1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-04 03:05:55 +01:00

towards more precise blocking

This commit is contained in:
Christoph Lehner 2020-04-17 04:25:28 -04:00
parent 327da332bb
commit 091d5c605e
4 changed files with 96 additions and 1 deletions

View File

@ -206,7 +206,7 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
}
template<class vobj> strong_inline void
innerProduct_norm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right)
innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right)
{
conformable(left,right);

View File

@ -6,6 +6,7 @@ Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Michael Marshall <michael.marshall@ed.ac.au>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -55,6 +56,7 @@ class GridTensorBase {};
using Complexified = typename Traits::Complexified; \
using Realified = typename Traits::Realified; \
using DoublePrecision = typename Traits::DoublePrecision; \
using DoublePrecision2= typename Traits::DoublePrecision2; \
static constexpr int TensorLevel = Traits::TensorLevel
template <class vtype>

View File

@ -8,6 +8,7 @@
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -194,6 +195,78 @@ auto innerProductD (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decl
ret._internal = innerProductD(lhs._internal,rhs._internal);
return ret;
}
//////////////////////////////////////
// innerProductD2: precision promotion without inner sum
//////////////////////////////////////
accelerator_inline vComplexD2 TensorRemove(const vComplexD2 & x) { return x; };
accelerator_inline vRealD2 TensorRemove(const vRealD2 & x) { return x; };
accelerator_inline ComplexD innerProductD2(const ComplexF &l,const ComplexF &r){ return innerProduct(l,r); }
accelerator_inline ComplexD innerProductD2(const ComplexD &l,const ComplexD &r){ return innerProduct(l,r); }
accelerator_inline RealD innerProductD2(const RealD &l,const RealD &r){ return innerProduct(l,r); }
accelerator_inline RealD innerProductD2(const RealF &l,const RealF &r){ return innerProduct(l,r); }
accelerator_inline vComplexD innerProductD2(const vComplexD &l,const vComplexD &r){ return innerProduct(l,r); }
accelerator_inline vRealD innerProductD2(const vRealD &l,const vRealD &r){ return innerProduct(l,r); }
accelerator_inline vComplexD2 innerProductD2(const vComplexF &l,const vComplexF &r)
{
vComplexD la,lb;
vComplexD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
vComplexD2 ret;
ret._internal[0] = innerProduct(la,ra);
ret._internal[1] = innerProduct(lb,rb);
return ret;
}
accelerator_inline vRealD2 innerProductD2(const vRealF &l,const vRealF &r)
{
vRealD la,lb;
vRealD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
vRealD2 ret;
ret._internal[0]=innerProduct(la,ra);
ret._internal[1]=innerProduct(lb,rb);
return ret;
}
// Now do it for vector, matrix, scalar
template<class l,class r,int N> accelerator_inline
auto innerProductD2 (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProductD2(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProductD2(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
zeroit(ret);
for(int c1=0;c1<N;c1++){
ret._internal += innerProductD2(lhs._internal[c1],rhs._internal[c1]);
}
return ret;
}
template<class l,class r,int N> accelerator_inline
auto innerProductD2 (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProductD2(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProductD2(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
ret=Zero();
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProductD2(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> accelerator_inline
auto innerProductD2 (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProductD2(lhs._internal,rhs._internal))>
{
typedef decltype(innerProductD2(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProductD2(lhs._internal,rhs._internal);
return ret;
}
//////////////////////
// Keep same precison
//////////////////////

View File

@ -6,6 +6,7 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Christopher Kelly <ckelly@phys.columbia.edu>
Author: Michael Marshall <michael.marshall@ed.ac.au>
Author: Christoph Lehner <christoph@lhnr.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
@ -37,6 +38,10 @@ NAMESPACE_BEGIN(Grid);
template<class T, int N> struct isGridTensor<iVector<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
template<class T, int N> struct isGridTensor<iMatrix<T, N>> : public std::true_type { static constexpr bool notvalue = false; };
// To store double-precision data in single-precision grids for precision promoted localInnerProductD
typedef iVector<vComplexD,2> vComplexD2;
typedef iVector<vRealD,2> vRealD2;
//////////////////////////////////////////////////////////////////////////////////
// Want to recurse: GridTypeMapper<Matrix<vComplexD> >::scalar_type == ComplexD.
// Use of a helper class like this allows us to template specialise and "dress"
@ -81,6 +86,7 @@ NAMESPACE_BEGIN(Grid);
typedef ComplexF Complexified;
typedef RealF Realified;
typedef RealD DoublePrecision;
typedef RealD DoublePrecision2;
};
template<> struct GridTypeMapper<RealD> : public GridTypeMapper_Base {
typedef RealD scalar_type;
@ -93,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
typedef ComplexD Complexified;
typedef RealD Realified;
typedef RealD DoublePrecision;
typedef RealD DoublePrecision2;
};
template<> struct GridTypeMapper<ComplexF> : public GridTypeMapper_Base {
typedef ComplexF scalar_type;
@ -105,6 +112,7 @@ NAMESPACE_BEGIN(Grid);
typedef ComplexF Complexified;
typedef RealF Realified;
typedef ComplexD DoublePrecision;
typedef ComplexD DoublePrecision2;
};
template<> struct GridTypeMapper<ComplexD> : public GridTypeMapper_Base {
typedef ComplexD scalar_type;
@ -117,6 +125,7 @@ NAMESPACE_BEGIN(Grid);
typedef ComplexD Complexified;
typedef RealD Realified;
typedef ComplexD DoublePrecision;
typedef ComplexD DoublePrecision2;
};
template<> struct GridTypeMapper<Integer> : public GridTypeMapper_Base {
typedef Integer scalar_type;
@ -129,6 +138,7 @@ NAMESPACE_BEGIN(Grid);
typedef void Complexified;
typedef void Realified;
typedef void DoublePrecision;
typedef void DoublePrecision2;
};
template<> struct GridTypeMapper<vRealF> : public GridTypeMapper_Base {
@ -142,6 +152,7 @@ NAMESPACE_BEGIN(Grid);
typedef vComplexF Complexified;
typedef vRealF Realified;
typedef vRealD DoublePrecision;
typedef vRealD2 DoublePrecision2;
};
template<> struct GridTypeMapper<vRealD> : public GridTypeMapper_Base {
typedef RealD scalar_type;
@ -154,6 +165,7 @@ NAMESPACE_BEGIN(Grid);
typedef vComplexD Complexified;
typedef vRealD Realified;
typedef vRealD DoublePrecision;
typedef vRealD DoublePrecision2;
};
template<> struct GridTypeMapper<vRealH> : public GridTypeMapper_Base {
// Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types
@ -167,6 +179,7 @@ NAMESPACE_BEGIN(Grid);
typedef vComplexH Complexified;
typedef vRealH Realified;
typedef vRealD DoublePrecision;
typedef vRealD DoublePrecision2;
};
template<> struct GridTypeMapper<vComplexH> : public GridTypeMapper_Base {
// Fixme this is incomplete until Grid supports fp16 or bfp16 arithmetic types
@ -180,6 +193,7 @@ NAMESPACE_BEGIN(Grid);
typedef vComplexH Complexified;
typedef vRealH Realified;
typedef vComplexD DoublePrecision;
typedef vComplexD DoublePrecision2;
};
template<> struct GridTypeMapper<vComplexF> : public GridTypeMapper_Base {
typedef ComplexF scalar_type;
@ -192,6 +206,7 @@ NAMESPACE_BEGIN(Grid);
typedef vComplexF Complexified;
typedef vRealF Realified;
typedef vComplexD DoublePrecision;
typedef vComplexD2 DoublePrecision2;
};
template<> struct GridTypeMapper<vComplexD> : public GridTypeMapper_Base {
typedef ComplexD scalar_type;
@ -204,6 +219,7 @@ NAMESPACE_BEGIN(Grid);
typedef vComplexD Complexified;
typedef vRealD Realified;
typedef vComplexD DoublePrecision;
typedef vComplexD DoublePrecision2;
};
template<> struct GridTypeMapper<vInteger> : public GridTypeMapper_Base {
typedef Integer scalar_type;
@ -216,6 +232,7 @@ NAMESPACE_BEGIN(Grid);
typedef void Complexified;
typedef void Realified;
typedef void DoublePrecision;
typedef void DoublePrecision2;
};
#define GridTypeMapper_RepeatedTypes \
@ -234,6 +251,7 @@ NAMESPACE_BEGIN(Grid);
using Complexified = iScalar<typename BaseTraits::Complexified>;
using Realified = iScalar<typename BaseTraits::Realified>;
using DoublePrecision = iScalar<typename BaseTraits::DoublePrecision>;
using DoublePrecision2= iScalar<typename BaseTraits::DoublePrecision2>;
static constexpr int Rank = BaseTraits::Rank + 1;
static constexpr std::size_t count = BaseTraits::count;
static constexpr int Dimension(int dim) {
@ -248,6 +266,7 @@ NAMESPACE_BEGIN(Grid);
using Complexified = iVector<typename BaseTraits::Complexified, N>;
using Realified = iVector<typename BaseTraits::Realified, N>;
using DoublePrecision = iVector<typename BaseTraits::DoublePrecision, N>;
using DoublePrecision2= iVector<typename BaseTraits::DoublePrecision2, N>;
static constexpr int Rank = BaseTraits::Rank + 1;
static constexpr std::size_t count = BaseTraits::count * N;
static constexpr int Dimension(int dim) {
@ -262,6 +281,7 @@ NAMESPACE_BEGIN(Grid);
using Complexified = iMatrix<typename BaseTraits::Complexified, N>;
using Realified = iMatrix<typename BaseTraits::Realified, N>;
using DoublePrecision = iMatrix<typename BaseTraits::DoublePrecision, N>;
using DoublePrecision2= iMatrix<typename BaseTraits::DoublePrecision2, N>;
static constexpr int Rank = BaseTraits::Rank + 2;
static constexpr std::size_t count = BaseTraits::count * N * N;
static constexpr int Dimension(int dim) {