1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-21 01:25:48 +01:00
Grid/extras/Hadrons/Modules/MScalar/VPCounterTerms.cc

232 lines
7.9 KiB
C++
Raw Normal View History

#include <Grid/Hadrons/Modules/MScalar/VPCounterTerms.hpp>
#include <Grid/Hadrons/Modules/MScalar/Scalar.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MScalar;
/******************************************************************************
* TVPCounterTerms implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TVPCounterTerms::TVPCounterTerms(const std::string name)
: Module<VPCounterTermsPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TVPCounterTerms::getInput(void)
{
std::vector<std::string> in = {par().source};
return in;
}
std::vector<std::string> TVPCounterTerms::getOutput(void)
{
std::vector<std::string> out;
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TVPCounterTerms::setup(void)
{
freeMomPropName_ = FREEMOMPROP(par().mass);
phaseName_.clear();
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
phaseName_.push_back("_shiftphase_" + std::to_string(mu));
}
GFSrcName_ = getName() + "_DinvSrc";
phatsqName_ = getName() + "_pHatSquared";
prop0Name_ = getName() + "_freeProp";
twoscalarName_ = getName() + "_2scalarProp";
twoscalarVertexName_ = getName() + "_2scalarProp_withvertex";
psquaredName_ = getName() + "_psquaredProp";
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
momPhaseName_.push_back("_momentumphase_" + std::to_string(i_p));
}
}
envCreateLat(ScalarField, freeMomPropName_);
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
envCreateLat(ScalarField, phaseName_[mu]);
}
envCreateLat(ScalarField, phatsqName_);
envCreateLat(ScalarField, GFSrcName_);
envCreateLat(ScalarField, prop0Name_);
envCreateLat(ScalarField, twoscalarName_);
envCreateLat(ScalarField, twoscalarVertexName_);
envCreateLat(ScalarField, psquaredName_);
if (!par().output.empty())
{
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
envCacheLat(ScalarField, momPhaseName_[i_p]);
}
}
envTmpLat(ScalarField, "buf");
envTmpLat(ScalarField, "tmp_vp");
envTmpLat(ScalarField, "vpPhase");
}
// execution ///////////////////////////////////////////////////////////////////
void TVPCounterTerms::execute(void)
{
auto &source = envGet(ScalarField, par().source);
Complex ci(0.0,1.0);
FFT fft(env().getGrid());
envGetTmp(ScalarField, buf);
envGetTmp(ScalarField, tmp_vp);
// Momentum-space free scalar propagator
auto &G = envGet(ScalarField, freeMomPropName_);
SIMPL::MomentumSpacePropagator(G, par().mass);
// Phases and hat{p}^2
auto &phatsq = envGet(ScalarField, phatsqName_);
std::vector<int> &l = env().getGrid()->_fdimensions;
LOG(Message) << "Calculating shift phases..." << std::endl;
phatsq = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
Real twoPiL = M_PI*2./l[mu];
auto &phmu = envGet(ScalarField, phaseName_[mu]);
LatticeCoordinate(buf, mu);
phmu = exp(ci*twoPiL*buf);
phase_.push_back(&phmu);
buf = 2.*sin(.5*twoPiL*buf);
phatsq = phatsq + buf*buf;
}
// G*F*src
auto &GFSrc = envGet(ScalarField, GFSrcName_);
fft.FFT_all_dim(GFSrc, source, FFT::forward);
GFSrc = G*GFSrc;
// Position-space free scalar propagator
auto &prop0 = envGet(ScalarField, prop0Name_);
prop0 = GFSrc;
fft.FFT_all_dim(prop0, prop0, FFT::backward);
// Propagators for counter-terms
auto &twoscalarProp = envGet(ScalarField, twoscalarName_);
auto &twoscalarVertexProp = envGet(ScalarField, twoscalarVertexName_);
auto &psquaredProp = envGet(ScalarField, psquaredName_);
twoscalarProp = G*GFSrc;
fft.FFT_all_dim(twoscalarProp, twoscalarProp, FFT::backward);
twoscalarVertexProp = zero;
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
buf = GFSrc;
twoscalarVertexProp = twoscalarVertexProp + .5*((*phase_[mu]) + adj(*phase_[mu]))*buf;
}
twoscalarVertexProp = G*twoscalarVertexProp;
fft.FFT_all_dim(twoscalarVertexProp, twoscalarVertexProp, FFT::backward);
psquaredProp = G*phatsq*GFSrc;
fft.FFT_all_dim(psquaredProp, psquaredProp, FFT::backward);
// Prepare output files if necessary
if (!par().output.empty())
{
LOG(Message) << "Preparing output files..." << std::endl;
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
// Open output files
std::string filename = par().output + "_" + std::to_string(mom[0])
+ std::to_string(mom[1])
+ std::to_string(mom[2]);
saveResult(filename, "mass", par().mass);
// Calculate phase factors
auto &momph_ip = envGet(ScalarField, momPhaseName_[i_p]);
momph_ip = Complex(1.0,0.0);
for (unsigned int j = 0; j < env().getNd()-1; ++j)
{
for (unsigned int momcount = 0; momcount < mom[j]; ++momcount)
{
momph_ip = momph_ip*(*phase_[j]);
}
}
momph_ip = adj(momph_ip);
momPhase_.push_back(&momph_ip);
}
}
// Contractions
for (unsigned int nu = 0; nu < env().getNd(); ++nu)
{
buf = adj(Cshift(prop0, nu, -1));
for (unsigned int mu = 0; mu < env().getNd(); ++mu)
{
// Three-scalar loop (no vertex)
tmp_vp = buf * Cshift(twoscalarProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * twoscalarProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
writeVP(tmp_vp, "NoVertex_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// Three-scalar loop (tadpole vertex)
tmp_vp = buf * Cshift(twoscalarVertexProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * twoscalarVertexProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
writeVP(tmp_vp, "TadVertex_"+std::to_string(mu)+"_"+std::to_string(nu));
}
// Three-scalar loop (hat{p}^2 insertion)
tmp_vp = buf * Cshift(psquaredProp, mu, 1);
tmp_vp -= Cshift(buf, mu, 1) * psquaredProp;
tmp_vp = 2.0*real(tmp_vp);
// Output if necessary
if (!par().output.empty())
{
writeVP(tmp_vp, "pSquaredInsertion_"+std::to_string(mu)+"_"+std::to_string(nu));
}
}
}
}
void TVPCounterTerms::writeVP(const ScalarField &vp, std::string dsetName)
{
std::vector<TComplex> vecBuf;
std::vector<Complex> result;
envGetTmp(ScalarField, vpPhase);
for (unsigned int i_p = 0; i_p < par().outputMom.size(); ++i_p)
{
std::vector<int> mom = strToVec<int>(par().outputMom[i_p]);
std::string filename = par().output + "_"
+ std::to_string(mom[0])
+ std::to_string(mom[1])
+ std::to_string(mom[2]);
vpPhase = vp*(*momPhase_[i_p]);
sliceSum(vpPhase, vecBuf, Tp);
result.resize(vecBuf.size());
for (unsigned int t = 0; t < vecBuf.size(); ++t)
{
result[t] = TensorRemove(vecBuf[t]);
}
saveResult(filename, dsetName, result);
}
}