction(Application &application, std::string actionName,
std::string &gaugeField, double mass, double M5,
unsigned int Ls, std::string boundary = "1 1 1 -1")
{
if (!(VirtualMachine::getInstance().hasModule(actionName)))
{
MAction::DWF::Par actionPar;
actionPar.gauge = gaugeField;
actionPar.Ls = Ls;
actionPar.M5 = M5;
actionPar.mass = mass;
actionPar.boundary = boundary;
application.createModule<MAction::DWF>(actionName, actionPar);
}
}
/*******************************************************************************
* Functions for propagator construction.
******************************************************************************/
/*******************************************************************************
* Name: makeRBPrecCGSolver
* Purpose: Make RBPrecCG solver module for specified action.
* Parameters: application - main application that stores modules.
* solverName - name of solver module to create.
* actionName - action module corresponding to propagators to be
* computed.
* residual - CG target residual.
* Returns: None.
******************************************************************************/
inline void makeRBPrecCGSolver(Application &application, std::string &solverName,
std::string &actionName, double residual = 1e-8)
{
if (!(VirtualMachine::getInstance().hasModule(solverName)))
{
MSolver::RBPrecCG::Par solverPar;
solverPar.action = actionName;
solverPar.residual = residual;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>(solverName,
solverPar);
}
}
/*******************************************************************************
* Name: makePointSource
* Purpose: Construct point source and add to application module.
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* pos - Position of point source.
* Returns: None.
******************************************************************************/
inline void makePointSource(Application &application, std::string srcName,
std::string pos)
{
// If the source already exists, don't make the module again.
if (!(VirtualMachine::getInstance().hasModule(srcName)))
{
MSource::Point::Par pointPar;
pointPar.position = pos;
application.createModule<MSource::Point>(srcName, pointPar);
}
}
/*******************************************************************************
* Name: makeSequentialSource
* Purpose: Construct sequential source and add to application module.
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* qSrc - Input quark for sequential inversion.
* tS - sequential source timeslice.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makeSequentialSource(Application &application, std::string srcName,
std::string qSrc, unsigned int tS,
Gamma::Algebra gamma = Gamma::Algebra::GammaT,
std::string mom = ZERO_MOM)
{
// If the source already exists, don't make the module again.
if (!(VirtualMachine::getInstance().hasModule(srcName)))
{
MSource::SeqGamma::Par seqPar;
seqPar.q = qSrc;
seqPar.tA = tS;
seqPar.tB = tS;
seqPar.mom = mom;
seqPar.gamma = gamma;
application.createModule<MSource::SeqGamma>(srcName, seqPar);
}
}
/*******************************************************************************
* Name: makeConservedSequentialSource
* Purpose: Construct sequential source with conserved current insertion and
* add to application module.
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* qSrc - Input quark for sequential inversion.
* actionName - action corresponding to quark.
* tS - sequential source timeslice.
* curr - conserved current type to insert.
* mu - Lorentz index of current to insert.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makeConservedSequentialSource(Application &application,
std::string &srcName,
std::string &qSrc,
std::string &actionName,
unsigned int tS,
Current curr,
unsigned int mu,
std::string mom = ZERO_MOM)
{
// If the source already exists, don't make the module again.
if (!(VirtualMachine::getInstance().hasModule(srcName)))
{
MSource::SeqConserved::Par seqPar;
seqPar.q = qSrc;
seqPar.action = actionName;
seqPar.tA = tS;
seqPar.tB = tS;
seqPar.curr_type = curr;
seqPar.mu_min = mu;
seqPar.mu_min = mu;
seqPar.mom = mom;
application.createModule<MSource::SeqConserved>(srcName, seqPar);
}
}
/*******************************************************************************
* Name: makeNoiseSource
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* tA - lower source timeslice limit.
* tB - upper source timeslice limit.
* Returns: None.
******************************************************************************/
inline void makeNoiseSource(Application &application, std::string &srcName,
unsigned int tA, unsigned int tB)
{
if (!(VirtualMachine::getInstance().hasModule(srcName)))
{
MSource::Z2::Par noisePar;
noisePar.tA = tA;
noisePar.tB = tB;
application.createModule<MSource::Z2>(srcName, noisePar);
}
}
/*******************************************************************************
* Name: makeWallSource
* Purpose: Construct wall source and add to application module.
* Parameters: application - main application that stores modules.
* srcName - name of source module to create.
* tW - wall source timeslice.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makeWallSource(Application &application, std::string &srcName,
unsigned int tW, std::string mom = ZERO_MOM)
{
// If the source already exists, don't make the module again.
if (!(VirtualMachine::getInstance().hasModule(srcName)))
{
MSource::Wall::Par wallPar;
wallPar.tW = tW;
wallPar.mom = mom;
application.createModule<MSource::Wall>(srcName, wallPar);
}
}
/*******************************************************************************
* Name: makePointSink
* Purpose: Create function for point sink smearing of a propagator.
* Parameters: application - main application that stores modules.
* propName - name of input propagator.
* sinkFnct - name of output sink smearing module.
* mom - momentum insertion (default is zero).
* Returns: None.
******************************************************************************/
inline void makePointSink(Application &application, std::string &sinkFnct,
std::string mom = ZERO_MOM)
{
// If the sink function already exists, don't make it again.
if (!(VirtualMachine::getInstance().hasModule(sinkFnct)))
{
MSink::Point::Par pointPar;
pointPar.mom = mom;
application.createModule<MSink::Point>(sinkFnct, pointPar);
}
}
/*******************************************************************************
* Name: sinkSmear
* Purpose: Perform sink smearing of a propagator.
* Parameters: application - main application that stores modules.
* sinkFnct - sink smearing module.
* propName - propagator to smear.
* smearedProp - name of output smeared propagator.
* Returns: None.
******************************************************************************/
inline void sinkSmear(Application &application, std::string &sinkFnct,
std::string &propName, std::string &smearedProp)
{
// If the propagator has already been smeared, don't smear it again.
if (!(VirtualMachine::getInstance().hasModule(smearedProp)))
{
MSink::Smear::Par smearPar;
smearPar.q = propName;
smearPar.sink = sinkFnct;
application.createModule<MSink::Smear>(smearedProp, smearPar);
}
}
/*******************************************************************************
* Name: makePropagator
* Purpose: Construct source and propagator then add to application module.
* Parameters: application - main application that stores modules.
* propName - name of propagator module to create.
* srcName - name of source module to use.
* solver - solver to use (default is CG).
* Returns: None.
******************************************************************************/
inline void makePropagator(Application &application, std::string &propName,
std::string &srcName, std::string &solver)
{
// If the propagator already exists, don't make the module again.
if (!(VirtualMachine::getInstance().hasModule(propName)))
{
2017-06-22 15:34:33 +01:00
MFermion::GaugeProp::Par quarkPar;
quarkPar.source = srcName;
quarkPar.solver = solver;
2017-06-22 15:34:33 +01:00
application.createModule<MFermion::GaugeProp>(propName, quarkPar);
}
}
/*******************************************************************************
* Name: makeLoop
* Purpose: Use noise source and inversion result to make loop propagator, then
* add to application module.
* Parameters: application - main application that stores modules.
* propName - name of propagator module to create.
* srcName - name of noise source module to use.
* resName - name of inversion result on given noise source.
* Returns: None.
******************************************************************************/
inline void makeLoop(Application &application, std::string &propName,
std::string &srcName, std::string &resName)
{
// If the loop propagator already exists, don't make the module again.
if (!(VirtualMachine::getInstance().hasModule(propName)))
{
MLoop::NoiseLoop::Par loopPar;
loopPar.q = resName;
loopPar.eta = srcName;
application.createModule<MLoop::NoiseLoop>(propName, loopPar);
}
}
/*******************************************************************************
* Contraction module creation.
******************************************************************************/
/*******************************************************************************
* Name: mesonContraction
* Purpose: Create meson contraction module and add to application module.
* Parameters: application - main application that stores modules.
* modName - unique module name.
* output - name of output files.
* q1 - quark propagator 1.
* q2 - quark propagator 2.
* sink - sink smearing module.
* gammas - gamma insertions at source and sink.
* Returns: None.
******************************************************************************/
inline void mesonContraction(Application &application,
std::string &modName, std::string &output,
std::string &q1, std::string &q2,
std::string &sink,
std::string gammas = "<Gamma5 Gamma5>")
{
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MContraction::Meson::Par mesPar;
mesPar.output = output;
mesPar.q1 = q1;
mesPar.q2 = q2;
mesPar.sink = sink;
mesPar.gammas = gammas;
application.createModule<MContraction::Meson>(modName, mesPar);
}
}
/*******************************************************************************
* Name: gamma3ptContraction
* Purpose: Create gamma3pt contraction module and add to application module.
* Parameters: application - main application that stores modules.
* npt - specify n-point correlator (for labelling).
* q1 - quark propagator 1, sink smeared.
* q2 - quark propagator 2.
* q3 - quark propagator 3.
* label - unique label to construct module name.
* tSnk - sink position of sink for q1.
* gamma - gamma insertions between q2 and q3.
* Returns: None.
******************************************************************************/
inline void gamma3ptContraction(Application &application, unsigned int npt,
std::string &q1, std::string &q2,
std::string &q3, std::string &label,
unsigned int tSnk = 0,
Gamma::Algebra gamma = Gamma::Algebra::Identity)
{
std::string modName = std::to_string(npt) + "pt_" + label;
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MContraction::Gamma3pt::Par gamma3ptPar;
gamma3ptPar.output = std::to_string(npt) + "pt/" + label;
gamma3ptPar.q1 = q1;
gamma3ptPar.q2 = q2;
gamma3ptPar.q3 = q3;
gamma3ptPar.tSnk = tSnk;
gamma3ptPar.gamma = gamma;
application.createModule<MContraction::Gamma3pt>(modName, gamma3ptPar);
}
}
/*******************************************************************************
* Name: weakContraction[Eye,NonEye]
* Purpose: Create Weak Hamiltonian contraction module for Eye/NonEye topology
* and add to application module.
* Parameters: application - main application that stores modules.
* npt - specify n-point correlator (for labelling).
* q1 - quark propagator 1.
* q2 - quark propagator 2.
* q3 - quark propagator 3.
* q4 - quark propagator 4.
* label - unique label to construct module name.
* tSnk - time position of sink (for sink smearing).
* Returns: None.
******************************************************************************/
#define HW_CONTRACTION(top) \
inline void weakContraction##top(Application &application, unsigned int npt,\
std::string &q1, std::string &q2, \
std::string &q3, std::string &q4, \
std::string &label, unsigned int tSnk = 0)\
{\
std::string modName = std::to_string(npt) + "pt_" + label;\
if (!(VirtualMachine::getInstance().hasModule(modName)))\
{\
MContraction::WeakHamiltonian##top::Par weakPar;\
weakPar.output = std::to_string(npt) + "pt/" + label;\
weakPar.q1 = q1;\
weakPar.q2 = q2;\
weakPar.q3 = q3;\
weakPar.q4 = q4;\
weakPar.tSnk = tSnk;\
application.createModule<MContraction::WeakHamiltonian##top>(modName, weakPar);\
}\
}
HW_CONTRACTION(Eye) // weakContractionEye
HW_CONTRACTION(NonEye) // weakContractionNonEye
/*******************************************************************************
* Name: disc0Contraction
* Purpose: Create contraction module for 4pt Weak Hamiltonian + current
* disconnected topology for neutral mesons and add to application
* module.
* Parameters: application - main application that stores modules.
* q1 - quark propagator 1.
* q2 - quark propagator 2.
* q3 - quark propagator 3.
* q4 - quark propagator 4.
* label - unique label to construct module name.
* Returns: None.
******************************************************************************/
inline void disc0Contraction(Application &application,
std::string &q1, std::string &q2,
std::string &q3, std::string &q4,
std::string &label)
{
std::string modName = "4pt_" + label;
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MContraction::WeakNeutral4ptDisc::Par disc0Par;
disc0Par.output = "4pt/" + label;
disc0Par.q1 = q1;
disc0Par.q2 = q2;
disc0Par.q3 = q3;
disc0Par.q4 = q4;
application.createModule<MContraction::WeakNeutral4ptDisc>(modName, disc0Par);
}
}
/*******************************************************************************
* Name: discLoopContraction
* Purpose: Create contraction module for disconnected loop and add to
* application module.
* Parameters: application - main application that stores modules.
* q_loop - loop quark propagator.
* modName - unique module name.
* gamma - gamma matrix to use in contraction.
* Returns: None.
******************************************************************************/
inline void discLoopContraction(Application &application,
std::string &q_loop, std::string &modName,
Gamma::Algebra gamma = Gamma::Algebra::Identity)
{
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MContraction::DiscLoop::Par discPar;
discPar.output = "disc/" + modName;
discPar.q_loop = q_loop;
discPar.gamma = gamma;
application.createModule<MContraction::DiscLoop>(modName, discPar);
}
}
/*******************************************************************************
* Name: makeWITest
* Purpose: Create module to test Ward Identities for conserved current
* contractions and add to application module.
* Parameters: application - main application that stores modules.
* modName - name of module to create.
* propName - 4D quark propagator.
* actionName - action used to compute quark propagator.
* mass - mass of quark.
* Ls - length of 5th dimension (default = 1).
* test_axial - whether or not to check PCAC relation.
* Returns: None.
******************************************************************************/
inline void makeWITest(Application &application, std::string &modName,
std::string &propName, std::string &actionName,
double mass, unsigned int Ls = 1, bool test_axial = false)
{
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MContraction::WardIdentity::Par wiPar;
if (Ls > 1)
{
wiPar.q = LABEL_5D(propName);
}
else
{
wiPar.q = propName;
}
wiPar.action = actionName;
wiPar.mass = mass;
wiPar.test_axial = test_axial;
application.createModule<MContraction::WardIdentity>(modName, wiPar);
}
}
/*******************************************************************************
* Name: makeSeqCurrComparison
* Purpose: Create module to compare sequential insertion of conserved current
* against sink contraction and add to application module.
* Parameters: application - main application that stores modules.
* modName - name of module to create.
* propName - quark propagator (point source), 5D if available.
* seqName - 4D quark propagator with sequential insertion of
* conserved current.
* actionName - action used to compute quark propagators.
* origin - origin of point source propagator.
* t_J - time at which sequential current is inserted.
* mu - Lorentz index of sequential current.
* curr - type of conserved current inserted.
* Returns: None.
******************************************************************************/
inline void makeSeqCurrComparison(Application &application, std::string &modName,
std::string &propName, std::string &seqName,
std::string &actionName, std::string &origin,
unsigned int t_J, unsigned int mu, Current curr)
{
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MUtilities::TestSeqConserved::Par seqPar;
seqPar.q = propName;
seqPar.qSeq = seqName;
seqPar.action = actionName;
seqPar.origin = origin;
seqPar.t_J = t_J;
seqPar.mu = mu;
seqPar.curr = curr;
application.createModule<MUtilities::TestSeqConserved>(modName, seqPar);
}
}
/*******************************************************************************
* Name: makeSeqGamComparison
* Purpose: Create module to compare sequential insertion of gamma matrix
* against sink contraction and add to application module.
* Parameters: application - main application that stores modules.
* modName - name of module to create.
* propName - 4D quark propagator.
* seqProp - 4D quark propagator with sequential insertion of
* gamma matrix.
* gamma - Inserted gamma matrix.
* t_g - time at which gamma matrix is inserted
* sequentially.
* Returns: None.
******************************************************************************/
inline void makeSeqGamComparison(Application &application, std::string &modName,
std::string &propName, std::string &seqProp,
std::string &origin, Gamma::Algebra gamma,
unsigned int t_g)
{
if (!(VirtualMachine::getInstance().hasModule(modName)))
{
MUtilities::TestSeqGamma::Par seqPar;
seqPar.q = propName;
seqPar.qSeq = seqProp;
seqPar.origin = origin;
seqPar.t_g = t_g;
seqPar.gamma = gamma;
application.createModule<MUtilities::TestSeqGamma>(modName, seqPar);
}
}