1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/smearing/Test_WilsonFlow_adaptive.cc

154 lines
5.0 KiB
C++
Raw Normal View History

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/hmc/Test_WilsonFlow_adaptive.cc
Copyright (C) 2017
Author: Christopher Kelly <ckelly@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
//Linearly interpolate between two nearest times
RealD interpolate(const RealD t_int, const std::vector<std::pair<RealD,RealD> > &data){
RealD tdiff1=1e32; int t1_idx=-1;
RealD tdiff2=1e32; int t2_idx=-1;
for(int i=0;i<data.size();i++){
RealD diff = fabs(data[i].first-t_int);
//std::cout << "targ " << t_int << " cur " << data[i].first << " diff " << diff << " best diff1 " << tdiff1 << " diff2 " << tdiff2 << std::endl;
if(diff < tdiff1){
if(tdiff1 < tdiff2){ //swap out tdiff2
tdiff2 = tdiff1; t2_idx = t1_idx;
}
tdiff1 = diff; t1_idx = i;
}
else if(diff < tdiff2){ tdiff2 = diff; t2_idx = i; }
}
assert(t1_idx != -1 && t2_idx != -1);
RealD t2 = data[t2_idx].first, v2 = data[t2_idx].second;
RealD t1 = data[t1_idx].first, v1 = data[t1_idx].second;
//v = a + bt
//v2-v1 = b(t2-t1)
RealD b = (v2-v1)/(t2-t1);
RealD a = v1 - b*t1;
RealD vout = a + b*t_int;
//std::cout << "Interpolate to " << t_int << " two closest points " << t1 << " " << t2
//<< " with values " << v1 << " "<< v2 << " : got " << vout << std::endl;
return vout;
}
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
GridLogLayout();
auto latt_size = GridDefaultLatt();
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
auto mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1, 2, 3, 4, 5});
GridSerialRNG sRNG;
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField U(&Grid);
SU<Nc>::HotConfiguration(pRNG, U);
int Nstep = 300;
RealD epsilon = 0.01;
RealD maxTau = Nstep*epsilon;
RealD tolerance = 1e-4;
for(int i=1;i<argc;i++){
std::string sarg(argv[i]);
if(sarg == "--tolerance"){
std::stringstream ss; ss << argv[i+1]; ss >> tolerance;
}
}
std::cout << "Adaptive smear tolerance " << tolerance << std::endl;
//Setup iterative Wilson flow
WilsonFlow<PeriodicGimplD> wflow(epsilon,Nstep);
wflow.resetActions();
std::vector<std::pair<RealD, RealD> > meas_orig;
wflow.addMeasurement(1, [&wflow,&meas_orig](int step, RealD t, const LatticeGaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
meas_orig.push_back( {t, wflow.energyDensityCloverleaf(t,U)} );
});
//Setup adaptive Wilson flow
WilsonFlowAdaptive<PeriodicGimplD> wflow_ad(epsilon,maxTau,tolerance);
wflow_ad.resetActions();
std::vector<std::pair<RealD, RealD> > meas_adaptive;
wflow_ad.addMeasurement(1, [&wflow_ad,&meas_adaptive](int step, RealD t, const LatticeGaugeField &U){
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
meas_adaptive.push_back( {t, wflow_ad.energyDensityCloverleaf(t,U)} );
});
//Run
LatticeGaugeFieldD Vtmp(U.Grid());
wflow.smear(Vtmp, U); //basic smear
Vtmp = Zero();
wflow_ad.smear(Vtmp, U);
//Output values for plotting
{
std::ofstream out("wflow_t2E_orig.dat");
out.precision(16);
for(auto const &e: meas_orig){
out << e.first << " " << e.second << std::endl;
}
}
{
std::ofstream out("wflow_t2E_adaptive.dat");
out.precision(16);
for(auto const &e: meas_adaptive){
out << e.first << " " << e.second << std::endl;
}
}
//Compare at times available with adaptive smearing
for(int i=0;i<meas_adaptive.size();i++){
RealD t = meas_adaptive[i].first;
RealD v_adaptive = meas_adaptive[i].second;
RealD v_orig = interpolate(t, meas_orig); //should be very precise due to fine timestep
std::cout << t << " orig: " << v_orig << " adaptive: " << v_adaptive << " reldiff: " << (v_adaptive-v_orig)/v_orig << std::endl;
}
std::cout << GridLogMessage << "Done" << std::endl;
Grid_finalize();
}