mirror of
https://github.com/paboyle/Grid.git
synced 2025-04-04 19:25:56 +01:00
Better reduction for GPUs
This commit is contained in:
parent
fe9edf8526
commit
0b905a72dd
@ -23,7 +23,7 @@ unsigned int nextPow2(Iterator x) {
|
||||
}
|
||||
|
||||
template <class Iterator>
|
||||
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
|
||||
int device;
|
||||
#ifdef GRID_CUDA
|
||||
@ -37,13 +37,13 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
|
||||
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
|
||||
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
|
||||
|
||||
/*
|
||||
std::cout << GridLogDebug << "GPU has:" << std::endl;
|
||||
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
|
||||
|
||||
*/
|
||||
if (warpSize != WARP_SIZE) {
|
||||
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
@ -53,12 +53,12 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
threads = warpSize;
|
||||
if ( threads*sizeofsobj > sharedMemPerBlock ) {
|
||||
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
|
||||
// keep all the streaming multiprocessors busy
|
||||
blocks = nextPow2(multiProcessorCount);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <class sobj, class Iterator>
|
||||
@ -198,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
inline typename vobj::scalar_objectD sumD_gpu_internal(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
typedef decltype(lat) Iterator;
|
||||
@ -208,6 +208,7 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
|
||||
Integer numThreads, numBlocks;
|
||||
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
|
||||
Vector<sobj> buffer(numBlocks);
|
||||
@ -218,6 +219,41 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
auto result = buffer_v[0];
|
||||
return result;
|
||||
}
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
sobj ret;
|
||||
scalarD *ret_p = (scalarD *)&ret;
|
||||
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
Integer size = osites*nsimd;
|
||||
Integer numThreads, numBlocks;
|
||||
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
|
||||
if ( ok ) {
|
||||
ret = sumD_gpu_internal(lat,osites);
|
||||
} else {
|
||||
std::cout << GridLogWarning << " dropping to summing word by word for large object size "<<sizeof(vobj)<<std::endl;
|
||||
Vector<vector> buffer(osites);
|
||||
vector *dat = (vector *)lat;
|
||||
vector *buf = &buffer[0];
|
||||
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
|
||||
for(int w=0;w<words;w++) {
|
||||
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
ret_p[w] = sumD_gpu_internal(tbuf,osites);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Return as same precision as input performing reduction in double precision though
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
Loading…
x
Reference in New Issue
Block a user