mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Refactored Wilson flow class; previously the class implemented both iterative and adaptive smearing, but only the iterative method was accessible through the Smearing base class. The implementation of Smearing also forced a clunky need to pass iterative smearing parameters through the constructor but adaptive smearing parameters through the function call. Now there is a WilsonFlowBase class that implements common functionality, and separate WilsonFlow (iterative) and WilsonFlowAdaptive (adaptive) classes, both of which implement Smearing virtual functions.
Modified the Wilson flow adaptive smearing step size update to implement the original Ramos definition of the distance, where previously it used the norm of a difference which scales with the volume and so would choose too coarse or too fine steps depending on the volume. This is based on Chulwoo's code. Added a test comparing adaptive (with tuneable tolerance) to iterative Wilson flow smearing on a random gauge configuration.
This commit is contained in:
parent
19da647e3c
commit
66d001ec9e
@ -31,15 +31,16 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
struct TopologySmearingParameters : Serializable {
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
|
||||
int, steps,
|
||||
float, step_size,
|
||||
int, meas_interval,
|
||||
float, maxTau);
|
||||
float, init_step_size,
|
||||
float, maxTau,
|
||||
float, tolerance);
|
||||
|
||||
TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
|
||||
steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
|
||||
TopologySmearingParameters(float ss = 0.0f, int mi = 0, float mT = 0.0f, float tol = 1e-4):
|
||||
init_step_size(ss), meas_interval(mi), maxTau(mT), tolerance(tol){}
|
||||
|
||||
template < class ReaderClass >
|
||||
TopologySmearingParameters(Reader<ReaderClass>& Reader){
|
||||
@ -97,8 +98,8 @@ public:
|
||||
|
||||
if (Pars.do_smearing){
|
||||
// using wilson flow by default here
|
||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
||||
WilsonFlowAdaptive<PeriodicGimplR> WF(Pars.Smearing.init_step_size, Pars.Smearing.maxTau, Pars.Smearing.tolerance, Pars.Smearing.meas_interval);
|
||||
WF.smear(Usmear, U);
|
||||
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||
|
@ -33,27 +33,25 @@ directory
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template <class Gimpl>
|
||||
class WilsonFlow: public Smear<Gimpl>{
|
||||
class WilsonFlowBase: public Smear<Gimpl>{
|
||||
public:
|
||||
//Store generic measurements to take during smearing process using std::function
|
||||
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||
|
||||
private:
|
||||
unsigned int Nstep;
|
||||
RealD epsilon; //for regular smearing this is the time step, for adaptive it is the initial time step
|
||||
|
||||
|
||||
protected:
|
||||
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||
|
||||
mutable WilsonGaugeAction<Gimpl> SG;
|
||||
|
||||
//Evolve the gauge field by 1 step and update tau
|
||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||
void evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps, RealD maxTau) const;
|
||||
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
explicit WilsonFlowBase(unsigned int meas_interval =1):
|
||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||
// WilsonGaugeAction with beta 3.0
|
||||
setDefaultMeasurements(meas_interval);
|
||||
}
|
||||
|
||||
void resetActions(){ functions.clear(); }
|
||||
|
||||
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||
@ -64,34 +62,11 @@ public:
|
||||
//and output to stdout
|
||||
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||
|
||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
||||
Nstep(Nstep),
|
||||
epsilon(epsilon),
|
||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||
// WilsonGaugeAction with beta 3.0
|
||||
assert(epsilon > 0.0);
|
||||
LogMessage();
|
||||
setDefaultMeasurements(interval);
|
||||
}
|
||||
|
||||
void LogMessage() {
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
||||
}
|
||||
|
||||
virtual void smear(GaugeField&, const GaugeField&) const;
|
||||
|
||||
virtual void derivative(GaugeField&, const GaugeField&, const GaugeField&) const {
|
||||
void derivative(GaugeField&, const GaugeField&, const GaugeField&) const override{
|
||||
assert(0);
|
||||
// undefined for WilsonFlow
|
||||
}
|
||||
|
||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau) const;
|
||||
|
||||
//Compute t^2 <E(t)> for time t from the plaquette
|
||||
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||
|
||||
@ -115,82 +90,63 @@ public:
|
||||
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||
};
|
||||
|
||||
//Basic iterative Wilson flow
|
||||
template <class Gimpl>
|
||||
class WilsonFlow: public WilsonFlowBase<Gimpl>{
|
||||
private:
|
||||
int Nstep; //number of steps
|
||||
RealD epsilon; //step size
|
||||
|
||||
//Evolve the gauge field by 1 step of size eps and update tau
|
||||
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
//Integrate the Wilson flow for Nstep steps of size epsilon
|
||||
WilsonFlow(const RealD epsilon, const int Nstep, unsigned int meas_interval = 1): WilsonFlowBase<Gimpl>(meas_interval), Nstep(Nstep), epsilon(epsilon){}
|
||||
|
||||
void smear(GaugeField& out, const GaugeField& in) const override;
|
||||
};
|
||||
|
||||
//Wilson flow with adaptive step size
|
||||
template <class Gimpl>
|
||||
class WilsonFlowAdaptive: public WilsonFlowBase<Gimpl>{
|
||||
private:
|
||||
RealD init_epsilon; //initial step size
|
||||
RealD maxTau; //integrate to t=maxTau
|
||||
RealD tolerance; //integration error tolerance
|
||||
|
||||
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||
//
|
||||
//If the step size eps is too large that a significant integration error results,
|
||||
//the gauge field (U) and tau will not be updated and the function will return 0; eps will be adjusted to a smaller
|
||||
//value for the next iteration.
|
||||
//
|
||||
//For a successful integration step the function will return 1
|
||||
int evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps) const;
|
||||
|
||||
public:
|
||||
INHERIT_GIMPL_TYPES(Gimpl)
|
||||
|
||||
WilsonFlowAdaptive(const RealD init_epsilon, const RealD maxTau, const RealD tolerance, unsigned int meas_interval = 1):
|
||||
WilsonFlowBase<Gimpl>(meas_interval), init_epsilon(init_epsilon), maxTau(maxTau), tolerance(tolerance){}
|
||||
|
||||
void smear(GaugeField& out, const GaugeField& in) const override;
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Implementations
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField tmp(U.Grid());
|
||||
SG.deriv(U, Z);
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
tau += epsilon;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps, RealD maxTau) const{
|
||||
if (maxTau - tau < eps){
|
||||
eps = maxTau-tau;
|
||||
}
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField Zprime(U.Grid());
|
||||
GaugeField tmp(U.Grid()), Uprime(U.Grid());
|
||||
Uprime = U;
|
||||
SG.deriv(U, Z);
|
||||
Zprime = -Z;
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Zprime += 2.0*tmp;
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||
|
||||
// Ramos
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||
// Compute distance as norm^2 of the difference
|
||||
GaugeField diffU = U - Uprime;
|
||||
RealD diff = norm2(diffU);
|
||||
// adjust integration step
|
||||
|
||||
tau += eps;
|
||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
||||
|
||||
eps = eps*0.95*std::pow(1e-4/diff,1./3.);
|
||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||
RealD WilsonFlowBase<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||
}
|
||||
|
||||
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||
template <class Gimpl>
|
||||
RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||
RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||
|
||||
@ -215,7 +171,7 @@ RealD WilsonFlow<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
@ -227,13 +183,13 @@ std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeFie
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> out;
|
||||
resetActions();
|
||||
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
@ -245,16 +201,52 @@ std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeFi
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
std::vector<RealD> WilsonFlow<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||
GaugeField V(U);
|
||||
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
//#define WF_TIMING
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField tmp(U.Grid());
|
||||
this->SG.deriv(U, Z);
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
this->SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
this->SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||
tau += epsilon;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
||||
|
||||
out = in;
|
||||
RealD taus = 0.;
|
||||
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||
@ -266,37 +258,93 @@ void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||
#endif
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
for(auto const &meas : this->functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau) const{
|
||||
out = in;
|
||||
RealD taus = 0.;
|
||||
RealD eps = epsilon;
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
step++;
|
||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
||||
evolve_step_adaptive(out, taus, eps, maxTau);
|
||||
//Perform measurements
|
||||
for(auto const &meas : functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
} while (taus < maxTau);
|
||||
int WilsonFlowAdaptive<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps) const{
|
||||
if (maxTau - tau < eps){
|
||||
eps = maxTau-tau;
|
||||
}
|
||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||
GaugeField Z(U.Grid());
|
||||
GaugeField Zprime(U.Grid());
|
||||
GaugeField tmp(U.Grid()), Uprime(U.Grid()), Usave(U.Grid());
|
||||
Uprime = U;
|
||||
Usave = U;
|
||||
|
||||
this->SG.deriv(U, Z);
|
||||
Zprime = -Z;
|
||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||
|
||||
Z *= -17.0/8.0;
|
||||
this->SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||
Zprime += 2.0*tmp;
|
||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||
|
||||
|
||||
Z *= -4.0/3.0;
|
||||
this->SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||
|
||||
// Ramos arXiv:1301.4388
|
||||
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||
|
||||
// Compute distance using Ramos' definition
|
||||
GaugeField diffU = U - Uprime;
|
||||
RealD max_dist = 0;
|
||||
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
typename Gimpl::GaugeLinkField diffU_mu = PeekIndex<LorentzIndex>(diffU, mu);
|
||||
RealD dist_mu = sqrt( maxLocalNorm2(diffU_mu) ) /Nc/Nc; //maximize over sites
|
||||
max_dist = std::max(max_dist, dist_mu); //maximize over mu
|
||||
}
|
||||
|
||||
int ret;
|
||||
if(max_dist < tolerance) {
|
||||
tau += eps;
|
||||
ret = 1;
|
||||
} else {
|
||||
U = Usave;
|
||||
ret = 0;
|
||||
}
|
||||
eps = eps*0.95*std::pow(tolerance/max_dist,1./3.);
|
||||
std::cout << GridLogMessage << "Adaptive smearing : Distance: "<< max_dist <<" Step successful: " << ret << " New epsilon: " << eps << std::endl;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class Gimpl>
|
||||
void WilsonFlow<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||
});
|
||||
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||
});
|
||||
void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] initial epsilon : " << init_epsilon << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] full trajectory : " << maxTau << std::endl;
|
||||
std::cout << GridLogMessage
|
||||
<< "[WilsonFlow] tolerance : " << tolerance << std::endl;
|
||||
out = in;
|
||||
RealD taus = 0.;
|
||||
RealD eps = init_epsilon;
|
||||
unsigned int step = 0;
|
||||
do{
|
||||
int step_success = evolve_step_adaptive(out, taus, eps);
|
||||
step += step_success; //step will not be incremented if the integration step fails
|
||||
|
||||
//Perform measurements
|
||||
if(step_success)
|
||||
for(auto const &meas : this->functions)
|
||||
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||
} while (taus < maxTau);
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
153
tests/smearing/Test_WilsonFlow_adaptive.cc
Normal file
153
tests/smearing/Test_WilsonFlow_adaptive.cc
Normal file
@ -0,0 +1,153 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./tests/hmc/Test_WilsonFlow_adaptive.cc
|
||||
|
||||
Copyright (C) 2017
|
||||
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/Grid.h>
|
||||
|
||||
using namespace Grid;
|
||||
|
||||
//Linearly interpolate between two nearest times
|
||||
RealD interpolate(const RealD t_int, const std::vector<std::pair<RealD,RealD> > &data){
|
||||
RealD tdiff1=1e32; int t1_idx=-1;
|
||||
RealD tdiff2=1e32; int t2_idx=-1;
|
||||
|
||||
for(int i=0;i<data.size();i++){
|
||||
RealD diff = fabs(data[i].first-t_int);
|
||||
//std::cout << "targ " << t_int << " cur " << data[i].first << " diff " << diff << " best diff1 " << tdiff1 << " diff2 " << tdiff2 << std::endl;
|
||||
|
||||
if(diff < tdiff1){
|
||||
if(tdiff1 < tdiff2){ //swap out tdiff2
|
||||
tdiff2 = tdiff1; t2_idx = t1_idx;
|
||||
}
|
||||
tdiff1 = diff; t1_idx = i;
|
||||
}
|
||||
else if(diff < tdiff2){ tdiff2 = diff; t2_idx = i; }
|
||||
}
|
||||
assert(t1_idx != -1 && t2_idx != -1);
|
||||
|
||||
RealD t2 = data[t2_idx].first, v2 = data[t2_idx].second;
|
||||
RealD t1 = data[t1_idx].first, v1 = data[t1_idx].second;
|
||||
|
||||
//v = a + bt
|
||||
//v2-v1 = b(t2-t1)
|
||||
RealD b = (v2-v1)/(t2-t1);
|
||||
RealD a = v1 - b*t1;
|
||||
RealD vout = a + b*t_int;
|
||||
|
||||
//std::cout << "Interpolate to " << t_int << " two closest points " << t1 << " " << t2
|
||||
//<< " with values " << v1 << " "<< v2 << " : got " << vout << std::endl;
|
||||
return vout;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
Grid_init(&argc, &argv);
|
||||
GridLogLayout();
|
||||
|
||||
auto latt_size = GridDefaultLatt();
|
||||
auto simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
|
||||
auto mpi_layout = GridDefaultMpi();
|
||||
GridCartesian Grid(latt_size, simd_layout, mpi_layout);
|
||||
GridRedBlackCartesian RBGrid(&Grid);
|
||||
|
||||
std::vector<int> seeds({1, 2, 3, 4, 5});
|
||||
GridSerialRNG sRNG;
|
||||
GridParallelRNG pRNG(&Grid);
|
||||
pRNG.SeedFixedIntegers(seeds);
|
||||
|
||||
LatticeGaugeField U(&Grid);
|
||||
SU<Nc>::HotConfiguration(pRNG, U);
|
||||
|
||||
int Nstep = 300;
|
||||
RealD epsilon = 0.01;
|
||||
RealD maxTau = Nstep*epsilon;
|
||||
RealD tolerance = 1e-4;
|
||||
|
||||
for(int i=1;i<argc;i++){
|
||||
std::string sarg(argv[i]);
|
||||
if(sarg == "--tolerance"){
|
||||
std::stringstream ss; ss << argv[i+1]; ss >> tolerance;
|
||||
}
|
||||
}
|
||||
std::cout << "Adaptive smear tolerance " << tolerance << std::endl;
|
||||
|
||||
//Setup iterative Wilson flow
|
||||
WilsonFlow<PeriodicGimplD> wflow(epsilon,Nstep);
|
||||
wflow.resetActions();
|
||||
|
||||
std::vector<std::pair<RealD, RealD> > meas_orig;
|
||||
|
||||
wflow.addMeasurement(1, [&wflow,&meas_orig](int step, RealD t, const LatticeGaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||
meas_orig.push_back( {t, wflow.energyDensityCloverleaf(t,U)} );
|
||||
});
|
||||
|
||||
//Setup adaptive Wilson flow
|
||||
WilsonFlowAdaptive<PeriodicGimplD> wflow_ad(epsilon,maxTau,tolerance);
|
||||
wflow_ad.resetActions();
|
||||
|
||||
std::vector<std::pair<RealD, RealD> > meas_adaptive;
|
||||
|
||||
wflow_ad.addMeasurement(1, [&wflow_ad,&meas_adaptive](int step, RealD t, const LatticeGaugeField &U){
|
||||
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||
meas_adaptive.push_back( {t, wflow_ad.energyDensityCloverleaf(t,U)} );
|
||||
});
|
||||
|
||||
//Run
|
||||
LatticeGaugeFieldD Vtmp(U.Grid());
|
||||
wflow.smear(Vtmp, U); //basic smear
|
||||
|
||||
Vtmp = Zero();
|
||||
wflow_ad.smear(Vtmp, U);
|
||||
|
||||
//Output values for plotting
|
||||
{
|
||||
std::ofstream out("wflow_t2E_orig.dat");
|
||||
out.precision(16);
|
||||
for(auto const &e: meas_orig){
|
||||
out << e.first << " " << e.second << std::endl;
|
||||
}
|
||||
}
|
||||
{
|
||||
std::ofstream out("wflow_t2E_adaptive.dat");
|
||||
out.precision(16);
|
||||
for(auto const &e: meas_adaptive){
|
||||
out << e.first << " " << e.second << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Compare at times available with adaptive smearing
|
||||
for(int i=0;i<meas_adaptive.size();i++){
|
||||
RealD t = meas_adaptive[i].first;
|
||||
RealD v_adaptive = meas_adaptive[i].second;
|
||||
RealD v_orig = interpolate(t, meas_orig); //should be very precise due to fine timestep
|
||||
std::cout << t << " orig: " << v_orig << " adaptive: " << v_adaptive << " reldiff: " << (v_adaptive-v_orig)/v_orig << std::endl;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Done" << std::endl;
|
||||
Grid_finalize();
|
||||
}
|
Loading…
Reference in New Issue
Block a user