1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00

Conjugate residual algorithm; some more unary functions

This commit is contained in:
Peter Boyle 2015-06-08 12:04:59 +01:00
parent 769ef7b0f5
commit b0873e7ed2
38 changed files with 1116 additions and 79 deletions

View File

@ -1,4 +1,4 @@
HFILES=./algorithms/approx/bigfloat.h ./algorithms/approx/bigfloat_double.h ./algorithms/approx/Chebyshev.h ./algorithms/approx/Remez.h ./algorithms/approx/Zolotarev.h ./algorithms/iterative/ConjugateGradient.h ./algorithms/iterative/ConjugateResidual.h ./algorithms/iterative/NormalEquations.h ./algorithms/iterative/SchurRedBlack.h ./algorithms/LinearOperator.h ./algorithms/SparseMatrix.h ./Algorithms.h ./AlignedAllocator.h ./cartesian/Cartesian_base.h ./cartesian/Cartesian_full.h ./cartesian/Cartesian_red_black.h ./Cartesian.h ./communicator/Communicator_base.h ./Communicator.h ./Comparison.h ./cshift/Cshift_common.h ./cshift/Cshift_mpi.h ./cshift/Cshift_none.h ./Cshift.h ./Grid.h ./GridConfig.h ./lattice/Lattice_arith.h ./lattice/Lattice_base.h ./lattice/Lattice_comparison.h ./lattice/Lattice_conformable.h ./lattice/Lattice_coordinate.h ./lattice/Lattice_ET.h ./lattice/Lattice_local.h ./lattice/Lattice_overload.h ./lattice/Lattice_peekpoke.h ./lattice/Lattice_reality.h ./lattice/Lattice_reduction.h ./lattice/Lattice_rng.h ./lattice/Lattice_trace.h ./lattice/Lattice_transfer.h ./lattice/Lattice_transpose.h ./lattice/Lattice_where.h ./Lattice.h ./parallelIO/NerscIO.h ./qcd/action/Actions.h ./qcd/action/DiffAction.h ./qcd/action/fermion/CayleyFermion5D.h ./qcd/action/fermion/ContinuedFractionFermion5D.h ./qcd/action/fermion/DomainWallFermion.h ./qcd/action/fermion/FermionOperator.h ./qcd/action/fermion/MobiusFermion.h ./qcd/action/fermion/MobiusZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h ./qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonContfracTanhFermion.h ./qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h ./qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h ./qcd/action/fermion/PartialFractionFermion5D.h ./qcd/action/fermion/ScaledShamirFermion.h ./qcd/action/fermion/ShamirZolotarevFermion.h ./qcd/action/fermion/WilsonCompressor.h ./qcd/action/fermion/WilsonFermion.h ./qcd/action/fermion/WilsonFermion5D.h ./qcd/action/fermion/WilsonKernels.h ./qcd/action/gauge/GaugeActionBase.h ./qcd/action/gauge/WilsonGaugeAction.h ./qcd/QCD.h ./qcd/spin/Dirac.h ./qcd/spin/TwoSpinor.h ./qcd/utils/CovariantCshift.h ./qcd/utils/LinalgUtils.h ./qcd/utils/SpaceTimeGrid.h ./qcd/utils/WilsonLoops.h ./simd/Grid_avx.h ./simd/Grid_avx512.h ./simd/Grid_qpx.h ./simd/Grid_sse4.h ./simd/Grid_vector_types.h ./simd/Old/Grid_vComplexD.h ./simd/Old/Grid_vComplexF.h ./simd/Old/Grid_vInteger.h ./simd/Old/Grid_vRealD.h ./simd/Old/Grid_vRealF.h ./Simd.h ./stencil/Lebesgue.h ./Stencil.h ./tensors/Tensor_arith.h ./tensors/Tensor_arith_add.h ./tensors/Tensor_arith_mac.h ./tensors/Tensor_arith_mul.h ./tensors/Tensor_arith_scalar.h ./tensors/Tensor_arith_sub.h ./tensors/Tensor_class.h ./tensors/Tensor_extract_merge.h ./tensors/Tensor_inner.h ./tensors/Tensor_outer.h ./tensors/Tensor_peek.h ./tensors/Tensor_poke.h ./tensors/Tensor_reality.h ./tensors/Tensor_Ta.h ./tensors/Tensor_trace.h ./tensors/Tensor_traits.h ./tensors/Tensor_transpose.h ./Tensors.h ./Threads.h
HFILES=./algorithms/approx/bigfloat.h ./algorithms/approx/bigfloat_double.h ./algorithms/approx/Chebyshev.h ./algorithms/approx/Remez.h ./algorithms/approx/Zolotarev.h ./algorithms/CoarsenedMatrix.h ./algorithms/iterative/ConjugateGradient.h ./algorithms/iterative/ConjugateResidual.h ./algorithms/iterative/NormalEquations.h ./algorithms/iterative/SchurRedBlack.h ./algorithms/LinearOperator.h ./algorithms/SparseMatrix.h ./Algorithms.h ./AlignedAllocator.h ./cartesian/Cartesian_base.h ./cartesian/Cartesian_full.h ./cartesian/Cartesian_red_black.h ./Cartesian.h ./communicator/Communicator_base.h ./Communicator.h ./Comparison.h ./cshift/Cshift_common.h ./cshift/Cshift_mpi.h ./cshift/Cshift_none.h ./Cshift.h ./Grid.h ./GridConfig.h ./lattice/Lattice_arith.h ./lattice/Lattice_base.h ./lattice/Lattice_comparison.h ./lattice/Lattice_conformable.h ./lattice/Lattice_coordinate.h ./lattice/Lattice_ET.h ./lattice/Lattice_local.h ./lattice/Lattice_overload.h ./lattice/Lattice_peekpoke.h ./lattice/Lattice_reality.h ./lattice/Lattice_reduction.h ./lattice/Lattice_rng.h ./lattice/Lattice_trace.h ./lattice/Lattice_transfer.h ./lattice/Lattice_transpose.h ./lattice/Lattice_where.h ./Lattice.h ./parallelIO/NerscIO.h ./qcd/action/Actions.h ./qcd/action/DiffAction.h ./qcd/action/fermion/CayleyFermion5D.h ./qcd/action/fermion/ContinuedFractionFermion5D.h ./qcd/action/fermion/DomainWallFermion.h ./qcd/action/fermion/FermionOperator.h ./qcd/action/fermion/g5HermitianLinop.h ./qcd/action/fermion/MobiusFermion.h ./qcd/action/fermion/MobiusZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonCayleyTanhFermion.h ./qcd/action/fermion/OverlapWilsonCayleyZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonContfracTanhFermion.h ./qcd/action/fermion/OverlapWilsonContfracZolotarevFermion.h ./qcd/action/fermion/OverlapWilsonPartialFractionTanhFermion.h ./qcd/action/fermion/OverlapWilsonPartialFractionZolotarevFermion.h ./qcd/action/fermion/PartialFractionFermion5D.h ./qcd/action/fermion/ScaledShamirFermion.h ./qcd/action/fermion/ShamirZolotarevFermion.h ./qcd/action/fermion/WilsonCompressor.h ./qcd/action/fermion/WilsonFermion.h ./qcd/action/fermion/WilsonFermion5D.h ./qcd/action/fermion/WilsonKernels.h ./qcd/action/gauge/GaugeActionBase.h ./qcd/action/gauge/WilsonGaugeAction.h ./qcd/QCD.h ./qcd/spin/Dirac.h ./qcd/spin/TwoSpinor.h ./qcd/utils/CovariantCshift.h ./qcd/utils/LinalgUtils.h ./qcd/utils/SpaceTimeGrid.h ./qcd/utils/WilsonLoops.h ./simd/Grid_avx.h ./simd/Grid_avx512.h ./simd/Grid_qpx.h ./simd/Grid_sse4.h ./simd/Grid_vector_types.h ./simd/Old/Grid_vComplexD.h ./simd/Old/Grid_vComplexF.h ./simd/Old/Grid_vInteger.h ./simd/Old/Grid_vRealD.h ./simd/Old/Grid_vRealF.h ./Simd.h ./stencil/Lebesgue.h ./Stencil.h ./tensors/Tensor_arith.h ./tensors/Tensor_arith_add.h ./tensors/Tensor_arith_mac.h ./tensors/Tensor_arith_mul.h ./tensors/Tensor_arith_scalar.h ./tensors/Tensor_arith_sub.h ./tensors/Tensor_class.h ./tensors/Tensor_extract_merge.h ./tensors/Tensor_inner.h ./tensors/Tensor_outer.h ./tensors/Tensor_peek.h ./tensors/Tensor_poke.h ./tensors/Tensor_reality.h ./tensors/Tensor_Ta.h ./tensors/Tensor_trace.h ./tensors/Tensor_traits.h ./tensors/Tensor_transpose.h ./Tensors.h ./Threads.h
CCFILES=./algorithms/approx/Remez.cc ./algorithms/approx/Zolotarev.cc ./GridInit.cc ./qcd/action/fermion/CayleyFermion5D.cc ./qcd/action/fermion/ContinuedFractionFermion5D.cc ./qcd/action/fermion/PartialFractionFermion5D.cc ./qcd/action/fermion/WilsonFermion.cc ./qcd/action/fermion/WilsonFermion5D.cc ./qcd/action/fermion/WilsonKernels.cc ./qcd/action/fermion/WilsonKernelsHand.cc ./qcd/spin/Dirac.cc ./qcd/utils/SpaceTimeGrid.cc ./stencil/Lebesgue.cc ./stencil/Stencil_common.cc

View File

@ -35,6 +35,8 @@ namespace Grid {
inline RealD conjugate(const RealD & r){ return r; }
inline RealD real(const RealD & r){ return r; }
inline RealD sqrt(const RealD & r){ return std::sqrt(r); }
inline ComplexD conjugate(const ComplexD& r){ return(conj(r)); }
inline ComplexD adj(const ComplexD& r){ return(conjugate(r)); }
inline ComplexF conjugate(const ComplexF& r ){ return(conj(r)); }
@ -112,6 +114,7 @@ namespace Grid {
};
#include <simd/Grid_vector_types.h>
#include <simd/Grid_vector_unops.h>
namespace Grid {
// Default precision

View File

@ -12,6 +12,7 @@
#include <tensors/Tensor_peek.h>
#include <tensors/Tensor_poke.h>
#include <tensors/Tensor_reality.h>
#include <tensors/Tensor_unary.h>
#include <tensors/Tensor_extract_merge.h>
#endif

View File

@ -0,0 +1,146 @@
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
#include <Grid.h>
namespace Grid {
class Geometry {
public:
int npoint;
int dimension;
std::vector<int> directions ;
std::vector<int> displacements;
Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
for(int d=0;d<dimension;d++){
directions[2*d ] = d;
directions[2*d+1] = d;
displacements[2*d ] = +1;
displacements[2*d+1] = -1;
}
directions [2*dimension]=0;
displacements[2*dimension]=0;
}
std::vector<int> GetDelta(int point) {
std::vector<int> delta(dimension,0);
delta[directions[point]] = displacements[point];
return delta;
};
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<vComplex,nbasis > > > {
public:
typedef iVector<vComplex,nbasis > siteVector;
typedef Lattice<iVector<vComplex,nbasis > > CoarseVector;
typedef Lattice<iMatrix<vComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
CartesianStencil Stencil;
std::vector<CoarseMatrix> A;
std::vector<siteVector,alignedAllocator<siteVector> > comm_buf;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
RealD M (const CoarseVector &in, CoarseVector &out){
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,comm_buf,compressor);
//PARALLEL_FOR_LOOP
for(int ss=0;ss<Grid()->oSites();ss++){
siteVector res = zero;
siteVector tmp;
siteVector nbr;
int offset,local,perm;
for(int point=0;point<geom.npoint;point++){
offset = Stencil._offsets [point][ss];
local = Stencil._is_local[point][ss];
perm = Stencil._permute[point][ss];
if(local&&perm) {
permute(nbr,in._odata[offset],perm);
} else if(local) {
nbr = in._odata[offset];
} else {
nbr = comm_buf[offset];
}
res = res + A[point]._odata[ss]*nbr;
}
vstream(out._odata[ss],res);
}
return norm2(out);
};
RealD Mdag (const CoarseVector &in, CoarseVector &out){
return M(in,out);
};
// Defer support for further coarsening for now
void Mdiag (const CoarseVector &in, CoarseVector &out){};
void Mdir (const CoarseVector &in, CoarseVector &out,int dir, int disp){};
CoarsenedMatrix(GridCartesian &CoarseGrid) :
_grid(&CoarseGrid),
geom(CoarseGrid._ndimension),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
A(geom.npoint,&CoarseGrid)
{
comm_buf.resize(Stencil._unified_buffer_size);
};
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,std::vector<Lattice<Fobj> > & subspace){
FineField phi(FineGrid);
FineField Mphi(FineGrid);
CoarseVector Proj(Grid());
CoarseScalar InnerProd(Grid());
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
for(int i=0;i<nbasis;i++){
phi=subspace[i];
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp= geom.displacements[p];
if ( disp==0 )linop.OpDiag(phi,Mphi);
else linop.OpDir(phi,Mphi,dir,disp);
blockProject(Proj,Mphi,subspace);
for(int ss=0;ss<Grid()->oSites();ss++){
for(int j=0;j<nbasis;j++){
A[p]._odata[ss](j,i) = Proj._odata[ss](j);
}
}
}
}
std::cout<<"Computed Coarse Operator"<<std::endl;
}
};
}
#endif

View File

@ -18,8 +18,9 @@ namespace Grid {
Field tmp (in._grid);
ni=M(in,tmp);
no=Mdag(tmp,out);
std::cout << "MdagM "<< ni<<" "<<no<<std::endl;
}
virtual void Mdiag (const Field &in, Field &out)=0;
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -108,7 +108,7 @@ namespace Grid {
RealD ns = norm2(in);
RealD nr = norm2(resid);
std::cout << "SchurRedBlackDiagMooee solver true unprec resid "<< sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
std::cout << "SchurRedBlackDiagMooee solver true unprec resid "<< std::sqrt(nr/ns) <<" nr "<< nr <<" ns "<<ns << std::endl;
}
};

View File

@ -299,6 +299,7 @@ PARALLEL_FOR_LOOP
#include <lattice/Lattice_reality.h>
#include <lattice/Lattice_coordinate.h>
#include <lattice/Lattice_rng.h>
#include <lattice/Lattice_unary.h>
#include <lattice/Lattice_transfer.h>

View File

@ -25,8 +25,7 @@ PARALLEL_FOR_LOOP
// localInnerProduct
template<class vobj>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs)
-> Lattice<typename vobj::tensor_reduced>
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
{
Lattice<typename vobj::tensor_reduced> ret(rhs._grid);
PARALLEL_FOR_LOOP

View File

@ -27,9 +27,9 @@ PARALLEL_FOR_LOOP
return ret;
};
template<class vobj> inline auto real(const Lattice<vobj> &z) -> Lattice<decltype(real(z._odata[0]))>
template<class vobj> inline auto real(const Lattice<vobj> &z) -> Lattice<vobj>
{
Lattice<decltype(real(z._odata[0]))> ret(z._grid);
Lattice<vobj> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = real(z._odata[ss]);
@ -37,9 +37,9 @@ PARALLEL_FOR_LOOP
return ret;
}
template<class vobj> inline auto imag(const Lattice<vobj> &z) -> Lattice<decltype(imag(z._odata[0]))>
template<class vobj> inline auto imag(const Lattice<vobj> &z) -> Lattice<vobj>
{
Lattice<decltype(imag(z._odata[0]))> ret(z._grid);
Lattice<vobj> ret(z._grid);
PARALLEL_FOR_LOOP
for(int ss=0;ss<z._grid->oSites();ss++){
ret._odata[ss] = imag(z._odata[ss]);

View File

@ -56,10 +56,10 @@ PARALLEL_FOR_LOOP
}
template<class vobj,int nbasis>
inline void projectBlockBasis(Lattice<iVector<vComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
template<class vobj,class CComplex,int nbasis>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
@ -69,13 +69,14 @@ inline void projectBlockBasis(Lattice<iVector<vComplex,nbasis > > &coarseData,
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis,fineData);
conformable(Basis[i],fineData);
}
std::vector<int> block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d] == fine->_rdimensions[d]);
}
coarseData=zero;
@ -92,20 +93,149 @@ inline void projectBlockBasis(Lattice<iVector<vComplex,nbasis > > &coarseData,
for(int i=0;i<nbasis;i++) {
coarseData._odata[sc][i]=coarseData._odata[sc][i]
+ innerProduct(Basis[i]._odata[sf],fineData._odata[sf]);
coarseData._odata[sc](i)=coarseData._odata[sc](i)
+ TensorRemove( innerProduct(Basis[i]._odata[sf],fineData._odata[sf]));
}
}
return;
}
template<class vobj,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<CComplex> &coarseA,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
GridBase * fine = fineZ._grid;
GridBase * coarse= coarseA._grid;
fineZ.checkerboard=fineX.checkerboard;
subdivides(coarse,fine); // require they map
conformable(fineX,fineY);
conformable(fineX,fineZ);
int _ndimension = coarse->_ndimension;
std::vector<int> block_r (_ndimension);
// FIXME merge with subdivide checking routine as this is redundant
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
PARALLEL_FOR_LOOP
for(int sf=0;sf<fine->oSites();sf++){
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
GridBase::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
GridBase::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y
fineZ._odata[sf]=coarseA._odata[sc]*fineX._odata[sf]+fineY._odata[sf];
}
return;
}
template<class vobj,class CComplex>
inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(fineX._odata[0],fineY._odata[0])) dotp;
GridBase *coarse(CoarseInner._grid);
GridBase *fine (fineX._grid);
Lattice<dotp> fine_inner(fine);
Lattice<dotp> coarse_inner(coarse);
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
for(int ss=0;ss<coarse->oSites();ss++){
CoarseInner._odata[ss] = coarse_inner._odata[ss];
}
}
template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
GridBase *coarse = ip._grid;
blockInnerProduct(ip,fineX,fineX);
ip = rsqrt(ip);
blockZAXPY(fineX,ip,fineX,fineX);
}
// useful in multigrid project;
// Generic name : Coarsen?
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
subdivides(coarse,fine); // require they map
int _ndimension = coarse->_ndimension;
std::vector<int> block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
coarseData=zero;
for(int sf=0;sf<fine->oSites();sf++){
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
GridBase::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
GridBase::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
}
return;
}
template<class vobj,int nbasis>
inline void promoteBlockBasis(const Lattice<iVector<vComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis)
{
GridBase *coarse = ip._grid;
GridBase *fine = Basis[0]._grid;
int nbasis = Basis.size() ;
int _ndimension = coarse->_ndimension;
// checks
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i]._grid,fine);
}
for(int v=0;v<nbasis;v++) {
for(int u=0;u<v;u++) {
//Inner product & remove component
blockInnerProduct(ip,Basis[u],Basis[v]);
ip = -ip;
blockZAXPY<vobj,CComplex> (Basis[v],ip,Basis[u],Basis[v]);
}
blockNormalise(ip,Basis[v]);
}
}
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
@ -146,40 +276,6 @@ inline void promoteBlockBasis(const Lattice<iVector<vComplex,nbasis > > &coarseD
}
// useful in multigrid project;
// Generic name : Coarsen?
template<class vobj>
inline void sumBlocks(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
GridBase * fine = fineData._grid;
GridBase * coarse= coarseData._grid;
subdivides(coarse,fine); // require they map
int _ndimension = coarse->_ndimension;
std::vector<int> block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
coarseData=zero;
for(int sf=0;sf<fine->oSites();sf++){
int sc;
std::vector<int> coor_c(_ndimension);
std::vector<int> coor_f(_ndimension);
GridBase::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
GridBase::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
coarseData._odata[sc]=coarseData._odata[sc]+fineData._odata[sf];
}
return;
}
}
#endif

View File

@ -0,0 +1,32 @@
#ifndef GRID_LATTICE_UNARY_H
#define GRID_LATTICE_UNARY_H
namespace Grid {
//////////////////////////////////////////////////////////////////////////////////////////////////////
// avoid copy back routines for mult, mac, sub, add
//////////////////////////////////////////////////////////////////////////////////////////////////////
template<class obj> Lattice<obj> sqrt(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=sqrt(rhs._odata[ss]);
}
return ret;
}
template<class obj> Lattice<obj> rsqrt(const Lattice<obj> &rhs){
Lattice<obj> ret(rhs._grid);
ret.checkerboard = rhs.checkerboard;
conformable(ret,rhs);
PARALLEL_FOR_LOOP
for(int ss=0;ss<rhs._grid->oSites();ss++){
ret._odata[ss]=rsqrt(rhs._odata[ss]);
}
return ret;
}
}
#endif

View File

@ -165,6 +165,27 @@ namespace QCD {
}
}
void CayleyFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
LatticeFermion tmp(psi._grid);
// Assemble the 5d matrix
for(int s=0;s<Ls;s++){
if ( s==0 ) {
// tmp = bs psi[s] + cs[s] psi[s+1}
// tmp+= -mass*cs[s] psi[s+1}
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi ,s, s+1);
axpby_ssp_pplus(tmp,1.0,tmp,mass*ceo[s],psi,s,Ls-1);
} else if ( s==(Ls-1)) {
axpby_ssp_pminus(tmp,beo[s],psi,mass*ceo[s],psi,s,0);
axpby_ssp_pplus(tmp,1.0,tmp,-ceo[s],psi,s,s-1);
} else {
axpby_ssp_pminus(tmp,beo[s],psi,-ceo[s],psi,s,s+1);
axpby_ssp_pplus (tmp,1.0,tmp,-ceo[s],psi,s,s-1);
}
}
// Apply 4d dslash fragment
DhopDir(tmp,chi,dir,disp);
}
void CayleyFermion5D::MooeeDag (const LatticeFermion &psi, LatticeFermion &chi)
{
for (int s=0;s<Ls;s++){

View File

@ -21,6 +21,10 @@ namespace Grid {
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out);
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Instantiatable(void)=0;
// Efficient support for multigrid coarsening
virtual void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
// protected:
RealD mass;

View File

@ -90,6 +90,18 @@ namespace Grid {
// Can ignore "dag"
return M(psi,chi);
}
void ContinuedFractionFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
DhopDir(psi,chi,dir,disp); // Dslash on diagonal. g5 Dslash is hermitian
int sign=1;
for(int s=0;s<Ls;s++){
if ( s==(Ls-1) ){
ag5xpby_ssp(chi,Beta[s]*ZoloHiInv,chi,0.0,chi,s,s);
} else {
ag5xpby_ssp(chi,cc[s]*Beta[s]*sign*ZoloHiInv,chi,0.0,chi,s,s);
}
sign=-sign;
}
}
void ContinuedFractionFermion5D::Meooe (const LatticeFermion &psi, LatticeFermion &chi)
{
// Apply 4d dslash

View File

@ -24,6 +24,9 @@ namespace Grid {
// virtual void Instantiatable(void)=0;
virtual void Instantiatable(void) =0;
// Efficient support for multigrid coarsening
virtual void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
// Constructors
ContinuedFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -40,6 +40,9 @@ namespace Grid {
virtual void DhopOE(const FermionField &in, FermionField &out,int dag)=0;
virtual void DhopEO(const FermionField &in, FermionField &out,int dag)=0;
virtual void Mdiag(const FermionField &in, FermionField &out) { Mooee(in,out);}; // Same as Mooee applied to both CB's
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void DhopDir(const FermionField &in, FermionField &out,int dir,int disp)=0; // implemented by WilsonFermion and WilsonFermion5D
};

View File

@ -2,6 +2,22 @@
namespace Grid {
namespace QCD {
void PartialFractionFermion5D::Mdir (const LatticeFermion &psi, LatticeFermion &chi,int dir,int disp){
// this does both dag and undag but is trivial; make a common helper routing
int sign = 1;
DhopDir(psi,chi,dir,disp);
int nblock=(Ls-1)/2;
for(int b=0;b<nblock;b++){
int s = 2*b;
ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s);
ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1);
}
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
}
void PartialFractionFermion5D::Meooe_internal(const LatticeFermion &psi, LatticeFermion &chi,int dag)
{
// this does both dag and undag but is trivial; make a common helper routing

View File

@ -30,6 +30,9 @@ namespace Grid {
virtual void Instantiatable(void) =0; // ensure no make-eee
// Efficient support for multigrid coarsening
virtual void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
// Constructors
PartialFractionFermion5D(LatticeGaugeField &_Umu,
GridCartesian &FiveDimGrid,

View File

@ -93,6 +93,26 @@ void WilsonFermion::MooeeInvDag(const LatticeFermion &in, LatticeFermion &out)
out.checkerboard = in.checkerboard;
MooeeInv(in,out);
}
void WilsonFermion::Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp)
{
DhopDir(in,out,dir,disp);
}
void WilsonFermion::DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp){
WilsonCompressor compressor(DaggerNo);
Stencil.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
assert( (disp==1)||(disp==-1) );
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
PARALLEL_FOR_LOOP
for(int sss=0;sss<in._grid->oSites();sss++){
DiracOpt::DhopDir(Stencil,Umu,comm_buf,sss,sss,in,out,dirdisp);
}
};
void WilsonFermion::DhopInternal(CartesianStencil & st,LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)

View File

@ -26,7 +26,7 @@ namespace Grid {
void MeooeDag (const LatticeFermion &in, LatticeFermion &out);
virtual void Mooee (const LatticeFermion &in, LatticeFermion &out); // remain virtual so we
virtual void MooeeDag (const LatticeFermion &in, LatticeFermion &out); // can derive Clover
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out); // from Wilson bas
virtual void MooeeInv (const LatticeFermion &in, LatticeFermion &out); // from Wilson base
virtual void MooeeInvDag (const LatticeFermion &in, LatticeFermion &out);
// non-hermitian hopping term; half cb or both
@ -34,6 +34,10 @@ namespace Grid {
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
// Multigrid assistance
void Mdir (const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
void DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
///////////////////////////////////////////////////////////////
// Extra methods added by derived
///////////////////////////////////////////////////////////////

View File

@ -82,6 +82,28 @@ void WilsonFermion5D::DoubleStore(LatticeDoubledGaugeField &Uds,const LatticeGau
pokeIndex<LorentzIndex>(Uds,U,mu+4);
}
}
void WilsonFermion5D::DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp)
{
assert( (disp==1)||(disp==-1) );
WilsonCompressor compressor(DaggerNo);
Stencil.HaloExchange<vSpinColourVector,vHalfSpinColourVector,WilsonCompressor>(in,comm_buf,compressor);
int skip = (disp==1) ? 0 : 1;
int dirdisp = dir+skip*4;
PARALLEL_FOR_LOOP
for(int ss=0;ss<Umu._grid->oSites();ss++){
for(int s=0;s<Ls;s++){
int sU=ss;
int sF = s+Ls*sU;
DiracOpt::DhopDir(Stencil,Umu,comm_buf,sF,sU,in,out,dirdisp);
}
}
};
void WilsonFermion5D::DhopInternal(CartesianStencil & st, LebesgueOrder &lo,
LatticeDoubledGaugeField & U,
const LatticeFermion &in, LatticeFermion &out,int dag)

View File

@ -57,6 +57,10 @@ namespace Grid {
void DhopOE(const LatticeFermion &in, LatticeFermion &out,int dag);
void DhopEO(const LatticeFermion &in, LatticeFermion &out,int dag);
// add a DhopComm
// -- suboptimal interface will presently trigger multiple comms.
void DhopDir(const LatticeFermion &in, LatticeFermion &out,int dir,int disp);
///////////////////////////////////////////////////////////////
// New methods added
///////////////////////////////////////////////////////////////

View File

@ -13,7 +13,6 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
vHalfSpinColourVector Uchi;
int offset,local,perm, ptype;
//#define VERBOSE( A) if ( ss<10 ) { std::cout << "site " <<ss << " " #A " neigh " << offset << " perm "<< perm <<std::endl;}
// Xp
int ss = sF;
@ -33,12 +32,6 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
mult(&Uchi(),&U._odata[sU](Xp),&chi());
spReconXp(result,Uchi);
// std::cout << "XP_RECON"<<std::endl;
// std::cout << result()(0)(0) <<" "<<result()(0)(1) <<" "<<result()(0)(2) <<std::endl;
// std::cout << result()(1)(0) <<" "<<result()(1)(1) <<" "<<result()(1)(2) <<std::endl;
// std::cout << result()(2)(0) <<" "<<result()(2)(1) <<" "<<result()(2)(2) <<std::endl;
// std::cout << result()(3)(0) <<" "<<result()(3)(1) <<" "<<result()(3)(2) <<std::endl;
// Yp
offset = st._offsets [Yp][ss];
local = st._is_local[Yp][ss];
@ -93,8 +86,7 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
perm = st._permute[Xm][ss];
ptype = st._permute_type[Xm];
if ( local && perm )
{
if ( local && perm ) {
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
@ -104,12 +96,6 @@ void DiracOpt::DhopSite(CartesianStencil &st,LatticeDoubledGaugeField &U,
}
mult(&Uchi(),&U._odata[sU](Xm),&chi());
accumReconXm(result,Uchi);
// std::cout << "XM_RECON_ACCUM"<<std::endl;
// std::cout << result()(0)(0) <<" "<<result()(0)(1) <<" "<<result()(0)(2) <<std::endl;
// std::cout << result()(1)(0) <<" "<<result()(1)(1) <<" "<<result()(1)(2) <<std::endl;
// std::cout << result()(2)(0) <<" "<<result()(2)(1) <<" "<<result()(2)(2) <<std::endl;
// std::cout << result()(3)(0) <<" "<<result()(3)(1) <<" "<<result()(3)(2) <<std::endl;
// Ym
offset = st._offsets [Ym][ss];
@ -308,4 +294,136 @@ void DiracOpt::DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
vstream(out._odata[ss],result*(-0.5));
}
void DiracOpt::DhopDir(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out,int dirdisp)
{
vHalfSpinColourVector tmp;
vHalfSpinColourVector chi;
vSpinColourVector result;
vHalfSpinColourVector Uchi;
int offset,local,perm, ptype;
int ss=sF;
offset = st._offsets [dirdisp][ss];
local = st._is_local[dirdisp][ss];
perm = st._permute[dirdisp][ss];
ptype = st._permute_type[dirdisp];
// Xp
if(dirdisp==Xp){
if ( local && perm ) {
spProjXp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Xp),&chi());
spReconXp(result,Uchi);
}
// Yp
if ( dirdisp==Yp ){
if ( local && perm ) {
spProjYp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Yp),&chi());
spReconYp(result,Uchi);
}
// Zp
if ( dirdisp ==Zp ){
if ( local && perm ) {
spProjZp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Zp),&chi());
spReconZp(result,Uchi);
}
// Tp
if ( dirdisp ==Tp ){
if ( local && perm ) {
spProjTp(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTp(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Tp),&chi());
spReconTp(result,Uchi);
}
// Xm
if ( dirdisp==Xm ){
if ( local && perm ) {
spProjXm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjXm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Xm),&chi());
spReconXm(result,Uchi);
}
// Ym
if ( dirdisp == Ym ){
if ( local && perm ) {
spProjYm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjYm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Ym),&chi());
spReconYm(result,Uchi);
}
// Zm
if ( dirdisp == Zm ){
if ( local && perm ) {
spProjZm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjZm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Zm),&chi());
spReconZm(result,Uchi);
}
// Tm
if ( dirdisp==Tm ) {
if ( local && perm ) {
spProjTm(tmp,in._odata[offset]);
permute(chi,tmp,ptype);
} else if ( local ) {
spProjTm(chi,in._odata[offset]);
} else {
chi=buf[offset];
}
mult(&Uchi(),&U._odata[sU](Tm),&chi());
spReconTm(result,Uchi);
}
vstream(out._odata[ss],result*(-0.5));
}
}}

View File

@ -20,6 +20,9 @@ namespace Grid {
static void DhopSiteDag(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out);
static void DhopDir(CartesianStencil &st,LatticeDoubledGaugeField &U,
std::vector<vHalfSpinColourVector,alignedAllocator<vHalfSpinColourVector> > &buf,
int sF,int sU,const LatticeFermion &in, LatticeFermion &out,int dirdisp);
};

View File

@ -11,11 +11,22 @@ class Gamma5HermitianLinearOperator : public LinearOperatorBase<Field> {
public:
Gamma5HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
HermOp(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
HermOp(in,out);
}
void OpDiag (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.Mdiag(in,tmp);
G5R5(out,tmp);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
Field tmp(in._grid);
_Mat.Mdir(in,tmp,dir,disp);
G5R5(out,tmp);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
HermOp(in,out);

View File

@ -314,9 +314,9 @@ namespace Optimization {
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m256>::operator()(__m256 in){
__m256 v1,v2;
Optimization::permute(v1,in,0); // sse 128; paired complex single
Optimization::permute(v1,in,0); // avx 256; quad complex single
v1 = _mm256_add_ps(v1,in);
Optimization::permute(v2,v1,1); // avx 256; quad complex single
Optimization::permute(v2,v1,1);
v1 = _mm256_add_ps(v1,v2);
u256f conv; conv.v = v1;
return Grid::ComplexF(conv.f[0],conv.f[1]);
@ -367,7 +367,6 @@ namespace Optimization {
assert(0);
}
}
//////////////////////////////////////////////////////////////////////////////////////

View File

@ -78,11 +78,18 @@ namespace Grid {
typedef typename RealPart < Scalar_type >::type Real;
typedef Vector_type vector_type;
typedef Scalar_type scalar_type;
typedef union conv_t_union {
Vector_type v;
Scalar_type s[sizeof(Vector_type)/sizeof(Scalar_type)];
conv_t_union(){};
} conv_t;
Vector_type v;
static inline int Nsimd(void) { return sizeof(Vector_type)/sizeof(Scalar_type);}
Grid_simd& operator=(const Grid_simd&& rhs){v=rhs.v;return *this;};
Grid_simd& operator=(const Grid_simd& rhs){v=rhs.v;return *this;}; //faster than not declaring it and leaving to the compiler
@ -192,6 +199,27 @@ namespace Grid {
return *this;
}
///////////////////////////////////////
// Not all functions are supported
// through SIMD and must breakout to
// scalar type and back again. This
// provides support
///////////////////////////////////////
template<class functor> friend inline Grid_simd SimdApply (const functor &func,const Grid_simd &v) {
Grid_simd ret;
Grid_simd::conv_t conv;
conv.v = v.v;
for(int i=0;i<Nsimd();i++){
conv.s[i]=func(conv.s[i]);
}
ret.v = conv.v;
return ret;
}
////////////////////////////////////////////////////////////////////
// General permute; assumes vector length is same across
// all subtypes; may not be a good assumption, but could

View File

@ -0,0 +1,60 @@
#ifndef GRID_VECTOR_UNOPS
#define GRID_VECTOR_UNOPS
namespace Grid {
template<class scalar> struct SqrtRealFunctor {
scalar operator()(const scalar &a) const {
return sqrt(real(a));
}
};
template<class scalar> struct RSqrtRealFunctor {
scalar operator()(const scalar &a) const {
return scalar(1.0/sqrt(real(a)));
}
};
template<class scalar> struct CosRealFunctor {
scalar operator()(const scalar &a) const {
return cos(real(a));
}
};
template<class scalar> struct SinRealFunctor {
scalar operator()(const scalar &a) const {
return sin(real(a));
}
};
template<class scalar> struct PowRealFunctor {
double y;
PowRealFunctor(double _y) : y(_y) {};
scalar operator()(const scalar &a) const {
return pow(real(a),y);
}
};
template < class S, class V >
inline Grid_simd<S,V> sqrt(const Grid_simd<S,V> &r) {
return SimdApply(SqrtRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> rsqrt(const Grid_simd<S,V> &r) {
return SimdApply(RSqrtRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> cos(const Grid_simd<S,V> &r) {
return SimdApply(CosRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> sin(const Grid_simd<S,V> &r) {
return SimdApply(CosRealFunctor<S>(),r);
}
template < class S, class V >
inline Grid_simd<S,V> pow(const Grid_simd<S,V> &r,double y) {
return SimdApply(PowRealFunctor<S>(y),r);
}
}
#endif

View File

@ -123,6 +123,13 @@ public:
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iVector<recurse_scalar_object,N> scalar_object;
template<class T,typename std::enable_if<!isGridTensor<T>::value, T>::type* = nullptr > strong_inline auto operator = (T arg) -> iVector<vtype,N>
{
zeroit(*this);
for(int i=0;i<N;i++)
_internal[i] = arg;
return *this;
}
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1};
iVector(const Zero &z){ *this = zero; };

View File

@ -0,0 +1,37 @@
#ifndef GRID_TENSOR_UNARY_H
#define GRID_TENSOR_UNARY_H
namespace Grid {
#define UNARY_REAL(func)\
template<class obj> inline auto func(const iScalar<obj> &z) -> iScalar<obj>\
{\
iScalar<obj> ret;\
ret._internal = func( (z._internal));\
return ret;\
}\
template<class obj,int N> inline auto func(const iVector<obj,N> &z) -> iVector<obj,N>\
{\
iVector<obj,N> ret;\
for(int c1=0;c1<N;c1++){\
ret._internal[c1] = func( (z._internal[c1]));\
}\
return ret;\
}\
template<class obj,int N> inline auto func(const iMatrix<obj,N> &z) -> iMatrix<obj,N>\
{\
iMatrix<obj,N> ret;\
for(int c1=0;c1<N;c1++){\
for(int c2=0;c2<N;c2++){\
ret._internal[c1][c2] = func( (z._internal[c1][c2]));\
}}\
return ret;\
}
UNARY_REAL(sqrt);
UNARY_REAL(rsqrt);
UNARY_REAL(sin);
UNARY_REAL(cos);
}
#endif

View File

@ -1,5 +1,5 @@
bin_PROGRAMS = Test_GaugeAction Test_cayley_cg Test_cayley_even_odd Test_contfrac_cg Test_contfrac_even_odd Test_cshift Test_cshift_red_black Test_dwf_cg_prec Test_dwf_cg_schur Test_dwf_cg_unprec Test_dwf_even_odd Test_gamma Test_main Test_nersc_io Test_remez Test_rng Test_rng_fixed Test_simd Test_stencil Test_wilson_cg_prec Test_wilson_cg_schur Test_wilson_cg_unprec Test_wilson_even_odd
bin_PROGRAMS = Test_GaugeAction Test_cayley_cg Test_cayley_coarsen_support Test_cayley_even_odd Test_cf_coarsen_support Test_cf_cr_unprec Test_contfrac_cg Test_contfrac_even_odd Test_cshift Test_cshift_red_black Test_dwf_cg_prec Test_dwf_cg_schur Test_dwf_cg_unprec Test_dwf_cr_unprec Test_dwf_even_odd Test_gamma Test_main Test_nersc_io Test_remez Test_rng Test_rng_fixed Test_simd Test_stencil Test_wilson_cg_prec Test_wilson_cg_schur Test_wilson_cg_unprec Test_wilson_cr_unprec Test_wilson_even_odd
Test_GaugeAction_SOURCES=Test_GaugeAction.cc
@ -10,10 +10,18 @@ Test_cayley_cg_SOURCES=Test_cayley_cg.cc
Test_cayley_cg_LDADD=-lGrid
Test_cayley_coarsen_support_SOURCES=Test_cayley_coarsen_support.cc
Test_cayley_coarsen_support_LDADD=-lGrid
Test_cayley_even_odd_SOURCES=Test_cayley_even_odd.cc
Test_cayley_even_odd_LDADD=-lGrid
Test_cf_coarsen_support_SOURCES=Test_cf_coarsen_support.cc
Test_cf_coarsen_support_LDADD=-lGrid
Test_cf_cr_unprec_SOURCES=Test_cf_cr_unprec.cc
Test_cf_cr_unprec_LDADD=-lGrid

View File

@ -115,7 +115,7 @@ int main (int argc, char ** argv)
Complex l = TensorRemove(Tl);
std::cout << "calculated link trace " <<l*LinkTraceScale<<std::endl;
sumBlocks(cPlaq,Plaq);
blockSum(cPlaq,Plaq);
TComplex TcP = sum(cPlaq);
Complex ll= TensorRemove(TcP);
std::cout << "coarsened plaquettes sum to " <<ll*PlaqScale<<std::endl;

View File

@ -0,0 +1,108 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid
std::vector<int> clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/2;
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid); random(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
Gamma5HermitianLinearOperator<DomainWallFermion,LatticeFermion> HermIndefOp(Ddwf);
HermIndefOp.Op(src,ref);
HermIndefOp.OpDiag(src,result);
for(int d=0;d<4;d++){
HermIndefOp.OpDir(src,tmp,d,+1); result=result+tmp;
std::cout<<"dir "<<d<<" tmp "<<norm2(tmp)<<std::endl;
HermIndefOp.OpDir(src,tmp,d,-1); result=result+tmp;
std::cout<<"dir "<<d<<" tmp "<<norm2(tmp)<<std::endl;
}
err = result-ref;
std::cout<<"Error "<<norm2(err)<<std::endl;
const int nbasis = 8;
std::vector<LatticeFermion> subspace(nbasis,FGrid);
for(int b=0;b<nbasis;b++){
random(RNG5,subspace[b]);
}
std::cout << "Computed randoms"<< std::endl;
CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOp(*Coarse5d);
LittleDiracOp.CoarsenOperator(FGrid,HermIndefOp,subspace);
typedef Lattice<iVector<vComplex,nbasis > > coarse_vec;
coarse_vec c_src (Coarse5d); c_src= zero;
coarse_vec c_res (Coarse5d);
Complex one(1.0);
c_src = one; // 1 in every element for vector 1.
// TODO
// -- promote from subspace, check we get the vector we wanted
// -- apply ldop; check we get the same as inner product of M times big vec
// -- pick blocks one by one. Evaluate matrix elements.
std::cout << "Multiplying by LittleDiracOp "<< std::endl;
LittleDiracOp.M(c_src,c_res);
std::cout << "Done "<< std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,87 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=9;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=zero;
LatticeFermion ref(FGrid); ref=zero;
LatticeFermion tmp(FGrid);
LatticeFermion err(FGrid);
LatticeGaugeField Umu(UGrid); random(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
RealD mass=0.1;
RealD M5=1.8;
{
OverlapWilsonContFracTanhFermion Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
HermitianLinearOperator<OverlapWilsonContFracTanhFermion,LatticeFermion> HermIndefOp(Dcf);
HermIndefOp.Op(src,ref);
HermIndefOp.OpDiag(src,result);
for(int d=0;d<4;d++){
HermIndefOp.OpDir(src,tmp,d,+1); result=result+tmp;
std::cout<<"dir "<<d<<" tmp "<<norm2(tmp)<<std::endl;
HermIndefOp.OpDir(src,tmp,d,-1); result=result+tmp;
std::cout<<"dir "<<d<<" tmp "<<norm2(tmp)<<std::endl;
}
err = result-ref;
std::cout<<"Error "<<norm2(err)<<std::endl;
}
{
OverlapWilsonPartialFractionTanhFermion Dpf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
HermitianLinearOperator<OverlapWilsonPartialFractionTanhFermion,LatticeFermion> HermIndefOp(Dpf);
HermIndefOp.Op(src,ref);
HermIndefOp.OpDiag(src,result);
for(int d=0;d<4;d++){
HermIndefOp.OpDir(src,tmp,d,+1); result=result+tmp;
std::cout<<"dir "<<d<<" tmp "<<norm2(tmp)<<std::endl;
HermIndefOp.OpDir(src,tmp,d,-1); result=result+tmp;
std::cout<<"dir "<<d<<" tmp "<<norm2(tmp)<<std::endl;
}
err = result-ref;
std::cout<<"Error "<<norm2(err)<<std::endl;
}
Grid_finalize();
}

View File

@ -0,0 +1,58 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=9;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=zero;
LatticeGaugeField Umu(UGrid); random(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
RealD mass=0.1;
RealD M5=1.8;
OverlapWilsonContFracTanhFermion Dcf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,1.0);
ConjugateResidual<LatticeFermion> MCR(1.0e-8,10000);
MdagMLinearOperator<OverlapWilsonContFracTanhFermion,LatticeFermion> HermPosDefOp(Dcf);
MCR(HermPosDefOp,src,result);
HermitianLinearOperator<OverlapWilsonContFracTanhFermion,LatticeFermion> HermIndefOp(Dcf);
MCR(HermIndefOp,src,result);
Grid_finalize();
}

View File

@ -0,0 +1,63 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeFermion src(FGrid); random(RNG5,src);
LatticeFermion result(FGrid); result=zero;
LatticeGaugeField Umu(UGrid); random(RNG4,Umu);
std::vector<LatticeColourMatrix> U(4,UGrid);
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
ConjugateResidual<LatticeFermion> MCR(1.0e-8,10000);
RealD mass=0.5;
RealD M5=1.8;
DomainWallFermion Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
MdagMLinearOperator<DomainWallFermion,LatticeFermion> HermOp(Ddwf);
MCR(HermOp,src,result);
Gamma5HermitianLinearOperator<DomainWallFermion,LatticeFermion> g5HermOp(Ddwf);
MCR(g5HermOp,src,result);
Grid_finalize();
}

View File

@ -83,7 +83,7 @@ int main (int argc, char ** argv)
Complex l = TensorRemove(Tl);
std::cout << "calculated link trace " <<l*LinkTraceScale<<std::endl;
sumBlocks(cPlaq,Plaq);
blockSum(cPlaq,Plaq);
TComplex TcP = sum(cPlaq);
Complex ll= TensorRemove(TcP);
std::cout << "coarsened plaquettes sum to " <<ll*PlaqScale<<std::endl;

View File

@ -0,0 +1,59 @@
#include <Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::GammaMatrix Gmu [] = {
Gamma::GammaX,
Gamma::GammaY,
Gamma::GammaZ,
Gamma::GammaT
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplexF::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(latt_size,simd_layout,mpi_layout);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeFermion src(&Grid); random(pRNG,src);
RealD nrm = norm2(src);
LatticeFermion result(&Grid); result=zero;
LatticeGaugeField Umu(&Grid); random(pRNG,Umu);
std::vector<LatticeColourMatrix> U(4,&Grid);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
for(int mu=0;mu<Nd;mu++){
U[mu] = peekIndex<LorentzIndex>(Umu,mu);
}
RealD mass=0.5;
WilsonFermion Dw(Umu,Grid,RBGrid,mass);
MdagMLinearOperator<WilsonFermion,LatticeFermion> HermOp(Dw);
ConjugateResidual<LatticeFermion> MCR(1.0e-8,10000);
MCR(HermOp,src,result);
Grid_finalize();
}