1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/action/fermion/PartialFractionFermion5D.cc

327 lines
11 KiB
C++
Raw Normal View History

#include <Grid.h>
namespace Grid {
namespace QCD {
void PartialFractionFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
// this does both dag and undag but is trivial; make a common helper routing
int sign = 1;
DhopDir(psi,chi,dir,disp);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
int s = 2*b;
ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s);
ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1);
}
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
}
void PartialFractionFermion5D::Meooe_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
{
// this does both dag and undag but is trivial; make a common helper routing
int sign = dag ? (-1) : 1;
if ( psi.checkerboard == Odd ) {
DhopEO(psi,chi,DaggerNo);
} else {
DhopOE(psi,chi,DaggerNo);
}
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
int s = 2*b;
ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s);
ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1);
}
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
}
void PartialFractionFermion5D::Mooee_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
{
// again dag and undag are trivially related
int sign = dag ? (-1) : 1;
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
int s = 2*b;
RealD pp = p[nblock-1-b];
RealD qq = q[nblock-1-b];
// Do each 2x2 block aligned at s and multiplies Dw site diagonal by G5 so Hw
ag5xpby_ssp(chi,-dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s ,s+1);
ag5xpby_ssp(chi, dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s+1,s);
axpby_ssp (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
}
{
RealD R=(1+mass)/(1-mass);
//R g5 psi[Ls-1] + p[0] H
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale*dw_diag/amax,psi,Ls-1,Ls-1);
for(int b=0;b<nblock;b++){
int s = 2*b+1;
RealD pp = p[nblock-1-b];
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
}
}
}
void PartialFractionFermion5D::MooeeInv_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
{
int sign = dag ? (-1) : 1;
LatticeFermion tmp(psi._grid);
///////////////////////////////////////////////////////////////////////////////////////
//Linv
///////////////////////////////////////////////////////////////////////////////////////
int nblock=(Ls-1)/2;
axpy(chi,0.0,psi,psi); // Identity piece
for(int b=0;b<nblock;b++){
int s = 2*b;
RealD pp = p[nblock-1-b];
RealD qq = q[nblock-1-b];
RealD coeff1=sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
RealD coeff2=sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
axpby_ssp (chi,1.0,chi,coeff1,psi,Ls-1,s);
axpbg5y_ssp(chi,1.0,chi,coeff2,psi,Ls-1,s+1);
}
///////////////////////////////////////////////////////////////////////////////////////
//Dinv (note D isn't really diagonal -- just diagonal enough that we can still invert)
// Compute Seeinv (coeff of gamma5)
///////////////////////////////////////////////////////////////////////////////////////
RealD R=(1+mass)/(1-mass);
RealD Seeinv = R + p[nblock]*dw_diag/amax;
for(int b=0;b<nblock;b++){
Seeinv += p[nblock-1-b]*dw_diag/amax / ( dw_diag*dw_diag/amax/amax + q[nblock-1-b]);
}
Seeinv = 1.0/Seeinv;
for(int b=0;b<nblock;b++){
int s = 2*b;
RealD pp = p[nblock-1-b];
RealD qq = q[nblock-1-b];
RealD coeff1=dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
RealD coeff2=amax*sqrt(qq) / ( dw_diag*dw_diag + amax*amax* qq);
ag5xpby_ssp (tmp,-coeff1,chi,coeff2,chi,s,s+1);
ag5xpby_ssp (tmp, coeff1,chi,coeff2,chi,s+1,s);
}
ag5xpby_ssp (tmp, Seeinv,chi,0.0,chi,Ls-1,Ls-1);
///////////////////////////////////////////////////////////////////////////////////////
// Uinv
///////////////////////////////////////////////////////////////////////////////////////
for(int b=0;b<nblock;b++){
int s = 2*b;
RealD pp = p[nblock-1-b];
RealD qq = q[nblock-1-b];
RealD coeff1=-sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
RealD coeff2=-sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
axpby_ssp (chi,1.0/scale,tmp,coeff1/scale,tmp,s,Ls-1);
axpbg5y_ssp(chi,1.0/scale,tmp,coeff2/scale,tmp,s+1,Ls-1);
}
axpby_ssp (chi, 1.0/scale,tmp,0.0,tmp,Ls-1,Ls-1);
}
void PartialFractionFermion5D::M_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
{
LatticeFermion D(psi._grid);
int sign = dag ? (-1) : 1;
// For partial frac Hw case (b5=c5=1) chroma quirkily computes
//
// Conventions for partfrac appear to be a mess.
// Tony's Nara lectures have
//
// BlockDiag( H/p_i 1 | 1 )
// ( 1 p_i H / q_i^2 | 0 )
// ---------------------------------
// ( -1 0 | R +p0 H )
//
//Chroma ( -2H 2sqrt(q_i) | 0 )
// (2 sqrt(q_i) 2H | 2 sqrt(p_i) )
// ---------------------------------
// ( 0 -2 sqrt(p_i) | 2 R gamma_5 + p0 2H
//
// Edwards/Joo/Kennedy/Wenger
//
// Here, the "beta's" selected by chroma to scale the unphysical bulk constraint fields
// incorporate the approx scale factor. This is obtained by propagating the
// scale on "H" out to the off diagonal elements as follows:
//
// BlockDiag( H/p_i 1 | 1 )
// ( 1 p_i H / q_i^2 | 0 )
// ---------------------------------
// ( -1 0 | R + p_0 H )
//
// becomes:
// BlockDiag( H/ sp_i 1 | 1 )
// ( 1 sp_i H / s^2q_i^2 | 0 )
// ---------------------------------
// ( -1 0 | R + p_0/s H )
//
//
// This is implemented in Chroma by
// p0' = p0/approxMax
// p_i' = p_i*approxMax
// q_i' = q_i*approxMax*approxMax
//
// After the equivalence transform is applied the matrix becomes
//
//Chroma ( -2H sqrt(q'_i) | 0 )
// (sqrt(q'_i) 2H | sqrt(p'_i) )
// ---------------------------------
// ( 0 -sqrt(p'_i) | 2 R gamma_5 + p'0 2H
//
// = ( -2H sqrt(q_i)amax | 0 )
// (sqrt(q_i)amax 2H | sqrt(p_i*amax) )
// ---------------------------------
// ( 0 -sqrt(p_i)*amax | 2 R gamma_5 + p0/amax 2H
//
DW(psi,D,DaggerNo);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
int s = 2*b;
double pp = p[nblock-1-b];
double qq = q[nblock-1-b];
// Do each 2x2 block aligned at s and
ag5xpby_ssp(chi,-1.0*scale,D,amax*sqrt(qq)*scale,psi, s ,s+1); // Multiplies Dw by G5 so Hw
ag5xpby_ssp(chi, 1.0*scale,D,amax*sqrt(qq)*scale,psi, s+1,s);
// Pick up last column
axpby_ssp (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
}
{
double R=(1+this->mass)/(1-this->mass);
//R g5 psi[Ls] + p[0] H
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
for(int b=0;b<nblock;b++){
int s = 2*b+1;
double pp = p[nblock-1-b];
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
}
}
}
RealD PartialFractionFermion5D::M (const LatticeFermion &in, LatticeFermion &out)
{
M_internal(in,out,DaggerNo);
return norm2(out);
}
RealD PartialFractionFermion5D::Mdag (const LatticeFermion &in, LatticeFermion &out)
{
M_internal(in,out,DaggerYes);
return norm2(out);
}
void PartialFractionFermion5D::Meooe (const LatticeFermion &in, LatticeFermion &out)
{
Meooe_internal(in,out,DaggerNo);
}
void PartialFractionFermion5D::MeooeDag (const LatticeFermion &in, LatticeFermion &out)
{
Meooe_internal(in,out,DaggerYes);
}
void PartialFractionFermion5D::Mooee (const LatticeFermion &in, LatticeFermion &out)
{
Mooee_internal(in,out,DaggerNo);
}
void PartialFractionFermion5D::MooeeDag (const LatticeFermion &in, LatticeFermion &out)
{
Mooee_internal(in,out,DaggerYes);
}
void PartialFractionFermion5D::MooeeInv (const LatticeFermion &in, LatticeFermion &out)
{
MooeeInv_internal(in,out,DaggerNo);
}
void PartialFractionFermion5D::MooeeInvDag (const LatticeFermion &in, LatticeFermion &out)
{
MooeeInv_internal(in,out,DaggerYes);
}
void PartialFractionFermion5D::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
SetCoefficientsZolotarev(1.0/scale,zdata);
}
void PartialFractionFermion5D::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
// check on degree matching
// std::cout << Ls << " Ls"<<std::endl;
// std::cout << zdata->n << " - n"<<std::endl;
// std::cout << zdata->da << " -da "<<std::endl;
// std::cout << zdata->db << " -db"<<std::endl;
// std::cout << zdata->dn << " -dn"<<std::endl;
// std::cout << zdata->dd << " -dd"<<std::endl;
assert(Ls == (2*zdata->da -1) );
// Part frac
// RealD R;
R=(1+mass)/(1-mass);
dw_diag = (4.0-M5);
// std::vector<RealD> p;
// std::vector<RealD> q;
p.resize(zdata->da);
q.resize(zdata->dd);
for(int n=0;n<zdata->da;n++){
p[n] = zdata -> alpha[n];
}
for(int n=0;n<zdata->dd;n++){
q[n] = -zdata -> ap[n];
}
scale= part_frac_chroma_convention ? 2.0 : 1.0; // Chroma conventions annoy me
amax=zolo_hi;
}
// Constructors
PartialFractionFermion5D::PartialFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,RealD M5) :
WilsonFermion5D(_Umu,
FiveDimGrid, FiveDimRedBlackGrid,
FourDimGrid, FourDimRedBlackGrid,M5),
mass(_mass)
{
assert((Ls&0x1)==1); // Odd Ls required
int nrational=Ls-1;
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);
// NB: chroma uses a cast to "float" for the zolotarev range(!?).
// this creates a real difference in the operator which I do not like but we can replicate here
// to demonstrate compatibility
// RealD eps = (zolo_lo / zolo_hi);
// zdata = bfm_zolotarev(eps,nrational,0);
SetCoefficientsTanh(zdata,1.0);
Approx::zolotarev_free(zdata);
}
}
}