1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 19:25:56 +01:00

Hadrons: conserved current test fixes. Axial current tests now also optional.

This commit is contained in:
Lanny91 2017-05-18 13:16:14 +01:00
parent 34332fe393
commit 08b314fd0f
3 changed files with 69 additions and 53 deletions

View File

@ -40,10 +40,10 @@ BEGIN_HADRONS_NAMESPACE
-----------------------------
* options:
- q: propagator, 5D if available (string)
- q4d: 4D propagator, duplicate of q if q is not 5D (string)
- action: action module used for propagator solution (string)
- mass: mass of quark (double)
- q: propagator, 5D if available (string)
- action: action module used for propagator solution (string)
- mass: mass of quark (double)
- test_axial: whether or not to test PCAC relation.
*/
/******************************************************************************
@ -56,9 +56,9 @@ class WardIdentityPar: Serializable
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(WardIdentityPar,
std::string, q,
std::string, q4d,
std::string, action,
double, mass);
double, mass,
bool, test_axial);
};
template <typename FImpl>
@ -97,7 +97,7 @@ TWardIdentity<FImpl>::TWardIdentity(const std::string name)
template <typename FImpl>
std::vector<std::string> TWardIdentity<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().q, par().q4d, par().action};
std::vector<std::string> in = {par().q, par().action};
return in;
}
@ -128,55 +128,69 @@ void TWardIdentity<FImpl>::execute(void)
LOG(Message) << "Performing Ward Identity checks for quark '" << par().q
<< "'." << std::endl;
PropagatorField psi(env().getGrid()), tmp(env().getGrid());
PropagatorField psi(env().getGrid()), tmp(env().getGrid()),
vector_WI(env().getGrid());
PropagatorField &q = *env().template getObject<PropagatorField>(par().q);
PropagatorField &q4d = *env().template getObject<PropagatorField>(par().q4d);
FMat &act = *(env().template getObject<FMat>(par().action));
Gamma g5(Gamma::Algebra::Gamma5);
LatticeComplex PP(env().getGrid()), PA(env().getGrid()),
c(env().getGrid()), PJ5q(env().getGrid()),
vector_WI(env().getGrid()), defect(env().getGrid());
c = zero; PJ5q = zero; vector_WI = zero; defect = zero;
std::vector<LatticeComplex> Vmu(Nd, c);
std::vector<LatticeComplex> Amu(Nd, c);
// Get PP, PA, V_mu, A_mu for 4D.
PP = trace(adj(q4d)*q4d);
PA = trace(adj(q4d)*g5*q4d);
// Compute D_mu V_mu, D here is backward derivative.
vector_WI = zero;
for (unsigned int mu = 0; mu < Nd; ++mu)
{
act.ContractConservedCurrent(q, q, tmp, Current::Vector, mu);
Vmu[mu] = trace(tmp);
act.ContractConservedCurrent(q, q, tmp, Current::Axial, mu);
Amu[mu] = trace(g5*tmp);
tmp -= Cshift(tmp, mu, -1);
vector_WI += tmp;
}
// Get PJ5q for 5D (zero for 4D).
if (Ls_ > 1)
{
ExtractSlice(psi, q, Ls_/2 - 1, 0);
psi = 0.5 * (psi + g5*psi);
ExtractSlice(tmp, q, Ls_/2, 0);
psi += 0.5 * (tmp - g5*tmp);
PJ5q = trace(adj(psi)*psi);
}
// Test ward identities, D_mu V_mu = 0; D_mu A_mu = 2m<PP> + 2 PJ5q
for (unsigned int mu = 0; mu < Nd; ++mu)
{
vector_WI += Vmu[mu] - Cshift(Vmu[mu], mu, -1);
defect += Amu[mu] - Cshift(Amu[mu], mu, -1);
}
defect -= 2.*PJ5q;
defect -= 2.*(par().mass)*PP;
LOG(Message) << "Vector Ward Identity check Delta_mu V_mu = "
<< norm2(vector_WI) << std::endl;
LOG(Message) << "Axial Ward Identity defect Delta_mu A_mu = "
<< norm2(defect) << std::endl;
LOG(Message) << "norm2(PP) = " << norm2(PP) << std::endl;
LOG(Message) << "norm2(PA) = " << norm2(PA) << std::endl;
LOG(Message) << "norm2(PJ5q) = " << norm2(PJ5q) << std::endl;
if (par().test_axial)
{
LatticeComplex PP(env().getGrid()), axial_defect(env().getGrid()),
PJ5q(env().getGrid());
// Compute D_mu A_mu, D is backwards derivative.
axial_defect = zero;
for (unsigned int mu = 0; mu < Nd; ++mu)
{
act.ContractConservedCurrent(q, q, tmp, Current::Axial, mu);
tmp -= Cshift(tmp, mu, -1);
axial_defect += trace(g5*tmp);
}
// Get PJ5q for 5D (zero for 4D) and PP.
PJ5q = zero;
if (Ls_ > 1)
{
// PP
ExtractSlice(tmp, q, 0, 0);
psi = (tmp - g5*tmp);
ExtractSlice(tmp, q, Ls_ - 1, 0);
psi += (tmp + g5*tmp);
PP = trace(adj(psi)*psi);
// P5Jq
ExtractSlice(tmp, q, Ls_/2 - 1, 0);
psi = 0.5 * (tmp + g5*tmp);
ExtractSlice(tmp, q, Ls_/2, 0);
psi += 0.5 * (tmp - g5*tmp);
PJ5q = trace(adj(psi)*psi);
}
else
{
PP = trace(adj(q)*q);
}
// Test ward identities, D_mu V_mu = 0; D_mu A_mu = 2m<PP> + 2 PJ5q
axial_defect -= 2.*PJ5q;
axial_defect -= 2.*(par().mass)*PP;
LOG(Message) << "Axial Ward Identity defect Delta_mu A_mu = "
<< norm2(axial_defect) << std::endl;
LOG(Message) << "norm2(PP) = " << norm2(PP) << std::endl;
LOG(Message) << "norm2(PJ5q) = " << norm2(PJ5q) << std::endl;
}
}
END_MODULE_NAMESPACE

View File

@ -513,26 +513,27 @@ inline void discLoopContraction(Application &application,
* actionName - action used to compute quark propagator.
* mass - mass of quark.
* Ls - length of 5th dimension (default = 1).
* test_axial - whether or not to check PCAC relation.
* Returns: None.
******************************************************************************/
inline void makeWITest(Application &application, std::string &modName,
std::string &propName, std::string &actionName,
double mass, unsigned int Ls = 1)
double mass, unsigned int Ls = 1, bool test_axial = false)
{
if (!(Environment::getInstance().hasModule(modName)))
{
MContraction::WardIdentity::Par wiPar;
if (Ls > 1)
{
wiPar.q = LABEL_5D(propName);
wiPar.q = LABEL_5D(propName);
}
else
{
wiPar.q = propName;
wiPar.q = propName;
}
wiPar.q4d = propName;
wiPar.action = actionName;
wiPar.mass = mass;
wiPar.action = actionName;
wiPar.mass = mass;
wiPar.test_axial = test_axial;
application.createModule<MContraction::WardIdentity>(modName, wiPar);
}
}

View File

@ -81,7 +81,8 @@ inline void setupWardIdentityTests(Application &application,
std::string origin = "0 0 0 0";
std::string modName = actionName + " Ward Identity Test";
MAKE_POINT_PROP(origin, pointProp, solverName);
makeWITest(application, modName, pointProp, actionName, mass, Ls);
makeWITest(application, modName, pointProp, actionName, mass, Ls,
perform_axial_tests);
/***************************************************************************
* Conserved current tests with sequential insertion of vector/axial