1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00

merge develop

This commit is contained in:
Felix Erben 2021-02-23 14:54:46 +00:00
commit 0ed800f6e4
88 changed files with 8040 additions and 5694 deletions

View File

@ -37,7 +37,9 @@ directory
#endif
//disables and intel compiler specific warning (in json.hpp)
#ifdef __ICC
#pragma warning disable 488
#endif
#ifdef __NVCC__
//disables nvcc specific warning in json.hpp

View File

@ -28,4 +28,7 @@
///////////////////
#include "Config.h"
#ifdef TOFU
#undef GRID_COMMS_THREADS
#endif
#endif /* GRID_STD_H */

View File

@ -21,6 +21,7 @@ if BUILD_HDF5
extra_headers+=serialisation/Hdf5Type.h
endif
all: version-cache Version.h
version-cache:
@ -53,6 +54,17 @@ Version.h: version-cache
include Make.inc
include Eigen.inc
extra_sources+=$(ZWILS_FERMION_FILES)
extra_sources+=$(WILS_FERMION_FILES)
extra_sources+=$(STAG_FERMION_FILES)
if BUILD_GPARITY
extra_sources+=$(GP_FERMION_FILES)
endif
if BUILD_FERMION_REPS
extra_sources+=$(ADJ_FERMION_FILES)
extra_sources+=$(TWOIND_FERMION_FILES)
endif
lib_LIBRARIES = libGrid.a
CCFILES += $(extra_sources)

View File

@ -31,6 +31,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
NAMESPACE_BEGIN(Grid);
@ -59,12 +60,14 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
class Geometry {
public:
int npoint;
int base;
std::vector<int> directions ;
std::vector<int> displacements;
std::vector<int> points_dagger;
Geometry(int _d) {
int base = (_d==5) ? 1:0;
base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
@ -72,16 +75,51 @@ public:
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
points_dagger.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
points_dagger[d ] = d+_d;
points_dagger[d+_d] = d;
}
directions [2*_d]=0;
displacements[2*_d]=0;
points_dagger[2*_d]=2*_d;
}
int point(int dir, int disp) {
assert(disp == -1 || disp == 0 || disp == 1);
assert(base+0 <= dir && dir < base+4);
// directions faster index = new indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 1 2 3 0 1 2 3 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 2 3 4 1 2 3 4 0
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
// displacements faster index = old indexing
// 4d (base = 0):
// point 0 1 2 3 4 5 6 7 8
// dir 0 0 1 1 2 2 3 3 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
// 5d (base = 1):
// point 0 1 2 3 4 5 6 7 8
// dir 1 1 2 2 3 3 4 4 0
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
if(dir == 0 and disp == 0)
return 8;
else // New indexing
return (1 - disp) / 2 * 4 + dir - base;
// else // Old indexing
// return (4 * (dir - base) + 1 - disp) / 2;
}
};
template<class Fobj,class CComplex,int nbasis>
@ -258,7 +296,7 @@ public:
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
@ -268,33 +306,59 @@ public:
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef CoarseVector FermionField;
// enrich interface, use default implementation as in FermionOperator ///////
void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
GridBase* _cbgrid;
int hermitian;
CartesianStencil<siteVector,siteVector,int> Stencil;
CartesianStencil<siteVector,siteVector,int> StencilEven;
CartesianStencil<siteVector,siteVector,int> StencilOdd;
std::vector<CoarseMatrix> A;
std::vector<CoarseMatrix> Aeven;
std::vector<CoarseMatrix> Aodd;
CoarseMatrix AselfInv;
CoarseMatrix AselfInvEven;
CoarseMatrix AselfInvOdd;
Vector<RealD> dag_factor;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
GridBase * RedBlackGrid() { return _cbgrid; };
int ConstEE() { return 0; }
void M (const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
auto& geom_v = geom;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@ -316,14 +380,14 @@ public:
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
for(int point=0;point<geom_v.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
@ -344,12 +408,72 @@ public:
return M(in,out);
} else {
// corresponds to Galerkin coarsening
CoarseVector tmp(Grid());
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
return MdagNonHermitian(in, out);
}
};
void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
autoView( Stencil_v , Stencil, AcceleratorRead);
auto& geom_v = geom;
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
Vector<int> points(geom.npoint, 0);
for(int p=0; p<geom.npoint; p++)
points[p] = geom.points_dagger[p];
RealD* dag_factor_p = &dag_factor[0];
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<geom_v.npoint;p++){
int point = points[p];
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirComms(const CoarseVector &in)
{
SimpleCompressor<siteVector> compressor;
@ -359,6 +483,7 @@ public:
{
conformable(_grid,in.Grid());
conformable(_grid,out.Grid());
out.Checkerboard() = in.Checkerboard();
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
@ -367,6 +492,7 @@ public:
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
autoView( Stencil_v , Stencil, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
@ -380,12 +506,12 @@ public:
int ptype;
StencilEntry *SE;
SE=Stencil.GetEntry(ptype,point,ss);
SE=Stencil_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
@ -413,34 +539,7 @@ public:
this->MdirComms(in);
int ndim = in.Grid()->Nd();
//////////////
// 4D action like wilson
// 0+ => 0
// 0- => 1
// 1+ => 2
// 1- => 3
// etc..
//////////////
// 5D action like DWF
// 1+ => 0
// 1- => 1
// 2+ => 2
// 2- => 3
// etc..
auto point = [dir, disp, ndim](){
if(dir == 0 and disp == 0)
return 8;
else if ( ndim==4 ) {
return (4 * dir + 1 - disp) / 2;
} else {
return (4 * (dir-1) + 1 - disp) / 2;
}
}();
MdirCalc(in,out,point);
MdirCalc(in,out,geom.point(dir,disp));
};
void Mdiag(const CoarseVector &in, CoarseVector &out)
@ -449,23 +548,296 @@ public:
MdirCalc(in, out, point); // No comms
};
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
void Mooee(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseNo);
}
void MooeeInv(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerNo, InverseYes);
}
void MooeeDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseNo);
}
void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
MooeeInternal(in, out, DaggerYes, InverseYes);
}
void Meooe(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerNo);
} else {
DhopOE(in, out, DaggerNo);
}
}
void MeooeDag(const CoarseVector &in, CoarseVector &out) {
if(in.Checkerboard() == Odd) {
DhopEO(in, out, DaggerYes);
} else {
DhopOE(in, out, DaggerYes);
}
}
void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
out.Checkerboard() = in.Checkerboard();
DhopInternal(Stencil, A, in, out, dag);
}
void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Even);
out.Checkerboard() = Odd;
DhopInternal(StencilEven, Aodd, in, out, dag);
}
void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
assert(in.Checkerboard() == Odd);
out.Checkerboard() = Even;
DhopInternal(StencilOdd, Aeven, in, out, dag);
}
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
out.Checkerboard() = in.Checkerboard();
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
CoarseMatrix *Aself = nullptr;
if(in.Grid()->_isCheckerBoarded) {
if(in.Checkerboard() == Odd) {
Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
DselfInternal(StencilOdd, *Aself, in, out, dag);
} else {
Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
DselfInternal(StencilEven, *Aself, in, out, dag);
}
} else {
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
DselfInternal(Stencil, *Aself, in, out, dag);
}
assert(Aself != nullptr);
}
void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
const CoarseVector &in, CoarseVector &out, int dag) {
int point = geom.npoint-1;
autoView( out_v, out, AcceleratorWrite);
autoView( in_v, in, AcceleratorRead);
autoView( st_v, st, AcceleratorRead);
autoView( a_v, a, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
}
}
void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
const CoarseVector &in, CoarseVector &out, int dag) {
SimpleCompressor<siteVector> compressor;
st.HaloExchange(in,compressor);
autoView( in_v, in, AcceleratorRead);
autoView( out_v, out, AcceleratorWrite);
autoView( st_v , st, AcceleratorRead);
typedef LatticeView<Cobj> Aview;
// determine in what order we need the points
int npoint = geom.npoint-1;
Vector<int> points(npoint, 0);
for(int p=0; p<npoint; p++)
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
RealD* dag_factor_p = &dag_factor[0];
if(dag) {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
} else {
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int p=0;p<npoint;p++){
int point = points[p];
SE=st_v.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
}
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid)
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,_cbgrid),
Aodd(geom.npoint,_cbgrid),
AselfInv(&CoarseGrid),
AselfInvEven(_cbgrid),
AselfInvOdd(_cbgrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) :
_grid(&CoarseGrid),
_cbgrid(&CoarseRBGrid),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid),
Aeven(geom.npoint,&CoarseRBGrid),
Aodd(geom.npoint,&CoarseRBGrid),
AselfInv(&CoarseGrid),
AselfInvEven(&CoarseRBGrid),
AselfInvOdd(&CoarseRBGrid),
dag_factor(nbasis*nbasis)
{
fillFactor();
};
void fillFactor() {
Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
if(!hermitian) {
const int nb = nbasis/2;
dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
}
// GPU readable prefactor
thread_for(i, nbasis*nbasis, {
int j = i/nbasis;
int k = i%nbasis;
dag_factor[i] = dag_factor_eigen(j, k);
});
}
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type;
std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
@ -496,11 +868,13 @@ public:
CoarseScalar InnerProd(Grid());
std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++)
{
@ -539,7 +913,7 @@ public:
phi=Subspace.subspace[i];
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
@ -568,6 +942,18 @@ public:
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
if ( hermitian && (disp==-1) ) {
for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
auto sft = conjugate(Cshift(oZProj,dir,1));
autoView( sft_v , sft , AcceleratorWrite);
autoView( A_pp , A[pp], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
}
}
}
}
}
@ -606,28 +992,54 @@ public:
}
if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl;
FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl;
}
void ForceHermitian(void) {
CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
if(disp==-1) {
// Find the opposite link
for(int pp=0;pp<geom.npoint;pp++){
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
A[pp] = adj(Cshift(A[p],dir,1));
}
}
}
void InvertSelfStencilLink() {
std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
int localVolume = Grid()->lSites();
typedef typename Cobj::scalar_object scalar_object;
autoView(Aself_v, A[geom.npoint-1], CpuRead);
autoView(AselfInv_v, AselfInv, CpuWrite);
thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
Eigen::MatrixXcd selfLinkEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
scalar_object selfLink = Zero();
scalar_object selfLinkInv = Zero();
Coordinate lcoor;
Grid()->LocalIndexToLocalCoor(site, lcoor);
peekLocalSite(selfLink, Aself_v, lcoor);
for (int i = 0; i < nbasis; ++i)
for (int j = 0; j < nbasis; ++j)
selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
selfLinkInvEigen = selfLinkEigen.inverse();
for(int i = 0; i < nbasis; ++i)
for(int j = 0; j < nbasis; ++j)
selfLinkInv(i, j) = selfLinkInvEigen(i, j);
pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
});
}
void FillHalfCbs() {
std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
for(int p = 0; p < geom.npoint; ++p) {
pickCheckerboard(Even, Aeven[p], A[p]);
pickCheckerboard(Odd, Aodd[p], A[p]);
}
pickCheckerboard(Even, AselfInvEven, AselfInv);
pickCheckerboard(Odd, AselfInvOdd, AselfInv);
}
};

View File

@ -1,67 +0,0 @@
#include <Grid/GridCore.h>
#include <fcntl.h>
NAMESPACE_BEGIN(Grid);
MemoryStats *MemoryProfiler::stats = nullptr;
bool MemoryProfiler::debug = false;
void check_huge_pages(void *Buf,uint64_t BYTES)
{
#ifdef __linux__
int fd = open("/proc/self/pagemap", O_RDONLY);
assert(fd >= 0);
const int page_size = 4096;
uint64_t virt_pfn = (uint64_t)Buf / page_size;
off_t offset = sizeof(uint64_t) * virt_pfn;
uint64_t npages = (BYTES + page_size-1) / page_size;
uint64_t pagedata[npages];
uint64_t ret = lseek(fd, offset, SEEK_SET);
assert(ret == offset);
ret = ::read(fd, pagedata, sizeof(uint64_t)*npages);
assert(ret == sizeof(uint64_t) * npages);
int nhugepages = npages / 512;
int n4ktotal, nnothuge;
n4ktotal = 0;
nnothuge = 0;
for (int i = 0; i < nhugepages; ++i) {
uint64_t baseaddr = (pagedata[i*512] & 0x7fffffffffffffULL) * page_size;
for (int j = 0; j < 512; ++j) {
uint64_t pageaddr = (pagedata[i*512+j] & 0x7fffffffffffffULL) * page_size;
++n4ktotal;
if (pageaddr != baseaddr + j * page_size)
++nnothuge;
}
}
int rank = CartesianCommunicator::RankWorld();
printf("rank %d Allocated %d 4k pages, %d not in huge pages\n", rank, n4ktotal, nnothuge);
#endif
}
std::string sizeString(const size_t bytes)
{
constexpr unsigned int bufSize = 256;
const char *suffixes[7] = {"", "K", "M", "G", "T", "P", "E"};
char buf[256];
size_t s = 0;
double count = bytes;
while (count >= 1024 && s < 7)
{
s++;
count /= 1024;
}
if (count - floor(count) == 0.0)
{
snprintf(buf, bufSize, "%d %sB", (int)count, suffixes[s]);
}
else
{
snprintf(buf, bufSize, "%.1f %sB", count, suffixes[s]);
}
return std::string(buf);
}
NAMESPACE_END(Grid);

View File

@ -165,9 +165,18 @@ template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const d
////////////////////////////////////////////////////////////////////////////////
// Template typedefs
////////////////////////////////////////////////////////////////////////////////
//template<class T> using commAllocator = devAllocator<T>;
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
#ifdef ACCELERATOR_CSHIFT
// Cshift on device
template<class T> using cshiftAllocator = devAllocator<T>;
#else
// Cshift on host
template<class T> using cshiftAllocator = std::allocator<T>;
#endif
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
template<class T> using commVector = std::vector<T,devAllocator<T> >;
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
NAMESPACE_END(Grid);

View File

@ -34,8 +34,6 @@ NAMESPACE_BEGIN(Grid);
// Move control to configure.ac and Config.h?
#define ALLOCATION_CACHE
#define GRID_ALLOC_ALIGN (2*1024*1024)
#define GRID_ALLOC_SMALL_LIMIT (4096)
/*Pinning pages is costly*/

View File

@ -1,11 +1,12 @@
#include <Grid/GridCore.h>
#ifndef GRID_UVM
#warning "Using explicit device memory copies"
NAMESPACE_BEGIN(Grid);
//define dprintf(...) printf ( __VA_ARGS__ ); fflush(stdout);
#define dprintf(...)
////////////////////////////////////////////////////////////
// For caching copies of data on device
////////////////////////////////////////////////////////////
@ -103,7 +104,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Discard(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
@ -111,7 +112,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
dprintf("MemoryManager: Free(%llx) LRU %lld Total %lld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -125,7 +126,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
///////////////////////////////////////////////////////////////////////////
assert(AccCache.state!=Empty);
// dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
dprintf("MemoryManager: Evict(%llx) %llx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
assert(AccCache.accLock==0);
assert(AccCache.cpuLock==0);
if(AccCache.state==AccDirty) {
@ -136,7 +137,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
DeviceBytes -=AccCache.bytes;
LRUremove(AccCache);
// dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
dprintf("MemoryManager: Free(%llx) footprint now %lld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
}
uint64_t CpuPtr = AccCache.CpuPtr;
EntryErase(CpuPtr);
@ -149,7 +150,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
assert(AccCache.AccPtr!=(uint64_t)NULL);
assert(AccCache.CpuPtr!=(uint64_t)NULL);
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
// dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
dprintf("MemoryManager: Flush %llx -> %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
DeviceToHostBytes+=AccCache.bytes;
DeviceToHostXfer++;
AccCache.state=Consistent;
@ -164,7 +165,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
DeviceBytes+=AccCache.bytes;
}
// dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
dprintf("MemoryManager: Clone %llx <- %llx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
HostToDeviceBytes+=AccCache.bytes;
HostToDeviceXfer++;
@ -227,18 +228,24 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,hint);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
assert(AccCache.cpuLock==0); // Programming error
if(AccCache.state!=Empty) {
dprintf("ViewOpen found entry %llx %llx : %lld %lld\n",
(uint64_t)AccCache.CpuPtr,
(uint64_t)CpuPtr,
(uint64_t)AccCache.bytes,
(uint64_t)bytes);
assert(AccCache.CpuPtr == CpuPtr);
assert(AccCache.bytes ==bytes);
}
@ -285,21 +292,21 @@ uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMod
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
}
AccCache.accLock++;
// printf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
dprintf("Copied CpuDirty entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==Consistent) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
else
AccCache.state = Consistent; // Consistent + AccRead => Consistent
AccCache.accLock++;
// printf("Consistent entry into device accLock %d\n",AccCache.accLock);
dprintf("Consistent entry into device accLock %d\n",AccCache.accLock);
} else if(AccCache.state==AccDirty) {
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
else
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
AccCache.accLock++;
// printf("AccDirty entry into device accLock %d\n",AccCache.accLock);
dprintf("AccDirty entry into device accLock %d\n",AccCache.accLock);
} else {
assert(0);
}
@ -361,13 +368,16 @@ uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,V
// Find if present, otherwise get or force an empty
////////////////////////////////////////////////////////////////////////////
if ( EntryPresent(CpuPtr)==0 ){
EvictVictims(bytes);
EntryCreate(CpuPtr,bytes,mode,transient);
}
auto AccCacheIterator = EntryLookup(CpuPtr);
auto & AccCache = AccCacheIterator->second;
if (!AccCache.AccPtr) {
EvictVictims(bytes);
}
assert((mode==CpuRead)||(mode==CpuWrite));
assert(AccCache.accLock==0); // Programming error

View File

@ -1,7 +1,6 @@
#include <Grid/GridCore.h>
#ifdef GRID_UVM
#warning "Grid is assuming unified virtual memory address space"
NAMESPACE_BEGIN(Grid);
/////////////////////////////////////////////////////////////////////////////////
// View management is 1:1 address space mapping

View File

@ -1,4 +1,3 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
@ -108,6 +107,8 @@ public:
////////////////////////////////////////////////////////////
// Reduction
////////////////////////////////////////////////////////////
void GlobalMax(RealD &);
void GlobalMax(RealF &);
void GlobalSum(RealF &);
void GlobalSumVector(RealF *,int N);
void GlobalSum(RealD &);

View File

@ -44,7 +44,7 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
MPI_Initialized(&flag); // needed to coexist with other libs apparently
if ( !flag ) {
#if defined (TOFU) // FUGAKU, credits go to Issaku Kanamori
#ifndef GRID_COMMS_THREADS
nCommThreads=1;
// wrong results here too
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
@ -275,6 +275,16 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(float &f)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalMax(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
@ -358,16 +368,19 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
assert(from != _processor);
assert(gme == ShmRank);
double off_node_bytes=0.0;
int tag;
if ( gfrom ==MPI_UNDEFINED) {
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
tag= dir+from*32;
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
assert(ierr==0);
list.push_back(rrq);
off_node_bytes+=bytes;
}
if ( gdest == MPI_UNDEFINED ) {
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
tag= dir+_processor*32;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
assert(ierr==0);
list.push_back(xrq);
off_node_bytes+=bytes;

View File

@ -67,6 +67,8 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
CartesianCommunicator::~CartesianCommunicator(){}
void CartesianCommunicator::GlobalMax(float &){}
void CartesianCommunicator::GlobalMax(double &){}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}

View File

@ -102,7 +102,7 @@ public:
///////////////////////////////////////////////////
static void SharedMemoryAllocate(uint64_t bytes, int flags);
static void SharedMemoryFree(void);
static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
static void SharedMemoryZero(void *dest,size_t bytes);
};

View File

@ -457,8 +457,9 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes
// if ( WorldRank == 0 ){
if ( 1 ){
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
@ -665,7 +666,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
#endif
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
if ( ptr == (void * )MAP_FAILED ) {
perror("failed mmap");
assert(0);
@ -715,7 +715,7 @@ void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
bzero(dest,bytes);
#endif
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
#ifdef GRID_CUDA
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
@ -771,19 +771,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
#ifdef GRID_IBM_SUMMIT
// Hide the shared memory path between sockets
// if even number of nodes
if ( (ShmSize & 0x1)==0 ) {
int SocketSize = ShmSize/2;
int mySocket = ShmRank/SocketSize;
#ifdef GRID_SHM_FORCE_MPI
// Hide the shared memory path between ranks
{
for(int r=0;r<size;r++){
int hisRank=ShmRanks[r];
if ( hisRank!= MPI_UNDEFINED ) {
int hisSocket=hisRank/SocketSize;
if ( hisSocket != mySocket ) {
ShmRanks[r] = MPI_UNDEFINED;
}
if ( r!=rank ) {
ShmRanks[r] = MPI_UNDEFINED;
}
}
}

View File

@ -29,6 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
#define header "SharedMemoryNone: "
/*Construct from an MPI communicator*/
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
@ -55,6 +56,38 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
////////////////////////////////////////////////////////////////////////////////////////////
// Hugetlbfs mapping intended, use anonymous mmap
////////////////////////////////////////////////////////////////////////////////////////////
#if 1
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
void * ShmCommBuf ;
assert(_ShmSetup==1);
assert(_ShmAlloc==0);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Each MPI rank should allocate our own buffer
///////////////////////////////////////////////////////////////////////////////////////////////////////////
ShmCommBuf = acceleratorAllocDevice(bytes);
if (ShmCommBuf == (void *)NULL ) {
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
exit(EXIT_FAILURE);
}
if ( WorldRank == 0 ){
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
}
SharedMemoryZero(ShmCommBuf,bytes);
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// Loop over ranks/gpu's on our node
///////////////////////////////////////////////////////////////////////////////////////////////////////////
WorldShmCommBufs[0] = ShmCommBuf;
_ShmAllocBytes=bytes;
_ShmAlloc=1;
}
#else
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
{
void * ShmCommBuf ;
@ -83,7 +116,15 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
_ShmAllocBytes=bytes;
_ShmAlloc=1;
};
#endif
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
{
acceleratorMemSet(dest,0,bytes);
}
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
{
acceleratorCopyToDevice(src,dest,bytes);
}
////////////////////////////////////////////////////////
// Global shared functionality finished
// Now move to per communicator functionality

View File

@ -35,7 +35,7 @@ extern Vector<std::pair<int,int> > Cshift_table;
// Gather for when there is no need to SIMD split
///////////////////////////////////////////////////////////////////
template<class vobj> void
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -73,12 +73,19 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
}
}
{
autoView(rhs_v , rhs, AcceleratorRead);
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for(i,ent,{
buffer_p[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -103,6 +110,7 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
int n1=rhs.Grid()->_slice_stride[dimension];
if ( cbmask ==0x3){
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for2d(n,e1,b,e2,1,{
int o = n*n1;
@ -111,12 +119,22 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
int o = n*n1;
int offset = b+n*e2;
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
});
#endif
} else {
autoView(rhs_v , rhs, AcceleratorRead);
Coordinate rdim=rhs.Grid()->_rdimensions;
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
accelerator_for2d(n,e1,b,e2,1,{
Coordinate coor;
@ -134,13 +152,33 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
extract<vobj>(temp,pointers,offset);
}
});
#else
autoView(rhs_v , rhs, CpuRead);
thread_for2d(n,e1,b,e2,{
Coordinate coor;
int o=n*n1;
int oindex = o+b;
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
int ocb=1<<cb;
int offset = b+n*e2;
if ( ocb & cbmask ) {
vobj temp =rhs_v[so+o+b];
extract<vobj>(temp,pointers,offset);
}
});
#endif
}
}
//////////////////////////////////////////////////////
// Scatter for when there is no need to SIMD split
//////////////////////////////////////////////////////
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
{
int rd = rhs.Grid()->_rdimensions[dimension];
@ -182,12 +220,19 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
}
{
autoView( rhs_v, rhs, AcceleratorWrite);
auto buffer_p = & buffer[0];
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorWrite);
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
});
#else
autoView( rhs_v, rhs, CpuWrite);
thread_for(i,ent,{
rhs_v[table[i].first]=buffer_p[table[i].second];
});
#endif
}
}
@ -208,14 +253,23 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
int e2=rhs.Grid()->_slice_block[dimension];
if(cbmask ==0x3 ) {
autoView( rhs_v , rhs, AcceleratorWrite);
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
int _slice_block = rhs.Grid()->_slice_block[dimension];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v , rhs, AcceleratorWrite);
accelerator_for2d(n,e1,b,e2,1,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#else
autoView( rhs_v , rhs, CpuWrite);
thread_for2d(n,e1,b,e2,{
int o = n*_slice_stride;
int offset = b+n*_slice_block;
merge(rhs_v[so+o+b],pointers,offset);
});
#endif
} else {
// Case of SIMD split AND checker dim cannot currently be hit, except in
@ -280,12 +334,20 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView(rhs_v , rhs, AcceleratorRead);
autoView(lhs_v , lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,vobj::Nsimd(),{
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
});
#else
autoView(rhs_v , rhs, CpuRead);
autoView(lhs_v , lhs, CpuWrite);
thread_for(i,ent,{
lhs_v[table[i].first]=rhs_v[table[i].second];
});
#endif
}
}
@ -324,12 +386,20 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
}
{
auto table = &Cshift_table[0];
#ifdef ACCELERATOR_CSHIFT
autoView( rhs_v, rhs, AcceleratorRead);
autoView( lhs_v, lhs, AcceleratorWrite);
auto table = &Cshift_table[0];
accelerator_for(i,ent,1,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#else
autoView( rhs_v, rhs, CpuRead);
autoView( lhs_v, lhs, CpuWrite);
thread_for(i,ent,{
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
});
#endif
}
}

View File

@ -101,7 +101,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
}
}
#define ACCELERATOR_CSHIFT_NO_COPY
#ifdef ACCELERATOR_CSHIFT_NO_COPY
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
@ -121,9 +122,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
commVector<vobj> send_buf(buffer_size);
commVector<vobj> recv_buf(buffer_size);
cshiftVector<vobj> send_buf(buffer_size);
cshiftVector<vobj> recv_buf(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
@ -138,7 +139,7 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
} else {
int words = send_buf.size();
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
@ -150,12 +151,14 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
@ -195,8 +198,15 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
std::vector<cshiftVector<scalar_object> > send_buf_extract(Nsimd);
std::vector<cshiftVector<scalar_object> > recv_buf_extract(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
@ -242,11 +252,204 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
grid->Barrier();
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
recv_buf_extract_mpi = &recv_buf_extract[i][0];
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)&recv_buf_extract[i][0],
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
}
}
#else
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_type scalar_type;
GridBase *grid=rhs.Grid();
Lattice<vobj> temp(rhs.Grid());
int fd = rhs.Grid()->_fdimensions[dimension];
int rd = rhs.Grid()->_rdimensions[dimension];
int pd = rhs.Grid()->_processors[dimension];
int simd_layout = rhs.Grid()->_simd_layout[dimension];
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
cshiftVector<vobj> send_buf_v(buffer_size);
cshiftVector<vobj> recv_buf_v(buffer_size);
vobj *send_buf;
vobj *recv_buf;
{
grid->ShmBufferFreeAll();
size_t bytes = buffer_size*sizeof(vobj);
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
}
int cb= (cbmask==0x2)? Odd : Even;
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc==0) {
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(vobj);
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
// int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&recv_buf[0],
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
grid->Barrier();
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
}
}
}
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
{
GridBase *grid=rhs.Grid();
const int Nsimd = grid->Nsimd();
typedef typename vobj::vector_type vector_type;
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
int fd = grid->_fdimensions[dimension];
int rd = grid->_rdimensions[dimension];
int ld = grid->_ldimensions[dimension];
int pd = grid->_processors[dimension];
int simd_layout = grid->_simd_layout[dimension];
int comm_dim = grid->_processors[dimension] >1 ;
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
int permute_type=grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
// int words = sizeof(vobj)/sizeof(vector_type);
std::vector<cshiftVector<scalar_object> > send_buf_extract(Nsimd);
std::vector<cshiftVector<scalar_object> > recv_buf_extract(Nsimd);
scalar_object * recv_buf_extract_mpi;
scalar_object * send_buf_extract_mpi;
{
size_t bytes = sizeof(scalar_object)*buffer_size;
grid->ShmBufferFreeAll();
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
}
for(int s=0;s<Nsimd;s++){
send_buf_extract[s].resize(buffer_size);
recv_buf_extract[s].resize(buffer_size);
}
int bytes = buffer_size*sizeof(scalar_object);
ExtractPointerArray<scalar_object> pointers(Nsimd); //
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
// FIXME call local permute copy if none are offnode.
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
int nbr_ox = (nbr_coor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
grid->Barrier();
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
xmit_to_rank,
(void *)recv_buf_extract_mpi,
recv_from_rank,
bytes);
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
grid->Barrier();
rpointers[i] = &recv_buf_extract[i][0];
} else {
@ -258,7 +461,7 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
}
}
#endif
NAMESPACE_END(Grid);
#endif

View File

@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
basis_v.push_back(basis[k].View(AcceleratorWrite));
}
#if ( (!defined(GRID_SYCL)) && (!defined(GRID_CUDA)) )
#if ( (!defined(GRID_CUDA)) )
int max_threads = thread_max();
Vector < vobj > Bt(Nm * max_threads);
thread_region
@ -164,7 +164,8 @@ void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,in
auto basis_vp=& basis_v[0];
autoView(result_v,result,AcceleratorWrite);
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
auto B=coalescedRead(zz);
vobj zzz=Zero();
auto B=coalescedRead(zzz);
for(int k=k0; k<k1; ++k){
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
}

View File

@ -96,8 +96,34 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
ssobj ret = ssum;
return ret;
}
/*
Threaded max, don't use for now
template<class Double>
inline Double max(const Double *arg, Integer osites)
{
// const int Nsimd = vobj::Nsimd();
const int nthread = GridThread::GetThreads();
std::vector<Double> maxarray(nthread);
thread_for(thr,nthread, {
int nwork, mywork, myoff;
nwork = osites;
GridThread::GetWork(nwork,thr,mywork,myoff);
Double max=arg[0];
for(int ss=myoff;ss<mywork+myoff; ss++){
if( arg[ss] > max ) max = arg[ss];
}
maxarray[thr]=max;
});
Double tmax=maxarray[0];
for(int i=0;i<nthread;i++){
if (maxarray[i]>tmax) tmax = maxarray[i];
}
return tmax;
}
*/
template<class vobj>
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
{
@ -141,6 +167,32 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
return real(nrm);
}
//The global maximum of the site norm2
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
{
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
Lattice<vscalar> inner = localNorm2(arg);
auto grid = arg.Grid();
RealD max;
for(int l=0;l<grid->lSites();l++){
Coordinate coor;
scalar val;
RealD r;
grid->LocalIndexToLocalCoor(l,coor);
peekLocalSite(val,inner,coor);
r=real(TensorRemove(val));
if( (l==0) || (r>max)){
max=r;
}
}
grid->GlobalMax(max);
return max;
}
// Double inner product
template<class vobj>
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)

View File

@ -127,6 +127,11 @@ accelerator_inline void convertType(T1 & out, const iScalar<T2> & in) {
convertType(out,in._internal);
}
template<typename T1, typename std::enable_if<!isGridScalar<T1>::value, T1>::type* = nullptr>
accelerator_inline void convertType(T1 & out, const iScalar<T1> & in) {
convertType(out,in._internal);
}
template<typename T1,typename T2>
accelerator_inline void convertType(iScalar<T1> & out, const T2 & in) {
convertType(out._internal,in);

View File

@ -123,7 +123,7 @@ assert(GRID_FIELD_NORM_CALC(FieldNormMetaData_, n2ck) < 1.0e-5);
////////////////////////////////////////////////////////////
// Helper to fill out metadata
////////////////////////////////////////////////////////////
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
FieldMetaData &header,
scidacRecord & _scidacRecord,
scidacFile & _scidacFile)
@ -619,12 +619,12 @@ class IldgWriter : public ScidacWriter {
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
template <class stats = PeriodicGaugeStatistics>
void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,int sequence,std::string LFN,std::string description)
{
GridBase * grid = Umu.Grid();
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef Lattice<vLorentzColourMatrixD> GaugeField;
typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj;
////////////////////////////////////////
@ -636,6 +636,9 @@ class IldgWriter : public ScidacWriter {
ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
stats Stats;
Stats(Umu,header);
std::string format = header.floating_point;
header.ensemble_id = description;
header.ensemble_label = description;
@ -705,10 +708,10 @@ class IldgReader : public GridLimeReader {
// Else use ILDG MetaData object if present.
// Else use SciDAC MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
template <class stats = PeriodicGaugeStatistics>
void readConfiguration(Lattice<vLorentzColourMatrixD> &Umu, FieldMetaData &FieldMetaData_) {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef Lattice<vLorentzColourMatrixD > GaugeField;
typedef typename GaugeField::vector_object vobj;
typedef typename vobj::scalar_object sobj;
@ -921,7 +924,8 @@ class IldgReader : public GridLimeReader {
if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker;
GaugeStatistics(Umu,checker);
stats Stats;
Stats(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;

View File

@ -176,29 +176,18 @@ template<class vobj> inline void PrepareMetaData(Lattice<vobj> & field, FieldMet
GridMetaData(grid,header);
MachineCharacteristics(header);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixF> & data,FieldMetaData &header)
template<class Impl>
class GaugeStatistics
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplF>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplF>::avgPlaquette(data);
}
inline void GaugeStatistics(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
// How to convert data precision etc...
header.link_trace=WilsonLoops<PeriodicGimplD>::linkTrace(data);
header.plaquette =WilsonLoops<PeriodicGimplD>::avgPlaquette(data);
}
template<> inline void PrepareMetaData<vLorentzColourMatrixF>(Lattice<vLorentzColourMatrixF> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
std::string format = getFormatString<vLorentzColourMatrixF>();
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}
public:
void operator()(Lattice<vLorentzColourMatrixD> & data,FieldMetaData &header)
{
header.link_trace=WilsonLoops<Impl>::linkTrace(data);
header.plaquette =WilsonLoops<Impl>::avgPlaquette(data);
}
};
typedef GaugeStatistics<PeriodicGimplD> PeriodicGaugeStatistics;
typedef GaugeStatistics<ConjugateGimplD> ConjugateGaugeStatistics;
template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzColourMatrixD> & field, FieldMetaData &header)
{
GridBase *grid = field.Grid();
@ -206,7 +195,6 @@ template<> inline void PrepareMetaData<vLorentzColourMatrixD>(Lattice<vLorentzCo
header.floating_point = format;
header.checksum = 0x0; // Nersc checksum unused in ILDG, Scidac
GridMetaData(grid,header);
GaugeStatistics(field,header);
MachineCharacteristics(header);
}

View File

@ -40,6 +40,8 @@ using namespace Grid;
class NerscIO : public BinaryIO {
public:
typedef Lattice<vLorentzColourMatrixD> GaugeField;
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
@ -129,12 +131,12 @@ public:
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void readConfiguration(GaugeField &Umu,
FieldMetaData& header,
std::string file)
std::string file,
GaugeStats GaugeStatisticsCalculator=GaugeStats())
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu.Grid();
uint64_t offset = readHeader(file,Umu.Grid(),header);
@ -153,23 +155,23 @@ public:
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
BinaryIO::readLatticeObject<vLorentzColourMatrixD, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
BinaryIO::readLatticeObject<vLorentzColourMatrixD,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
@ -177,7 +179,7 @@ public:
assert(0);
}
GaugeStatistics(Umu,clone);
GaugeStats Stats; Stats(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
@ -203,15 +205,13 @@ public:
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
template<class GaugeStats=PeriodicGaugeStatistics>
static inline void writeConfiguration(Lattice<vLorentzColourMatrixD > &Umu,
std::string file,
int two_row,
int bits32)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef vLorentzColourMatrixD vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
@ -229,7 +229,7 @@ public:
GridMetaData(grid,header);
assert(header.nd==4);
GaugeStatistics(Umu,header);
GaugeStats Stats; Stats(Umu,header);
MachineCharacteristics(header);
uint64_t offset;
@ -238,19 +238,19 @@ public:
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
<<std::hex<<header.checksum

View File

@ -154,7 +154,7 @@ public:
grid->Barrier(); timer.Stop();
std::cout << Grid::GridLogMessage << "OpenQcdIO::readConfiguration: redistribute overhead " << timer.Elapsed() << std::endl;
GaugeStatistics(Umu, clone);
PeriodicGaugeStatistics Stats; Stats(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -208,7 +208,7 @@ public:
FieldMetaData clone(header);
GaugeStatistics(Umu, clone);
PeriodicGaugeStatistics Stats; Stats(Umu, clone);
RealD plaq_diff = fabs(clone.plaquette - header.plaquette);

View File

@ -80,6 +80,13 @@ template<typename T> struct isSpinor {
template <typename T> using IfSpinor = Invoke<std::enable_if< isSpinor<T>::value,int> > ;
template <typename T> using IfNotSpinor = Invoke<std::enable_if<!isSpinor<T>::value,int> > ;
const int CoarseIndex = 4;
template<typename T> struct isCoarsened {
static constexpr bool value = (CoarseIndex<=T::TensorLevel);
};
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
// ChrisK very keen to add extra space for Gparity doubling.
//
// Also add domain wall index, in a way where Wilson operator

View File

@ -97,42 +97,30 @@ public:
Coordinate icoor;
#ifdef GRID_SIMT
_Spinor tmp;
const int Nsimd =SiteDoubledGaugeField::Nsimd();
int s = acceleratorSIMTlane(Nsimd);
St.iCoorFromIindex(icoor,s);
int mmu = mu % Nd;
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
if ( permute_lane ) {
tmp(0) = chi(1);
tmp(1) = chi(0);
} else {
tmp(0) = chi(0);
tmp(1) = chi(1);
}
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
//Decide whether we do a G-parity flavor twist
//Note: this assumes (but does not check) that sl==1 || sl==2 i.e. max 2 SIMD lanes in G-parity dir
//It also assumes (but does not check) that abs(distance) == 1
int permute_lane = (sl==1)
|| ((distance== 1)&&(icoor[direction]==1))
|| ((distance==-1)&&(icoor[direction]==0));
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
mult(&phi(0),&UU0,&tmp(0));
mult(&phi(1),&UU1,&tmp(1));
//Apply the links
int f_upper = permute_lane ? 1 : 0;
int f_lower = !f_upper;
} else {
auto UU0=coalescedRead(U(0)(mu));
auto UU1=coalescedRead(U(1)(mu));
mult(&phi(0),&UU0,&chi(0));
mult(&phi(1),&UU1,&chi(1));
}
mult(&phi(0),&UU0,&chi(f_upper));
mult(&phi(1),&UU1,&chi(f_lower));
#else
typedef _Spinor vobj;

View File

@ -85,7 +85,7 @@ class MADWF
maxiter =_maxiter;
};
void operator() (const FermionFieldo &src4,FermionFieldo &sol5)
void operator() (const FermionFieldo &src,FermionFieldo &sol5)
{
std::cout << GridLogMessage<< " ************************************************" << std::endl;
std::cout << GridLogMessage<< " MADWF-like algorithm " << std::endl;
@ -114,8 +114,16 @@ class MADWF
///////////////////////////////////////
//Import source, include Dminus factors
///////////////////////////////////////
Mato.ImportPhysicalFermionSource(src4,b);
std::cout << GridLogMessage << " src4 " <<norm2(src4)<<std::endl;
GridBase *src_grid = src.Grid();
assert( (src_grid == Mato.GaugeGrid()) || (src_grid == Mato.FermionGrid()));
if ( src_grid == Mato.GaugeGrid() ) {
Mato.ImportPhysicalFermionSource(src,b);
} else {
b=src;
}
std::cout << GridLogMessage << " src " <<norm2(src)<<std::endl;
std::cout << GridLogMessage << " b " <<norm2(b)<<std::endl;
defect = b;

View File

@ -106,11 +106,15 @@ public:
const _SpinorField & phi,
int mu)
{
const int Nsimd = SiteHalfSpinor::Nsimd();
autoView( out_v, out, AcceleratorWrite);
autoView( phi_v, phi, AcceleratorRead);
autoView( Umu_v, Umu, AcceleratorRead);
accelerator_for(sss,out.Grid()->oSites(),1,{
multLink(out_v[sss],Umu_v[sss],phi_v[sss],mu);
typedef decltype(coalescedRead(out_v[0])) calcSpinor;
accelerator_for(sss,out.Grid()->oSites(),Nsimd,{
calcSpinor tmp;
multLink(tmp,Umu_v[sss],phi_v(sss),mu);
coalescedWrite(out_v[sss],tmp);
});
}

View File

@ -642,7 +642,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
Current curr_type,
unsigned int mu)
{
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
#if (!defined(GRID_HIP))
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
@ -826,7 +826,7 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
}
#endif
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
#if (!defined(GRID_HIP))
int tshift = (mu == Nd-1) ? 1 : 0;
////////////////////////////////////////////////
// GENERAL CAYLEY CASE

View File

@ -92,20 +92,16 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
int lvol = _Umu.Grid()->lSites();
int DimRep = Impl::Dimension;
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Coordinate lcoor;
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
{
autoView(CTv,CloverTerm,CpuRead);
autoView(CTIv,CloverTermInv,CpuWrite);
for (int site = 0; site < lvol; site++) {
thread_for(site, lvol, {
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
typename SiteCloverType::scalar_object Qx = Zero(), Qxinv = Zero();
peekLocalSite(Qx, CTv, lcoor);
Qxinv = Zero();
//if (csw!=0){
for (int j = 0; j < Ns; j++)
for (int k = 0; k < Ns; k++)
@ -126,7 +122,7 @@ void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
// }
pokeLocalSite(Qxinv, CTIv, lcoor);
}
});
}
// Separate the even and odd parts

View File

@ -397,6 +397,7 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
template <class Impl>
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
{
DhopCalls+=2;
conformable(in.Grid(), _grid); // verifies full grid
conformable(in.Grid(), out.Grid());
@ -408,6 +409,7 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
template <class Impl>
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
{
DhopCalls++;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check
@ -420,6 +422,7 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
template <class Impl>
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
{
DhopCalls++;
conformable(in.Grid(), _cbgrid); // verifies half grid
conformable(in.Grid(), out.Grid()); // drops the cb check

View File

@ -38,9 +38,6 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
// undefine everything related to kernels
#include <simd/Fujitsu_A64FX_undef.h>
// enable A64FX body
#define WILSONKERNELSASMBODYA64FX
//#pragma message("A64FX Dslash: WilsonKernelsAsmBodyA64FX.h")
///////////////////////////////////////////////////////////
// If we are A64FX specialise the single precision routine
@ -63,119 +60,89 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
/////////////////////////////////////////////////////////////////
@ -185,119 +152,89 @@ WilsonKernels<ZWilsonImplFH>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldV
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
// undefine
@ -330,119 +267,89 @@ WilsonKernels<ZWilsonImplFH>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFie
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSite(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
/////////////////////////////////////////////////////////////////
// XYZT vectorised, dag Kernel, double
@ -451,124 +358,93 @@ WilsonKernels<ZWilsonImplDF>::AsmDhopSiteExt(StencilView &st, DoubledGaugeFieldV
#define INTERIOR_AND_EXTERIOR
#undef INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDag(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#define INTERIOR
#undef EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagInt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#undef INTERIOR_AND_EXTERIOR
#undef INTERIOR
#define EXTERIOR
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplD>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplD>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<WilsonImplDF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
#pragma GCC optimize ("-O3", "-fno-schedule-insns", "-fno-schedule-insns2")
template<> void
WilsonKernels<ZWilsonImplDF>::AsmDhopSiteDagExt(StencilView &st, DoubledGaugeFieldView &U, SiteHalfSpinor *buf,
int ss,int ssU,int Ls,int Ns,const FermionFieldView &in, FermionFieldView &out)
#if defined (WILSONKERNELSASMBODYA64FX)
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBodyA64FX.h>
#else
#include <qcd/action/fermion/implementation/WilsonKernelsAsmBody.h>
#endif
// undefs
#undef WILSONKERNELSASMBODYA64FX
#include <simd/Fujitsu_A64FX_undef.h>
#endif //A64FXASM

View File

@ -25,6 +25,11 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
// GCC 10 messes up SVE instruction scheduling using -O3, but
// -O3 -fno-schedule-insns -fno-schedule-insns2 does wonders
// performance now is better than armclang 20.2
#ifdef KERNEL_DAG
#define DIR0_PROJ XP_PROJ
#define DIR1_PROJ YP_PROJ
@ -97,7 +102,7 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
} else { \
LOAD_CHI(base); \
LOAD_CHI(base); \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
MULT_2SPIN_1(Dir); \
@ -110,6 +115,11 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
} \
RECON; \
/*
NB: picking PREFETCH_GAUGE_L2(Dir+4); here results in performance penalty
though I expected that it would improve on performance
*/
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PREFETCH1_CHIMU(base); \
@ -126,73 +136,63 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
basep = st.GetPFInfo(nent,plocal); nent++; \
if ( local ) { \
LOAD_CHIMU(base); \
LOAD_TABLE(PERMUTE_DIR); \
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
}else if ( st.same_node[Dir] ) {LOAD_CHI(base);} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
if ( local || st.same_node[Dir] ) { \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
PREFETCH_CHIMU_L2(basep); \
} else { PREFETCH_CHIMU(base); } \
if ( local ) { \
LOAD_CHIMU(base); \
LOAD_TABLE(PERMUTE_DIR); \
PROJ; \
MAYBEPERM(PERMUTE_DIR,perm); \
}else if ( st.same_node[Dir] ) {LOAD_CHI(base);} \
if ( local || st.same_node[Dir] ) { \
MULT_2SPIN_1(Dir); \
MULT_2SPIN_2; \
RECON; \
} \
base = st.GetInfo(ptype,local,perm,NxtDir,ent,plocal); ent++; \
PREFETCH_CHIMU(base); \
PREFETCH_CHIMU_L2(basep); \
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
PREFETCH1_CHIMU(base); \
{ ZERO_PSI; } \
ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON)
#define RESULT(base,basep) SAVE_RESULT(base,basep);
#endif
////////////////////////////////////////////////////////////////////////////////
// Post comms kernel
////////////////////////////////////////////////////////////////////////////////
#ifdef EXTERIOR
#define ASM_LEG(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
nmu++; \
RECON; \
nmu++; \
}
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
nmu=0; \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++;\
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
#define ASM_LEG_XP(Dir,NxtDir,PERMUTE_DIR,PROJ,RECON) \
nmu=0; \
{ ZERO_PSI;} \
base = st.GetInfo(ptype,local,perm,Dir,ent,plocal); ent++; \
if((!local)&&(!st.same_node[Dir]) ) { \
LOAD_CHI(base); \
MULT_2SPIN_1(Dir); \
PREFETCH_CHIMU(base); \
/* PREFETCH_GAUGE_L1(NxtDir); */ \
MULT_2SPIN_2; \
if (s == 0) { \
if ((Dir == 0) || (Dir == 4)) { PREFETCH_GAUGE_L2(Dir); } \
} \
RECON; \
nmu++; \
RECON; \
nmu++; \
}
#define RESULT(base,basep) if (nmu){ ADD_RESULT(base,base);}
#endif
{
int nmu;
int local,perm, ptype;
@ -209,7 +209,6 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
// int sUn=lo.Reorder(ssn);
int sUn=ssn;
LOCK_GAUGE(0);
#else
int sU =ssU;
int ssn=ssU+1; if(ssn>=nmax) ssn=0;
@ -295,6 +294,11 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
std::cout << "----------------------------------------------------" << std::endl;
#endif
// DC ZVA test
// { uint64_t basestore = (uint64_t)&out[ss];
// PREFETCH_RESULT_L2_STORE(basestore); }
ASM_LEG(Ym,Zm,PERMUTE_DIR2,DIR5_PROJ,DIR5_RECON);
#ifdef SHOW
@ -308,6 +312,11 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
std::cout << "----------------------------------------------------" << std::endl;
#endif
// DC ZVA test
//{ uint64_t basestore = (uint64_t)&out[ss];
// PREFETCH_RESULT_L2_STORE(basestore); }
ASM_LEG(Zm,Tm,PERMUTE_DIR1,DIR6_PROJ,DIR6_RECON);
#ifdef SHOW
@ -321,6 +330,11 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
std::cout << "----------------------------------------------------" << std::endl;
#endif
// DC ZVA test
//{ uint64_t basestore = (uint64_t)&out[ss];
// PREFETCH_RESULT_L2_STORE(basestore); }
ASM_LEG(Tm,Xp,PERMUTE_DIR0,DIR7_PROJ,DIR7_RECON);
#ifdef SHOW
@ -341,6 +355,7 @@ Author: Nils Meyer <nils.meyer@ur.de> Regensburg University
base = (uint64_t) &out[ss];
basep= st.GetPFInfo(nent,plocal); ent++;
basep = (uint64_t) &out[ssn];
//PREFETCH_RESULT_L1_STORE(base);
RESULT(base,basep);
#ifdef SHOW

View File

@ -0,0 +1,38 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/gauge/Gauge.cc
Copyright (C) 2020
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
NAMESPACE_BEGIN(Grid);
std::vector<int> ConjugateGaugeImplBase::_conjDirs;
NAMESPACE_END(Grid);

View File

@ -154,6 +154,10 @@ public:
return Hsum.real();
}
static inline void Project(Field &U) {
ProjectSUn(U);
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
SU<Nc>::HotConfiguration(pRNG, U);
}

View File

@ -59,14 +59,14 @@ public:
}
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
return Cshift(adj(Link), mu, -1);
return PeriodicBC::CovShiftIdentityBackward(Link, mu);
}
static inline GaugeLinkField
CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
return Link;
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
return Cshift(Link, mu, 1);
return PeriodicBC::ShiftStaple(Link,mu);
}
static inline bool isPeriodicGaugeField(void) { return true; }
@ -74,7 +74,13 @@ public:
// Composition with smeared link, bc's etc.. probably need multiple inheritance
// Variable precision "S" and variable Nc
template <class GimplTypes> class ConjugateGaugeImpl : public GimplTypes {
class ConjugateGaugeImplBase {
protected:
static std::vector<int> _conjDirs;
};
template <class GimplTypes> class ConjugateGaugeImpl : public GimplTypes, ConjugateGaugeImplBase {
private:
public:
INHERIT_GIMPL_TYPES(GimplTypes);
@ -84,47 +90,56 @@ public:
////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <class covariant>
static Lattice<covariant> CovShiftForward(const GaugeLinkField &Link, int mu,
const Lattice<covariant> &field) {
return ConjugateBC::CovShiftForward(Link, mu, field);
const Lattice<covariant> &field)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftForward(Link, mu, field);
else
return PeriodicBC::CovShiftForward(Link, mu, field);
}
template <class covariant>
static Lattice<covariant> CovShiftBackward(const GaugeLinkField &Link, int mu,
const Lattice<covariant> &field) {
return ConjugateBC::CovShiftBackward(Link, mu, field);
const Lattice<covariant> &field)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftBackward(Link, mu, field);
else
return PeriodicBC::CovShiftBackward(Link, mu, field);
}
static inline GaugeLinkField
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu) {
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
GaugeLinkField tmp(grid);
tmp = adj(Link);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1); // moves towards positive mu
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftIdentityBackward(Link, mu);
else
return PeriodicBC::CovShiftIdentityBackward(Link, mu);
}
static inline GaugeLinkField
CovShiftIdentityForward(const GaugeLinkField &Link, int mu) {
return Link;
CovShiftIdentityForward(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::CovShiftIdentityForward(Link,mu);
else
return PeriodicBC::CovShiftIdentityForward(Link,mu);
}
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu) {
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
GaugeLinkField tmp(grid);
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
{
assert(_conjDirs.size() == Nd);
if(_conjDirs[mu])
return ConjugateBC::ShiftStaple(Link,mu);
else
return PeriodicBC::ShiftStaple(Link,mu);
}
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
static inline std::vector<int> getDirections(void) { return _conjDirs; }
static inline bool isPeriodicGaugeField(void) { return false; }
};

View File

@ -54,6 +54,10 @@ public:
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
U = 1.0;
}
static inline void Project(Field &U) {
return;
}
static void MomentumSpacePropagator(Field &out, RealD m)
{
@ -234,6 +238,10 @@ public:
#endif //USE_FFT_ACCELERATION
}
static inline void Project(Field &U) {
return;
}
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
}

View File

@ -159,6 +159,13 @@ private:
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
Resources.GetSerialRNG(),
Resources.GetParallelRNG());
} else {
// others
std::cout << GridLogError << "Unrecognized StartingType\n";
std::cout
<< GridLogError
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
exit(1);
}
Smearing.set_Field(U);

View File

@ -95,7 +95,7 @@ private:
typedef typename IntegratorType::Field Field;
typedef std::vector< HmcObservable<Field> * > ObsListType;
//pass these from the resource manager
GridSerialRNG &sRNG;
GridParallelRNG &pRNG;

View File

@ -74,7 +74,7 @@ public:
conf_file = os.str();
}
}
virtual ~BaseHmcCheckpointer(){};
void check_filename(const std::string &filename){
std::ifstream f(filename.c_str());
if(!f.good()){
@ -82,7 +82,6 @@ public:
abort();
};
}
virtual void initialize(const CheckpointerParameters &Params) = 0;
virtual void CheckpointRestore(int traj, typename Impl::Field &U,

View File

@ -45,6 +45,7 @@ private:
public:
INHERIT_GIMPL_TYPES(Implementation);
typedef GaugeStatistics<Implementation> GaugeStats;
ILDGHmcCheckpointer(const CheckpointerParameters &Params_) { initialize(Params_); }
@ -78,7 +79,7 @@ public:
BinaryIO::writeRNG(sRNG, pRNG, rng, 0,nersc_csum,scidac_csuma,scidac_csumb);
IldgWriter _IldgWriter(grid->IsBoss());
_IldgWriter.open(config);
_IldgWriter.writeConfiguration(U, traj, config, config);
_IldgWriter.writeConfiguration<GaugeStats>(U, traj, config, config);
_IldgWriter.close();
std::cout << GridLogMessage << "Written ILDG Configuration on " << config
@ -105,7 +106,7 @@ public:
FieldMetaData header;
IldgReader _IldgReader;
_IldgReader.open(config);
_IldgReader.readConfiguration(U,header); // format from the header
_IldgReader.readConfiguration<GaugeStats>(U,header); // format from the header
_IldgReader.close();
std::cout << GridLogMessage << "Read ILDG Configuration from " << config

View File

@ -43,7 +43,8 @@ private:
public:
INHERIT_GIMPL_TYPES(Gimpl); // only for gauge configurations
typedef GaugeStatistics<Gimpl> GaugeStats;
NerscHmcCheckpointer(const CheckpointerParameters &Params_) { initialize(Params_); }
void initialize(const CheckpointerParameters &Params_) {
@ -60,7 +61,7 @@ public:
int precision32 = 1;
int tworow = 0;
NerscIO::writeRNGState(sRNG, pRNG, rng);
NerscIO::writeConfiguration(U, config, tworow, precision32);
NerscIO::writeConfiguration<GaugeStats>(U, config, tworow, precision32);
}
};
@ -74,7 +75,7 @@ public:
FieldMetaData header;
NerscIO::readRNGState(sRNG, pRNG, header, rng);
NerscIO::readConfiguration(U, header, config);
NerscIO::readConfiguration<GaugeStats>(U, header, config);
};
};

View File

@ -313,6 +313,8 @@ public:
std::cout << GridLogIntegrator << " times[" << level << "]= " << t_P[level] << " " << t_U << std::endl;
}
FieldImplementation::Project(U);
// and that we indeed got to the end of the trajectory
assert(fabs(t_U - Params.trajL) < 1.0e-6);

View File

@ -99,7 +99,7 @@ public:
virtual Prod* getPtr() = 0;
// add a getReference?
virtual ~HMCModuleBase(){};
virtual void print_parameters(){}; // default to nothing
};

View File

@ -128,7 +128,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProjTm (iVector<vtype,Nhs> &hspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
hspin(0)=fspin(0)-fspin(2);
hspin(1)=fspin(1)-fspin(3);
}
@ -138,40 +137,50 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
* 0 0 -1 0
* 0 0 0 -1
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5p (iVector<vtype,Nhs> &hspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
hspin(0)=fspin(0);
hspin(1)=fspin(1);
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5m (iVector<vtype,Nhs> &hspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
hspin(0)=fspin(2);
hspin(1)=fspin(3);
}
// template<class vtype> accelerator_inline void fspProj5p (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5p (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
rfspin(0)=fspin(0);
rfspin(1)=fspin(1);
rfspin(2)=Zero();
rfspin(3)=Zero();
}
// template<class vtype> accelerator_inline void fspProj5m (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spProj5m (iVector<vtype,Ns> &rfspin,const iVector<vtype,Ns> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
rfspin(0)=Zero();
rfspin(1)=Zero();
rfspin(2)=fspin(2);
rfspin(3)=fspin(3);
}
template<class vtype,int N,IfCoarsened<iVector<vtype,N> > = 0> accelerator_inline void spProj5p (iVector<vtype,N> &rfspin,const iVector<vtype,N> &fspin)
{
const int hN = N>>1;
for(int s=0;s<hN;s++){
rfspin(s)=fspin(s);
rfspin(s+hN)=Zero();
}
}
template<class vtype,int N,IfCoarsened<iVector<vtype,N> > = 0> accelerator_inline void spProj5m (iVector<vtype,N> &rfspin,const iVector<vtype,N> &fspin)
{
const int hN = N>>1;
for(int s=0;s<hN;s++){
rfspin(s)=Zero();
rfspin(s+hN)=fspin(s+hN);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Reconstruction routines to move back again to four spin
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -183,7 +192,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconXp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesMinusI(hspin(1));
@ -191,7 +199,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconXm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesI(hspin(1));
@ -199,7 +206,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconXp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=timesI(hspin(1));
@ -207,7 +213,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconXm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=timesI(hspin(1));
@ -221,7 +226,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconYp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)= hspin(1);
@ -229,7 +233,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconYm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=-hspin(1);
@ -237,7 +240,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconYp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=hspin(1);
@ -245,7 +247,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconYm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=hspin(1);
@ -260,7 +261,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconZp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesMinusI(hspin(0));
@ -268,7 +268,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconZm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)= timesI(hspin(0));
@ -276,7 +275,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconZp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=timesI(hspin(0));
@ -284,7 +282,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconZm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=timesI(hspin(0));
@ -298,7 +295,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconTp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=hspin(0);
@ -306,7 +302,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spReconTm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=-hspin(0);
@ -314,7 +309,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconTp (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)+=hspin(0);
@ -322,7 +316,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumReconTm (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=hspin(0);
@ -336,7 +329,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
*/
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spRecon5p (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=hspin(0)+hspin(0); // add is lower latency than mul
fspin(1)=hspin(1)+hspin(1); // probably no measurable diffence though
fspin(2)=Zero();
@ -344,7 +336,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void spRecon5m (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)=Zero();
fspin(1)=Zero();
fspin(2)=hspin(0)+hspin(0);
@ -352,7 +343,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void s
}
template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void accumRecon5p (iVector<vtype,Ns> &fspin,const iVector<vtype,Nhs> &hspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type *SFINAE;
fspin(0)+=hspin(0)+hspin(0);
fspin(1)+=hspin(1)+hspin(1);
}
@ -372,7 +362,6 @@ template<class vtype,IfSpinor<iVector<vtype,Ns> > = 0> accelerator_inline void a
//////////
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjXp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjXp(hspin._internal[i],fspin._internal[i]);
}
@ -426,26 +415,21 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconXp (iM
}}
}
////////
// Xm
////////
template<class rtype,class vtype> accelerator_inline void spProjXm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjXm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjXm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjXm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjXm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjXm(hspin._internal[i][j],fspin._internal[i][j]);
@ -455,19 +439,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProjXm (iMatri
template<class rtype,class vtype> accelerator_inline void spReconXm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconXm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconXm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconXm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconXm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconXm(hspin._internal[i][j],fspin._internal[i][j]);
@ -476,45 +457,37 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconXm (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconXm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconXm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconXm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconXm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconXm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconXm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// Yp
////////
template<class rtype,class vtype> accelerator_inline void spProjYp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjYp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjYp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjYp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjYp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjYp(hspin._internal[i][j],fspin._internal[i][j]);
@ -524,19 +497,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProjYp (iMatri
template<class rtype,class vtype> accelerator_inline void spReconYp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconYp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconYp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconYp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconYp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconYp(hspin._internal[i][j],fspin._internal[i][j]);
@ -545,66 +515,55 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconYp (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconYp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconYp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconYp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconYp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconYp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconYp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// Ym
////////
template<class rtype,class vtype> accelerator_inline void spProjYm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjYm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjYm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjYm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjYm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjYm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
template<class rtype,class vtype> accelerator_inline void spReconYm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconYm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconYm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,const iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconYm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconYm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconYm(hspin._internal[i][j],fspin._internal[i][j]);
@ -613,19 +572,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconYm (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconYm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconYm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconYm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconYm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconYm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconYm(hspin._internal[i][j],fspin._internal[i][j]);
@ -638,66 +594,57 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconYm (iM
////////
template<class rtype,class vtype> accelerator_inline void spProjZp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjZp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjZp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjZp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjZp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjZp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void spReconZp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconZp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconZp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconZp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconZp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconZp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void accumReconZp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconZp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconZp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconZp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconZp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconZp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
@ -706,62 +653,53 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconZp (iM
////////
template<class rtype,class vtype> accelerator_inline void spProjZm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjZm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjZm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjZm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjZm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjZm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void spReconZm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconZm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconZm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconZm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconZm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconZm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void accumReconZm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconZm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconZm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconZm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconZm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconZm(hspin._internal[i][j],fspin._internal[i][j]);
@ -774,41 +712,35 @@ template<class rtype,class vtype,int N> accelerator_inline void accumReconZm (iM
////////
template<class rtype,class vtype> accelerator_inline void spProjTp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjTp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjTp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjTp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjTp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjTp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void spReconTp (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconTp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconTp (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconTp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconTp (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconTp(hspin._internal[i][j],fspin._internal[i][j]);
@ -817,44 +749,37 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconTp (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconTp (iScalar<rtype> &hspin, iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconTp(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconTp (iVector<rtype,N> &hspin, const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconTp(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconTp (iMatrix<rtype,N> &hspin, const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconTp(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// Tm
////////
template<class rtype,class vtype> accelerator_inline void spProjTm (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProjTm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProjTm (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProjTm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProjTm (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProjTm(hspin._internal[i][j],fspin._internal[i][j]);
@ -864,19 +789,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProjTm (iMatri
template<class rtype,class vtype> accelerator_inline void spReconTm (iScalar<rtype> &hspin, const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spReconTm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spReconTm (iVector<rtype,N> &hspin, const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spReconTm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spReconTm (iMatrix<rtype,N> &hspin, const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spReconTm(hspin._internal[i][j],fspin._internal[i][j]);
@ -885,44 +807,37 @@ template<class rtype,class vtype,int N> accelerator_inline void spReconTm (iMatr
template<class rtype,class vtype> accelerator_inline void accumReconTm (iScalar<rtype> &hspin, const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumReconTm(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumReconTm (iVector<rtype,N> &hspin, const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumReconTm(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumReconTm (iMatrix<rtype,N> &hspin, const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumReconTm(hspin._internal[i][j],fspin._internal[i][j]);
}}
}
////////
// 5p
////////
template<class rtype,class vtype> accelerator_inline void spProj5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
template<class rtype,class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProj5p(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProj5p (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProj5p(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProj5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class rtype,class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProj5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -931,19 +846,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spProj5p (iMatri
template<class rtype,class vtype> accelerator_inline void spRecon5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spRecon5p(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spRecon5p (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spRecon5p(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spRecon5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spRecon5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -952,19 +864,16 @@ template<class rtype,class vtype,int N> accelerator_inline void spRecon5p (iMatr
template<class rtype,class vtype> accelerator_inline void accumRecon5p (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumRecon5p(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumRecon5p (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumRecon5p(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumRecon5p (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumRecon5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -972,24 +881,18 @@ template<class rtype,class vtype,int N> accelerator_inline void accumRecon5p (iM
}
// four spinor projectors for chiral proj
// template<class vtype> accelerator_inline void fspProj5p (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype> accelerator_inline void spProj5p (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProj5p(hspin._internal,fspin._internal);
}
// template<class vtype,int N> accelerator_inline void fspProj5p (iVector<vtype,N> &hspin,iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProj5p (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProj5p(hspin._internal[i],fspin._internal[i]);
}
}
// template<class vtype,int N> accelerator_inline void fspProj5p (iMatrix<vtype,N> &hspin,iMatrix<vtype,N> &fspin)
template<class vtype,int N> accelerator_inline void spProj5p (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5p (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProj5p(hspin._internal[i][j],fspin._internal[i][j]);
@ -1001,17 +904,17 @@ template<class vtype,int N> accelerator_inline void spProj5p (iMatrix<vtype,N> &
// 5m
////////
template<class rtype,class vtype> accelerator_inline void spProj5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
template<class rtype,class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
spProj5m(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<rtype,N> > = 0> accelerator_inline void spProj5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
template<class rtype,class vtype,int N,IfNotSpinor<iVector<rtype,N> > = 0,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
for(int i=0;i<N;i++) {
spProj5m(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spProj5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class rtype,class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
@ -1021,40 +924,34 @@ template<class rtype,class vtype,int N> accelerator_inline void spProj5m (iMatri
template<class rtype,class vtype> accelerator_inline void spRecon5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spRecon5m(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spRecon5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spRecon5m(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void spRecon5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spRecon5m(hspin._internal[i][j],fspin._internal[i][j]);
}}
}}
}
template<class rtype,class vtype> accelerator_inline void accumRecon5m (iScalar<rtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
accumRecon5m(hspin._internal,fspin._internal);
}
template<class rtype,class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void accumRecon5m (iVector<rtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
accumRecon5m(hspin._internal[i],fspin._internal[i]);
}
}
template<class rtype,class vtype,int N> accelerator_inline void accumRecon5m (iMatrix<rtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
accumRecon5m(hspin._internal[i][j],fspin._internal[i][j]);
@ -1063,24 +960,18 @@ template<class rtype,class vtype,int N> accelerator_inline void accumRecon5m (iM
// four spinor projectors for chiral proj
// template<class vtype> accelerator_inline void fspProj5m (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype> accelerator_inline void spProj5m (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
template<class vtype,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iScalar<vtype> &hspin,const iScalar<vtype> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type *temp;
spProj5m(hspin._internal,fspin._internal);
}
// template<class vtype,int N> accelerator_inline void fspProj5m (iVector<vtype,N> &hspin,iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0> accelerator_inline void spProj5m (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
template<class vtype,int N,IfNotSpinor<iVector<vtype,N> > = 0,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iVector<vtype,N> &hspin,const iVector<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type *temp;
for(int i=0;i<N;i++) {
spProj5m(hspin._internal[i],fspin._internal[i]);
}
}
// template<class vtype,int N> accelerator_inline void fspProj5m (iMatrix<vtype,N> &hspin,iMatrix<vtype,N> &fspin)
template<class vtype,int N> accelerator_inline void spProj5m (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
template<class vtype,int N,IfNotCoarsened<iScalar<vtype> > = 0> accelerator_inline void spProj5m (iMatrix<vtype,N> &hspin,const iMatrix<vtype,N> &fspin)
{
//typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type *temp;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
spProj5m(hspin._internal[i][j],fspin._internal[i][j]);

File diff suppressed because it is too large Load Diff

View File

@ -53,6 +53,24 @@ namespace PeriodicBC {
return Cshift(tmp,mu,-1);// moves towards positive mu
}
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu)
{
return Cshift(adj(Link), mu, -1);
}
template<class gauge> Lattice<gauge>
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu)
{
return Link;
}
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
return Cshift(Link, mu, 1);
}
template<class gauge,class Expr,typename std::enable_if<is_lattice_expr<Expr>::value,void>::type * = nullptr>
auto CovShiftForward(const Lattice<gauge> &Link,
int mu,
@ -70,6 +88,7 @@ namespace PeriodicBC {
return CovShiftBackward(Link,mu,arg);
}
}
@ -139,6 +158,38 @@ namespace ConjugateBC {
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
return Cshift(tmp,mu,-1);// moves towards positive mu
}
template<class gauge> Lattice<gauge>
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
tmp = adj(Link);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return Cshift(tmp, mu, -1); // moves towards positive mu
}
template<class gauge> Lattice<gauge>
CovShiftIdentityForward(const Lattice<gauge> &Link, int mu) {
return Link;
}
template<class gauge> Lattice<gauge>
ShiftStaple(const Lattice<gauge> &Link, int mu)
{
GridBase *grid = Link.Grid();
int Lmu = grid->GlobalDimensions()[mu] - 1;
Lattice<iScalar<vInteger>> coor(grid);
LatticeCoordinate(coor, mu);
Lattice<gauge> tmp(grid);
tmp = Cshift(Link, mu, 1);
tmp = where(coor == Lmu, conjugate(tmp), tmp);
return tmp;
}
template<class gauge,class Expr,typename std::enable_if<is_lattice_expr<Expr>::value,void>::type * = nullptr>
auto CovShiftForward(const Lattice<gauge> &Link,

View File

@ -154,8 +154,8 @@ void axpby_ssp_pminus(Lattice<vobj> &z,Coeff a,const Lattice<vobj> &x,Coeff b,co
accelerator_for(sss,nloop,vobj::Nsimd(),{
uint64_t ss = sss*Ls;
decltype(coalescedRead(y_v[ss+sp])) tmp;
spProj5m(tmp,y_v(ss+sp));
tmp = a*x_v(ss+s)+b*tmp;
spProj5m(tmp,y_v(ss+sp));
tmp = a*x_v(ss+s)+b*tmp;
coalescedWrite(z_v[ss+s],tmp);
});
}
@ -188,7 +188,6 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
z.Checkerboard() = x.Checkerboard();
conformable(x,z);
int Ls = grid->_rdimensions[0];
Gamma G5(Gamma::Algebra::Gamma5);
autoView( x_v, x, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
uint64_t nloop = grid->oSites()/Ls;
@ -196,7 +195,13 @@ void G5R5(Lattice<vobj> &z,const Lattice<vobj> &x)
uint64_t ss = sss*Ls;
for(int s=0;s<Ls;s++){
int sp = Ls-1-s;
coalescedWrite(z_v[ss+sp],G5*x_v(ss+s));
auto tmp = x_v(ss+s);
decltype(tmp) tmp_p;
decltype(tmp) tmp_m;
spProj5p(tmp_p,tmp);
spProj5m(tmp_m,tmp);
// Use of spProj5m, 5p captures the coarse space too
coalescedWrite(z_v[ss+sp],tmp_p - tmp_m);
}
});
}
@ -208,10 +213,20 @@ void G5C(Lattice<vobj> &z, const Lattice<vobj> &x)
z.Checkerboard() = x.Checkerboard();
conformable(x, z);
Gamma G5(Gamma::Algebra::Gamma5);
z = G5 * x;
autoView( x_v, x, AcceleratorRead);
autoView( z_v, z, AcceleratorWrite);
uint64_t nloop = grid->oSites();
accelerator_for(ss,nloop,vobj::Nsimd(),{
auto tmp = x_v(ss);
decltype(tmp) tmp_p;
decltype(tmp) tmp_m;
spProj5p(tmp_p,tmp);
spProj5m(tmp_m,tmp);
coalescedWrite(z_v[ss],tmp_p - tmp_m);
});
}
/*
template<class CComplex, int nbasis>
void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex, nbasis>> &x)
{
@ -234,6 +249,7 @@ void G5C(Lattice<iVector<CComplex, nbasis>> &z, const Lattice<iVector<CComplex,
}
});
}
*/
NAMESPACE_END(Grid);

View File

@ -735,7 +735,6 @@ public:
}
}
template <typename GaugeField>
static void HotConfiguration(GridParallelRNG &pRNG, GaugeField &out) {
typedef typename GaugeField::vector_type vector_type;
@ -800,6 +799,88 @@ public:
}
};
template<int N>
LatticeComplexD Determinant(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
GridBase *grid=Umu.Grid();
auto lvol = grid->lSites();
LatticeComplexD ret(grid);
autoView(Umu_v,Umu,CpuRead);
autoView(ret_v,ret,CpuWrite);
thread_for(site,lvol,{
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
Coordinate lcoor;
grid->LocalIndexToLocalCoor(site, lcoor);
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
peekLocalSite(Us, Umu_v, lcoor);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
EigenU(i,j) = Us()()(i,j);
}}
ComplexD det = EigenU.determinant();
pokeLocalSite(det,ret_v,lcoor);
});
return ret;
}
template<int N>
static void ProjectSUn(Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
{
Umu = ProjectOnGroup(Umu);
auto det = Determinant(Umu);
det = conjugate(det);
for(int i=0;i<N;i++){
auto element = PeekIndex<ColourIndex>(Umu,N-1,i);
element = element * det;
PokeIndex<ColourIndex>(Umu,element,Nc-1,i);
}
}
template<int N>
static void ProjectSUn(Lattice<iVector<iScalar<iMatrix<vComplexD, N> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSUn(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
// Explicit specialisation for SU(3).
// Explicit specialisation for SU(3).
static void
ProjectSU3 (Lattice<iScalar<iScalar<iMatrix<vComplexD, 3> > > > &Umu)
{
GridBase *grid=Umu.Grid();
const int x=0;
const int y=1;
const int z=2;
// Reunitarise
Umu = ProjectOnGroup(Umu);
autoView(Umu_v,Umu,CpuWrite);
thread_for(ss,grid->oSites(),{
auto cm = Umu_v[ss];
cm()()(2,x) = adj(cm()()(0,y)*cm()()(1,z)-cm()()(0,z)*cm()()(1,y)); //x= yz-zy
cm()()(2,y) = adj(cm()()(0,z)*cm()()(1,x)-cm()()(0,x)*cm()()(1,z)); //y= zx-xz
cm()()(2,z) = adj(cm()()(0,x)*cm()()(1,y)-cm()()(0,y)*cm()()(1,x)); //z= xy-yx
Umu_v[ss]=cm;
});
}
static void ProjectSU3(Lattice<iVector<iScalar<iMatrix<vComplexD, 3> >,Nd> > &U)
{
GridBase *grid=U.Grid();
// Reunitarise
for(int mu=0;mu<Nd;mu++){
auto Umu = PeekIndex<LorentzIndex>(U,mu);
Umu = ProjectOnGroup(Umu);
ProjectSU3(Umu);
PokeIndex<LorentzIndex>(U,Umu,mu);
}
}
typedef SU<2> SU2;
typedef SU<3> SU3;
typedef SU<4> SU4;

View File

@ -1,779 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Fujitsu_A64FX_asm_double.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#define LOAD_CHIMU(base) LOAD_CHIMU_INTERLEAVED_A64FXd(base)
#define PREFETCH_CHIMU_L1(A) PREFETCH_CHIMU_L1_INTERNAL_A64FXd(A)
#define PREFETCH_GAUGE_L1(A) PREFETCH_GAUGE_L1_INTERNAL_A64FXd(A)
#define PREFETCH_CHIMU_L2(A) PREFETCH_CHIMU_L2_INTERNAL_A64FXd(A)
#define PREFETCH_GAUGE_L2(A) PREFETCH_GAUGE_L2_INTERNAL_A64FXd(A)
#define PF_GAUGE(A)
#define PREFETCH_RESULT_L2_STORE(A) PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXd(A)
#define PREFETCH_RESULT_L1_STORE(A) PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXd(A)
#define PREFETCH1_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define PREFETCH_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define LOCK_GAUGE(A)
#define UNLOCK_GAUGE(A)
#define MASK_REGS DECLARATIONS_A64FXd
#define SAVE_RESULT(A,B) RESULT_A64FXd(A); PREFETCH_RESULT_L2_STORE(B)
#define MULT_2SPIN_1(Dir) MULT_2SPIN_1_A64FXd(Dir)
#define MULT_2SPIN_2 MULT_2SPIN_2_A64FXd
#define LOAD_CHI(base) LOAD_CHI_A64FXd(base)
#define ADD_RESULT(base,basep) LOAD_CHIMU(base); ADD_RESULT_INTERNAL_A64FXd; RESULT_A64FXd(base)
#define XP_PROJ XP_PROJ_A64FXd
#define YP_PROJ YP_PROJ_A64FXd
#define ZP_PROJ ZP_PROJ_A64FXd
#define TP_PROJ TP_PROJ_A64FXd
#define XM_PROJ XM_PROJ_A64FXd
#define YM_PROJ YM_PROJ_A64FXd
#define ZM_PROJ ZM_PROJ_A64FXd
#define TM_PROJ TM_PROJ_A64FXd
#define XP_RECON XP_RECON_A64FXd
#define XM_RECON XM_RECON_A64FXd
#define XM_RECON_ACCUM XM_RECON_ACCUM_A64FXd
#define YM_RECON_ACCUM YM_RECON_ACCUM_A64FXd
#define ZM_RECON_ACCUM ZM_RECON_ACCUM_A64FXd
#define TM_RECON_ACCUM TM_RECON_ACCUM_A64FXd
#define XP_RECON_ACCUM XP_RECON_ACCUM_A64FXd
#define YP_RECON_ACCUM YP_RECON_ACCUM_A64FXd
#define ZP_RECON_ACCUM ZP_RECON_ACCUM_A64FXd
#define TP_RECON_ACCUM TP_RECON_ACCUM_A64FXd
#define PERMUTE_DIR0 0
#define PERMUTE_DIR1 1
#define PERMUTE_DIR2 2
#define PERMUTE_DIR3 3
#define PERMUTE PERMUTE_A64FXd;
#define LOAD_TABLE(Dir) if (Dir == 0) { LOAD_TABLE0; } else if (Dir == 1) { LOAD_TABLE1; } else if (Dir == 2) { LOAD_TABLE2; }
#define MAYBEPERM(Dir,perm) if (Dir != 3) { if (perm) { PERMUTE; } }
// DECLARATIONS
#define DECLARATIONS_A64FXd \
const uint64_t lut[4][8] = { \
{4, 5, 6, 7, 0, 1, 2, 3}, \
{2, 3, 0, 1, 6, 7, 4, 5}, \
{1, 0, 3, 2, 5, 4, 7, 6}, \
{0, 1, 2, 4, 5, 6, 7, 8} };\
asm ( \
"fmov z31.d , 0 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// RESULT
#define RESULT_A64FXd(base) \
{ \
asm ( \
"str z0, [%[storeptr], -6, mul vl] \n\t" \
"str z1, [%[storeptr], -5, mul vl] \n\t" \
"str z2, [%[storeptr], -4, mul vl] \n\t" \
"str z3, [%[storeptr], -3, mul vl] \n\t" \
"str z4, [%[storeptr], -2, mul vl] \n\t" \
"str z5, [%[storeptr], -1, mul vl] \n\t" \
"str z6, [%[storeptr], 0, mul vl] \n\t" \
"str z7, [%[storeptr], 1, mul vl] \n\t" \
"str z8, [%[storeptr], 2, mul vl] \n\t" \
"str z9, [%[storeptr], 3, mul vl] \n\t" \
"str z10, [%[storeptr], 4, mul vl] \n\t" \
"str z11, [%[storeptr], 5, mul vl] \n\t" \
: \
: [storeptr] "r" (base + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_CHIMU_L2 (prefetch to L2)
#define PREFETCH_CHIMU_L2_INTERNAL_A64FXd(base) \
{ \
asm ( \
"prfd PLDL2STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_CHIMU_L1 (prefetch to L1)
#define PREFETCH_CHIMU_L1_INTERNAL_A64FXd(base) \
{ \
asm ( \
"prfd PLDL1STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_GAUGE_L2 (prefetch to L2)
#define PREFETCH_GAUGE_L2_INTERNAL_A64FXd(A) \
{ \
const auto & ref(U[sUn](A)); uint64_t baseU = (uint64_t)&ref + 3 * 3 * 64; \
asm ( \
"prfd PLDL2STRM, p5, [%[fetchptr], -4, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 12, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 16, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 20, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 24, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 28, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_GAUGE_L1 (prefetch to L1)
#define PREFETCH_GAUGE_L1_INTERNAL_A64FXd(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
asm ( \
"prfd PLDL1STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHI
#define LOAD_CHI_A64FXd(base) \
{ \
asm ( \
"ldr z12, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z13, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z14, [%[fetchptr], 2, mul vl] \n\t" \
"ldr z15, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z16, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z17, [%[fetchptr], 5, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHIMU
#define LOAD_CHIMU_INTERLEAVED_A64FXd(base) \
{ \
asm ( \
"ptrue p5.d \n\t" \
"ldr z12, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z21, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z15, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z18, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z13, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z22, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z16, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z19, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z14, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z23, [%[fetchptr], 5, mul vl] \n\t" \
"ldr z17, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z20, [%[fetchptr], 2, mul vl] \n\t" \
: \
: [fetchptr] "r" (base + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHIMU_0213
#define LOAD_CHIMU_0213_A64FXd \
{ \
const SiteSpinor & ref(in[offset]); \
asm ( \
"ptrue p5.d \n\t" \
"ldr z12, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z18, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z13, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z19, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z14, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z20, [%[fetchptr], 2, mul vl] \n\t" \
"ldr z15, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z21, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z16, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z22, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z17, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z23, [%[fetchptr], 5, mul vl] \n\t" \
: \
: [fetchptr] "r" (&ref[2][0]) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHIMU_0312
#define LOAD_CHIMU_0312_A64FXd \
{ \
const SiteSpinor & ref(in[offset]); \
asm ( \
"ptrue p5.d \n\t" \
"ldr z12, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z21, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z13, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z22, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z14, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z23, [%[fetchptr], 5, mul vl] \n\t" \
"ldr z15, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z18, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z16, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z19, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z17, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z20, [%[fetchptr], 2, mul vl] \n\t" \
: \
: [fetchptr] "r" (&ref[2][0]) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_TABLE0
#define LOAD_TABLE0 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (0) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_TABLE1
#define LOAD_TABLE1 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (1) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_TABLE2
#define LOAD_TABLE2 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (2) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_TABLE3
#define LOAD_TABLE3 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (3) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// PERMUTE
#define PERMUTE_A64FXd \
asm ( \
"tbl z12.d, { z12.d }, z30.d \n\t" \
"tbl z13.d, { z13.d }, z30.d \n\t" \
"tbl z14.d, { z14.d }, z30.d \n\t" \
"tbl z15.d, { z15.d }, z30.d \n\t" \
"tbl z16.d, { z16.d }, z30.d \n\t" \
"tbl z17.d, { z17.d }, z30.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_GAUGE
#define LOAD_GAUGE \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
{ \
asm ( \
"ptrue p5.d \n\t" \
"ldr z24, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z25, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z26, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z27, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z28, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z29, [%[fetchptr], 1, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// MULT_2SPIN
#define MULT_2SPIN_1_A64FXd(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
asm ( \
"ldr z24, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z25, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z26, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z27, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z28, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z29, [%[fetchptr], 1, mul vl] \n\t" \
"movprfx z18.d, p5/m, z31.d \n\t" \
"fcmla z18.d, p5/m, z24.d, z12.d, 0 \n\t" \
"movprfx z21.d, p5/m, z31.d \n\t" \
"fcmla z21.d, p5/m, z24.d, z15.d, 0 \n\t" \
"movprfx z19.d, p5/m, z31.d \n\t" \
"fcmla z19.d, p5/m, z25.d, z12.d, 0 \n\t" \
"movprfx z22.d, p5/m, z31.d \n\t" \
"fcmla z22.d, p5/m, z25.d, z15.d, 0 \n\t" \
"movprfx z20.d, p5/m, z31.d \n\t" \
"fcmla z20.d, p5/m, z26.d, z12.d, 0 \n\t" \
"movprfx z23.d, p5/m, z31.d \n\t" \
"fcmla z23.d, p5/m, z26.d, z15.d, 0 \n\t" \
"fcmla z18.d, p5/m, z24.d, z12.d, 90 \n\t" \
"fcmla z21.d, p5/m, z24.d, z15.d, 90 \n\t" \
"fcmla z19.d, p5/m, z25.d, z12.d, 90 \n\t" \
"fcmla z22.d, p5/m, z25.d, z15.d, 90 \n\t" \
"fcmla z20.d, p5/m, z26.d, z12.d, 90 \n\t" \
"fcmla z23.d, p5/m, z26.d, z15.d, 90 \n\t" \
"ldr z24, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z25, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z26, [%[fetchptr], 2, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// MULT_2SPIN_BACKEND
#define MULT_2SPIN_2_A64FXd \
{ \
asm ( \
"fcmla z18.d, p5/m, z27.d, z13.d, 0 \n\t" \
"fcmla z21.d, p5/m, z27.d, z16.d, 0 \n\t" \
"fcmla z19.d, p5/m, z28.d, z13.d, 0 \n\t" \
"fcmla z22.d, p5/m, z28.d, z16.d, 0 \n\t" \
"fcmla z20.d, p5/m, z29.d, z13.d, 0 \n\t" \
"fcmla z23.d, p5/m, z29.d, z16.d, 0 \n\t" \
"fcmla z18.d, p5/m, z27.d, z13.d, 90 \n\t" \
"fcmla z21.d, p5/m, z27.d, z16.d, 90 \n\t" \
"fcmla z19.d, p5/m, z28.d, z13.d, 90 \n\t" \
"fcmla z22.d, p5/m, z28.d, z16.d, 90 \n\t" \
"fcmla z20.d, p5/m, z29.d, z13.d, 90 \n\t" \
"fcmla z23.d, p5/m, z29.d, z16.d, 90 \n\t" \
"fcmla z18.d, p5/m, z24.d, z14.d, 0 \n\t" \
"fcmla z21.d, p5/m, z24.d, z17.d, 0 \n\t" \
"fcmla z19.d, p5/m, z25.d, z14.d, 0 \n\t" \
"fcmla z22.d, p5/m, z25.d, z17.d, 0 \n\t" \
"fcmla z20.d, p5/m, z26.d, z14.d, 0 \n\t" \
"fcmla z23.d, p5/m, z26.d, z17.d, 0 \n\t" \
"fcmla z18.d, p5/m, z24.d, z14.d, 90 \n\t" \
"fcmla z21.d, p5/m, z24.d, z17.d, 90 \n\t" \
"fcmla z19.d, p5/m, z25.d, z14.d, 90 \n\t" \
"fcmla z22.d, p5/m, z25.d, z17.d, 90 \n\t" \
"fcmla z20.d, p5/m, z26.d, z14.d, 90 \n\t" \
"fcmla z23.d, p5/m, z26.d, z17.d, 90 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XP_PROJ
#define XP_PROJ_A64FXd \
{ \
asm ( \
"fcadd z12.d, p5/m, z12.d, z21.d, 90 \n\t" \
"fcadd z13.d, p5/m, z13.d, z22.d, 90 \n\t" \
"fcadd z14.d, p5/m, z14.d, z23.d, 90 \n\t" \
"fcadd z15.d, p5/m, z15.d, z18.d, 90 \n\t" \
"fcadd z16.d, p5/m, z16.d, z19.d, 90 \n\t" \
"fcadd z17.d, p5/m, z17.d, z20.d, 90 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XP_RECON
#define XP_RECON_A64FXd \
asm ( \
"movprfx z6.d, p5/m, z31.d \n\t" \
"fcadd z6.d, p5/m, z6.d, z21.d, 270 \n\t" \
"movprfx z7.d, p5/m, z31.d \n\t" \
"fcadd z7.d, p5/m, z7.d, z22.d, 270 \n\t" \
"movprfx z8.d, p5/m, z31.d \n\t" \
"fcadd z8.d, p5/m, z8.d, z23.d, 270 \n\t" \
"movprfx z9.d, p5/m, z31.d \n\t" \
"fcadd z9.d, p5/m, z9.d, z18.d, 270 \n\t" \
"movprfx z10.d, p5/m, z31.d \n\t" \
"fcadd z10.d, p5/m, z10.d, z19.d, 270 \n\t" \
"movprfx z11.d, p5/m, z31.d \n\t" \
"fcadd z11.d, p5/m, z11.d, z20.d, 270 \n\t" \
"mov z0.d, p5/m, z18.d \n\t" \
"mov z1.d, p5/m, z19.d \n\t" \
"mov z2.d, p5/m, z20.d \n\t" \
"mov z3.d, p5/m, z21.d \n\t" \
"mov z4.d, p5/m, z22.d \n\t" \
"mov z5.d, p5/m, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// XP_RECON_ACCUM
#define XP_RECON_ACCUM_A64FXd \
asm ( \
"fcadd z9.d, p5/m, z9.d, z18.d, 270 \n\t" \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fcadd z10.d, p5/m, z10.d, z19.d, 270 \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fcadd z11.d, p5/m, z11.d, z20.d, 270 \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fcadd z6.d, p5/m, z6.d, z21.d, 270 \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fcadd z7.d, p5/m, z7.d, z22.d, 270 \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fcadd z8.d, p5/m, z8.d, z23.d, 270 \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YP_PROJ
#define YP_PROJ_A64FXd \
{ \
asm ( \
"fsub z12.d, p5/m, z12.d, z21.d \n\t" \
"fsub z13.d, p5/m, z13.d, z22.d \n\t" \
"fsub z14.d, p5/m, z14.d, z23.d \n\t" \
"fadd z15.d, p5/m, z15.d, z18.d \n\t" \
"fadd z16.d, p5/m, z16.d, z19.d \n\t" \
"fadd z17.d, p5/m, z17.d, z20.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// ZP_PROJ
#define ZP_PROJ_A64FXd \
{ \
asm ( \
"fcadd z12.d, p5/m, z12.d, z18.d, 90 \n\t" \
"fcadd z13.d, p5/m, z13.d, z19.d, 90 \n\t" \
"fcadd z14.d, p5/m, z14.d, z20.d, 90 \n\t" \
"fcadd z15.d, p5/m, z15.d, z21.d, 270 \n\t" \
"fcadd z16.d, p5/m, z16.d, z22.d, 270 \n\t" \
"fcadd z17.d, p5/m, z17.d, z23.d, 270 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// TP_PROJ
#define TP_PROJ_A64FXd \
{ \
asm ( \
"fadd z12.d, p5/m, z12.d, z18.d \n\t" \
"fadd z13.d, p5/m, z13.d, z19.d \n\t" \
"fadd z14.d, p5/m, z14.d, z20.d \n\t" \
"fadd z15.d, p5/m, z15.d, z21.d \n\t" \
"fadd z16.d, p5/m, z16.d, z22.d \n\t" \
"fadd z17.d, p5/m, z17.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XM_PROJ
#define XM_PROJ_A64FXd \
{ \
asm ( \
"fcadd z12.d, p5/m, z12.d, z21.d, 270 \n\t" \
"fcadd z13.d, p5/m, z13.d, z22.d, 270 \n\t" \
"fcadd z14.d, p5/m, z14.d, z23.d, 270 \n\t" \
"fcadd z15.d, p5/m, z15.d, z18.d, 270 \n\t" \
"fcadd z16.d, p5/m, z16.d, z19.d, 270 \n\t" \
"fcadd z17.d, p5/m, z17.d, z20.d, 270 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XM_RECON
#define XM_RECON_A64FXd \
asm ( \
"movprfx z6.d, p5/m, z31.d \n\t" \
"fcadd z6.d, p5/m, z6.d, z21.d, 90 \n\t" \
"movprfx z7.d, p5/m, z31.d \n\t" \
"fcadd z7.d, p5/m, z7.d, z22.d, 90 \n\t" \
"movprfx z8.d, p5/m, z31.d \n\t" \
"fcadd z8.d, p5/m, z8.d, z23.d, 90 \n\t" \
"movprfx z9.d, p5/m, z31.d \n\t" \
"fcadd z9.d, p5/m, z9.d, z18.d, 90 \n\t" \
"movprfx z10.d, p5/m, z31.d \n\t" \
"fcadd z10.d, p5/m, z10.d, z19.d, 90 \n\t" \
"movprfx z11.d, p5/m, z31.d \n\t" \
"fcadd z11.d, p5/m, z11.d, z20.d, 90 \n\t" \
"mov z0.d, p5/m, z18.d \n\t" \
"mov z1.d, p5/m, z19.d \n\t" \
"mov z2.d, p5/m, z20.d \n\t" \
"mov z3.d, p5/m, z21.d \n\t" \
"mov z4.d, p5/m, z22.d \n\t" \
"mov z5.d, p5/m, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YM_PROJ
#define YM_PROJ_A64FXd \
{ \
asm ( \
"fadd z12.d, p5/m, z12.d, z21.d \n\t" \
"fadd z13.d, p5/m, z13.d, z22.d \n\t" \
"fadd z14.d, p5/m, z14.d, z23.d \n\t" \
"fsub z15.d, p5/m, z15.d, z18.d \n\t" \
"fsub z16.d, p5/m, z16.d, z19.d \n\t" \
"fsub z17.d, p5/m, z17.d, z20.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// ZM_PROJ
#define ZM_PROJ_A64FXd \
{ \
asm ( \
"fcadd z12.d, p5/m, z12.d, z18.d, 270 \n\t" \
"fcadd z13.d, p5/m, z13.d, z19.d, 270 \n\t" \
"fcadd z14.d, p5/m, z14.d, z20.d, 270 \n\t" \
"fcadd z15.d, p5/m, z15.d, z21.d, 90 \n\t" \
"fcadd z16.d, p5/m, z16.d, z22.d, 90 \n\t" \
"fcadd z17.d, p5/m, z17.d, z23.d, 90 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// TM_PROJ
#define TM_PROJ_A64FXd \
{ \
asm ( \
"ptrue p5.d \n\t" \
"fsub z12.d, p5/m, z12.d, z18.d \n\t" \
"fsub z13.d, p5/m, z13.d, z19.d \n\t" \
"fsub z14.d, p5/m, z14.d, z20.d \n\t" \
"fsub z15.d, p5/m, z15.d, z21.d \n\t" \
"fsub z16.d, p5/m, z16.d, z22.d \n\t" \
"fsub z17.d, p5/m, z17.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XM_RECON_ACCUM
#define XM_RECON_ACCUM_A64FXd \
asm ( \
"fcadd z9.d, p5/m, z9.d, z18.d, 90 \n\t" \
"fcadd z10.d, p5/m, z10.d, z19.d, 90 \n\t" \
"fcadd z11.d, p5/m, z11.d, z20.d, 90 \n\t" \
"fcadd z6.d, p5/m, z6.d, z21.d, 90 \n\t" \
"fcadd z7.d, p5/m, z7.d, z22.d, 90 \n\t" \
"fcadd z8.d, p5/m, z8.d, z23.d, 90 \n\t" \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YP_RECON_ACCUM
#define YP_RECON_ACCUM_A64FXd \
asm ( \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fsub z9.d, p5/m, z9.d, z18.d \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fsub z10.d, p5/m, z10.d, z19.d \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fsub z11.d, p5/m, z11.d, z20.d \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fadd z6.d, p5/m, z6.d, z21.d \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fadd z7.d, p5/m, z7.d, z22.d \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
"fadd z8.d, p5/m, z8.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YM_RECON_ACCUM
#define YM_RECON_ACCUM_A64FXd \
asm ( \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fadd z9.d, p5/m, z9.d, z18.d \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fadd z10.d, p5/m, z10.d, z19.d \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fadd z11.d, p5/m, z11.d, z20.d \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fsub z6.d, p5/m, z6.d, z21.d \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fsub z7.d, p5/m, z7.d, z22.d \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
"fsub z8.d, p5/m, z8.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// ZP_RECON_ACCUM
#define ZP_RECON_ACCUM_A64FXd \
asm ( \
"fcadd z6.d, p5/m, z6.d, z18.d, 270 \n\t" \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fcadd z7.d, p5/m, z7.d, z19.d, 270 \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fcadd z8.d, p5/m, z8.d, z20.d, 270 \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fcadd z9.d, p5/m, z9.d, z21.d, 90 \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fcadd z10.d, p5/m, z10.d, z22.d, 90 \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fcadd z11.d, p5/m, z11.d, z23.d, 90 \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// ZM_RECON_ACCUM
#define ZM_RECON_ACCUM_A64FXd \
asm ( \
"fcadd z6.d, p5/m, z6.d, z18.d, 90 \n\t" \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fcadd z7.d, p5/m, z7.d, z19.d, 90 \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fcadd z8.d, p5/m, z8.d, z20.d, 90 \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fcadd z9.d, p5/m, z9.d, z21.d, 270 \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fcadd z10.d, p5/m, z10.d, z22.d, 270 \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fcadd z11.d, p5/m, z11.d, z23.d, 270 \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// TP_RECON_ACCUM
#define TP_RECON_ACCUM_A64FXd \
asm ( \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fadd z6.d, p5/m, z6.d, z18.d \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fadd z7.d, p5/m, z7.d, z19.d \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fadd z8.d, p5/m, z8.d, z20.d \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fadd z9.d, p5/m, z9.d, z21.d \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fadd z10.d, p5/m, z10.d, z22.d \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
"fadd z11.d, p5/m, z11.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// TM_RECON_ACCUM
#define TM_RECON_ACCUM_A64FXd \
asm ( \
"fadd z0.d, p5/m, z0.d, z18.d \n\t" \
"fsub z6.d, p5/m, z6.d, z18.d \n\t" \
"fadd z1.d, p5/m, z1.d, z19.d \n\t" \
"fsub z7.d, p5/m, z7.d, z19.d \n\t" \
"fadd z2.d, p5/m, z2.d, z20.d \n\t" \
"fsub z8.d, p5/m, z8.d, z20.d \n\t" \
"fadd z3.d, p5/m, z3.d, z21.d \n\t" \
"fsub z9.d, p5/m, z9.d, z21.d \n\t" \
"fadd z4.d, p5/m, z4.d, z22.d \n\t" \
"fsub z10.d, p5/m, z10.d, z22.d \n\t" \
"fadd z5.d, p5/m, z5.d, z23.d \n\t" \
"fsub z11.d, p5/m, z11.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// ZERO_PSI
#define ZERO_PSI_A64FXd \
asm ( \
"ptrue p5.d \n\t" \
"fmov z0.d , 0 \n\t" \
"fmov z1.d , 0 \n\t" \
"fmov z2.d , 0 \n\t" \
"fmov z3.d , 0 \n\t" \
"fmov z4.d , 0 \n\t" \
"fmov z5.d , 0 \n\t" \
"fmov z6.d , 0 \n\t" \
"fmov z7.d , 0 \n\t" \
"fmov z8.d , 0 \n\t" \
"fmov z9.d , 0 \n\t" \
"fmov z10.d , 0 \n\t" \
"fmov z11.d , 0 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// PREFETCH_RESULT_L2_STORE (prefetch store to L2)
#define PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXd(base) \
{ \
asm ( \
"prfd PSTL2STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PSTL2STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PSTL2STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_RESULT_L1_STORE (prefetch store to L1)
#define PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXd(base) \
{ \
asm ( \
"prfd PSTL1STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PSTL1STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PSTL1STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// ADD_RESULT_INTERNAL
#define ADD_RESULT_INTERNAL_A64FXd \
asm ( \
"fadd z0.d, p5/m, z0.d, z12.d \n\t" \
"fadd z1.d, p5/m, z1.d, z13.d \n\t" \
"fadd z2.d, p5/m, z2.d, z14.d \n\t" \
"fadd z3.d, p5/m, z3.d, z15.d \n\t" \
"fadd z4.d, p5/m, z4.d, z16.d \n\t" \
"fadd z5.d, p5/m, z5.d, z17.d \n\t" \
"fadd z6.d, p5/m, z6.d, z18.d \n\t" \
"fadd z7.d, p5/m, z7.d, z19.d \n\t" \
"fadd z8.d, p5/m, z8.d, z20.d \n\t" \
"fadd z9.d, p5/m, z9.d, z21.d \n\t" \
"fadd z10.d, p5/m, z10.d, z22.d \n\t" \
"fadd z11.d, p5/m, z11.d, z23.d \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);

View File

@ -1,779 +0,0 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Fujitsu_A64FX_asm_single.h
Copyright (C) 2020
Author: Nils Meyer <nils.meyer@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#define LOAD_CHIMU(base) LOAD_CHIMU_INTERLEAVED_A64FXf(base)
#define PREFETCH_CHIMU_L1(A) PREFETCH_CHIMU_L1_INTERNAL_A64FXf(A)
#define PREFETCH_GAUGE_L1(A) PREFETCH_GAUGE_L1_INTERNAL_A64FXf(A)
#define PREFETCH_CHIMU_L2(A) PREFETCH_CHIMU_L2_INTERNAL_A64FXf(A)
#define PREFETCH_GAUGE_L2(A) PREFETCH_GAUGE_L2_INTERNAL_A64FXf(A)
#define PF_GAUGE(A)
#define PREFETCH_RESULT_L2_STORE(A) PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXf(A)
#define PREFETCH_RESULT_L1_STORE(A) PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXf(A)
#define PREFETCH1_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define PREFETCH_CHIMU(A) PREFETCH_CHIMU_L1(A)
#define LOCK_GAUGE(A)
#define UNLOCK_GAUGE(A)
#define MASK_REGS DECLARATIONS_A64FXf
#define SAVE_RESULT(A,B) RESULT_A64FXf(A); PREFETCH_RESULT_L2_STORE(B)
#define MULT_2SPIN_1(Dir) MULT_2SPIN_1_A64FXf(Dir)
#define MULT_2SPIN_2 MULT_2SPIN_2_A64FXf
#define LOAD_CHI(base) LOAD_CHI_A64FXf(base)
#define ADD_RESULT(base,basep) LOAD_CHIMU(base); ADD_RESULT_INTERNAL_A64FXf; RESULT_A64FXf(base)
#define XP_PROJ XP_PROJ_A64FXf
#define YP_PROJ YP_PROJ_A64FXf
#define ZP_PROJ ZP_PROJ_A64FXf
#define TP_PROJ TP_PROJ_A64FXf
#define XM_PROJ XM_PROJ_A64FXf
#define YM_PROJ YM_PROJ_A64FXf
#define ZM_PROJ ZM_PROJ_A64FXf
#define TM_PROJ TM_PROJ_A64FXf
#define XP_RECON XP_RECON_A64FXf
#define XM_RECON XM_RECON_A64FXf
#define XM_RECON_ACCUM XM_RECON_ACCUM_A64FXf
#define YM_RECON_ACCUM YM_RECON_ACCUM_A64FXf
#define ZM_RECON_ACCUM ZM_RECON_ACCUM_A64FXf
#define TM_RECON_ACCUM TM_RECON_ACCUM_A64FXf
#define XP_RECON_ACCUM XP_RECON_ACCUM_A64FXf
#define YP_RECON_ACCUM YP_RECON_ACCUM_A64FXf
#define ZP_RECON_ACCUM ZP_RECON_ACCUM_A64FXf
#define TP_RECON_ACCUM TP_RECON_ACCUM_A64FXf
#define PERMUTE_DIR0 0
#define PERMUTE_DIR1 1
#define PERMUTE_DIR2 2
#define PERMUTE_DIR3 3
#define PERMUTE PERMUTE_A64FXf;
#define LOAD_TABLE(Dir) if (Dir == 0) { LOAD_TABLE0; } else if (Dir == 1) { LOAD_TABLE1 } else if (Dir == 2) { LOAD_TABLE2; } else if (Dir == 3) { LOAD_TABLE3; }
#define MAYBEPERM(A,perm) if (perm) { PERMUTE; }
// DECLARATIONS
#define DECLARATIONS_A64FXf \
const uint32_t lut[4][16] = { \
{8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7}, \
{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}, \
{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, \
{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14} }; \
asm ( \
"fmov z31.s , 0 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// RESULT
#define RESULT_A64FXf(base) \
{ \
asm ( \
"str z0, [%[storeptr], -6, mul vl] \n\t" \
"str z1, [%[storeptr], -5, mul vl] \n\t" \
"str z2, [%[storeptr], -4, mul vl] \n\t" \
"str z3, [%[storeptr], -3, mul vl] \n\t" \
"str z4, [%[storeptr], -2, mul vl] \n\t" \
"str z5, [%[storeptr], -1, mul vl] \n\t" \
"str z6, [%[storeptr], 0, mul vl] \n\t" \
"str z7, [%[storeptr], 1, mul vl] \n\t" \
"str z8, [%[storeptr], 2, mul vl] \n\t" \
"str z9, [%[storeptr], 3, mul vl] \n\t" \
"str z10, [%[storeptr], 4, mul vl] \n\t" \
"str z11, [%[storeptr], 5, mul vl] \n\t" \
: \
: [storeptr] "r" (base + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_CHIMU_L2 (prefetch to L2)
#define PREFETCH_CHIMU_L2_INTERNAL_A64FXf(base) \
{ \
asm ( \
"prfd PLDL2STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_CHIMU_L1 (prefetch to L1)
#define PREFETCH_CHIMU_L1_INTERNAL_A64FXf(base) \
{ \
asm ( \
"prfd PLDL1STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_GAUGE_L2 (prefetch to L2)
#define PREFETCH_GAUGE_L2_INTERNAL_A64FXf(A) \
{ \
const auto & ref(U[sUn](A)); uint64_t baseU = (uint64_t)&ref + 3 * 3 * 64; \
asm ( \
"prfd PLDL2STRM, p5, [%[fetchptr], -4, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 12, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 16, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 20, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 24, mul vl] \n\t" \
"prfd PLDL2STRM, p5, [%[fetchptr], 28, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_GAUGE_L1 (prefetch to L1)
#define PREFETCH_GAUGE_L1_INTERNAL_A64FXf(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
asm ( \
"prfd PLDL1STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PLDL1STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHI
#define LOAD_CHI_A64FXf(base) \
{ \
asm ( \
"ldr z12, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z13, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z14, [%[fetchptr], 2, mul vl] \n\t" \
"ldr z15, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z16, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z17, [%[fetchptr], 5, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHIMU
#define LOAD_CHIMU_INTERLEAVED_A64FXf(base) \
{ \
asm ( \
"ptrue p5.s \n\t" \
"ldr z12, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z21, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z15, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z18, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z13, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z22, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z16, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z19, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z14, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z23, [%[fetchptr], 5, mul vl] \n\t" \
"ldr z17, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z20, [%[fetchptr], 2, mul vl] \n\t" \
: \
: [fetchptr] "r" (base + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHIMU_0213
#define LOAD_CHIMU_0213_A64FXf \
{ \
const SiteSpinor & ref(in[offset]); \
asm ( \
"ptrue p5.s \n\t" \
"ldr z12, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z18, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z13, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z19, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z14, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z20, [%[fetchptr], 2, mul vl] \n\t" \
"ldr z15, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z21, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z16, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z22, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z17, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z23, [%[fetchptr], 5, mul vl] \n\t" \
: \
: [fetchptr] "r" (&ref[2][0]) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_CHIMU_0312
#define LOAD_CHIMU_0312_A64FXf \
{ \
const SiteSpinor & ref(in[offset]); \
asm ( \
"ptrue p5.s \n\t" \
"ldr z12, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z21, [%[fetchptr], 3, mul vl] \n\t" \
"ldr z13, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z22, [%[fetchptr], 4, mul vl] \n\t" \
"ldr z14, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z23, [%[fetchptr], 5, mul vl] \n\t" \
"ldr z15, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z18, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z16, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z19, [%[fetchptr], 1, mul vl] \n\t" \
"ldr z17, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z20, [%[fetchptr], 2, mul vl] \n\t" \
: \
: [fetchptr] "r" (&ref[2][0]) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// LOAD_TABLE0
#define LOAD_TABLE0 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (0) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_TABLE1
#define LOAD_TABLE1 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (1) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_TABLE2
#define LOAD_TABLE2 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (2) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_TABLE3
#define LOAD_TABLE3 \
asm ( \
"ldr z30, [%[tableptr], %[index], mul vl] \n\t" \
: \
: [tableptr] "r" (&lut[0]),[index] "i" (3) \
: "memory","cc","p5","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// PERMUTE
#define PERMUTE_A64FXf \
asm ( \
"tbl z12.s, { z12.s }, z30.s \n\t" \
"tbl z13.s, { z13.s }, z30.s \n\t" \
"tbl z14.s, { z14.s }, z30.s \n\t" \
"tbl z15.s, { z15.s }, z30.s \n\t" \
"tbl z16.s, { z16.s }, z30.s \n\t" \
"tbl z17.s, { z17.s }, z30.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// LOAD_GAUGE
#define LOAD_GAUGE \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
{ \
asm ( \
"ptrue p5.s \n\t" \
"ldr z24, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z25, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z26, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z27, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z28, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z29, [%[fetchptr], 1, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// MULT_2SPIN
#define MULT_2SPIN_1_A64FXf(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
asm ( \
"ldr z24, [%[fetchptr], -6, mul vl] \n\t" \
"ldr z25, [%[fetchptr], -3, mul vl] \n\t" \
"ldr z26, [%[fetchptr], 0, mul vl] \n\t" \
"ldr z27, [%[fetchptr], -5, mul vl] \n\t" \
"ldr z28, [%[fetchptr], -2, mul vl] \n\t" \
"ldr z29, [%[fetchptr], 1, mul vl] \n\t" \
"movprfx z18.s, p5/m, z31.s \n\t" \
"fcmla z18.s, p5/m, z24.s, z12.s, 0 \n\t" \
"movprfx z21.s, p5/m, z31.s \n\t" \
"fcmla z21.s, p5/m, z24.s, z15.s, 0 \n\t" \
"movprfx z19.s, p5/m, z31.s \n\t" \
"fcmla z19.s, p5/m, z25.s, z12.s, 0 \n\t" \
"movprfx z22.s, p5/m, z31.s \n\t" \
"fcmla z22.s, p5/m, z25.s, z15.s, 0 \n\t" \
"movprfx z20.s, p5/m, z31.s \n\t" \
"fcmla z20.s, p5/m, z26.s, z12.s, 0 \n\t" \
"movprfx z23.s, p5/m, z31.s \n\t" \
"fcmla z23.s, p5/m, z26.s, z15.s, 0 \n\t" \
"fcmla z18.s, p5/m, z24.s, z12.s, 90 \n\t" \
"fcmla z21.s, p5/m, z24.s, z15.s, 90 \n\t" \
"fcmla z19.s, p5/m, z25.s, z12.s, 90 \n\t" \
"fcmla z22.s, p5/m, z25.s, z15.s, 90 \n\t" \
"fcmla z20.s, p5/m, z26.s, z12.s, 90 \n\t" \
"fcmla z23.s, p5/m, z26.s, z15.s, 90 \n\t" \
"ldr z24, [%[fetchptr], -4, mul vl] \n\t" \
"ldr z25, [%[fetchptr], -1, mul vl] \n\t" \
"ldr z26, [%[fetchptr], 2, mul vl] \n\t" \
: \
: [fetchptr] "r" (baseU + 2 * 3 * 64) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// MULT_2SPIN_BACKEND
#define MULT_2SPIN_2_A64FXf \
{ \
asm ( \
"fcmla z18.s, p5/m, z27.s, z13.s, 0 \n\t" \
"fcmla z21.s, p5/m, z27.s, z16.s, 0 \n\t" \
"fcmla z19.s, p5/m, z28.s, z13.s, 0 \n\t" \
"fcmla z22.s, p5/m, z28.s, z16.s, 0 \n\t" \
"fcmla z20.s, p5/m, z29.s, z13.s, 0 \n\t" \
"fcmla z23.s, p5/m, z29.s, z16.s, 0 \n\t" \
"fcmla z18.s, p5/m, z27.s, z13.s, 90 \n\t" \
"fcmla z21.s, p5/m, z27.s, z16.s, 90 \n\t" \
"fcmla z19.s, p5/m, z28.s, z13.s, 90 \n\t" \
"fcmla z22.s, p5/m, z28.s, z16.s, 90 \n\t" \
"fcmla z20.s, p5/m, z29.s, z13.s, 90 \n\t" \
"fcmla z23.s, p5/m, z29.s, z16.s, 90 \n\t" \
"fcmla z18.s, p5/m, z24.s, z14.s, 0 \n\t" \
"fcmla z21.s, p5/m, z24.s, z17.s, 0 \n\t" \
"fcmla z19.s, p5/m, z25.s, z14.s, 0 \n\t" \
"fcmla z22.s, p5/m, z25.s, z17.s, 0 \n\t" \
"fcmla z20.s, p5/m, z26.s, z14.s, 0 \n\t" \
"fcmla z23.s, p5/m, z26.s, z17.s, 0 \n\t" \
"fcmla z18.s, p5/m, z24.s, z14.s, 90 \n\t" \
"fcmla z21.s, p5/m, z24.s, z17.s, 90 \n\t" \
"fcmla z19.s, p5/m, z25.s, z14.s, 90 \n\t" \
"fcmla z22.s, p5/m, z25.s, z17.s, 90 \n\t" \
"fcmla z20.s, p5/m, z26.s, z14.s, 90 \n\t" \
"fcmla z23.s, p5/m, z26.s, z17.s, 90 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XP_PROJ
#define XP_PROJ_A64FXf \
{ \
asm ( \
"fcadd z12.s, p5/m, z12.s, z21.s, 90 \n\t" \
"fcadd z13.s, p5/m, z13.s, z22.s, 90 \n\t" \
"fcadd z14.s, p5/m, z14.s, z23.s, 90 \n\t" \
"fcadd z15.s, p5/m, z15.s, z18.s, 90 \n\t" \
"fcadd z16.s, p5/m, z16.s, z19.s, 90 \n\t" \
"fcadd z17.s, p5/m, z17.s, z20.s, 90 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XP_RECON
#define XP_RECON_A64FXf \
asm ( \
"movprfx z6.s, p5/m, z31.s \n\t" \
"fcadd z6.s, p5/m, z6.s, z21.s, 270 \n\t" \
"movprfx z7.s, p5/m, z31.s \n\t" \
"fcadd z7.s, p5/m, z7.s, z22.s, 270 \n\t" \
"movprfx z8.s, p5/m, z31.s \n\t" \
"fcadd z8.s, p5/m, z8.s, z23.s, 270 \n\t" \
"movprfx z9.s, p5/m, z31.s \n\t" \
"fcadd z9.s, p5/m, z9.s, z18.s, 270 \n\t" \
"movprfx z10.s, p5/m, z31.s \n\t" \
"fcadd z10.s, p5/m, z10.s, z19.s, 270 \n\t" \
"movprfx z11.s, p5/m, z31.s \n\t" \
"fcadd z11.s, p5/m, z11.s, z20.s, 270 \n\t" \
"mov z0.s, p5/m, z18.s \n\t" \
"mov z1.s, p5/m, z19.s \n\t" \
"mov z2.s, p5/m, z20.s \n\t" \
"mov z3.s, p5/m, z21.s \n\t" \
"mov z4.s, p5/m, z22.s \n\t" \
"mov z5.s, p5/m, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// XP_RECON_ACCUM
#define XP_RECON_ACCUM_A64FXf \
asm ( \
"fcadd z9.s, p5/m, z9.s, z18.s, 270 \n\t" \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fcadd z10.s, p5/m, z10.s, z19.s, 270 \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fcadd z11.s, p5/m, z11.s, z20.s, 270 \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fcadd z6.s, p5/m, z6.s, z21.s, 270 \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fcadd z7.s, p5/m, z7.s, z22.s, 270 \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fcadd z8.s, p5/m, z8.s, z23.s, 270 \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YP_PROJ
#define YP_PROJ_A64FXf \
{ \
asm ( \
"fsub z12.s, p5/m, z12.s, z21.s \n\t" \
"fsub z13.s, p5/m, z13.s, z22.s \n\t" \
"fsub z14.s, p5/m, z14.s, z23.s \n\t" \
"fadd z15.s, p5/m, z15.s, z18.s \n\t" \
"fadd z16.s, p5/m, z16.s, z19.s \n\t" \
"fadd z17.s, p5/m, z17.s, z20.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// ZP_PROJ
#define ZP_PROJ_A64FXf \
{ \
asm ( \
"fcadd z12.s, p5/m, z12.s, z18.s, 90 \n\t" \
"fcadd z13.s, p5/m, z13.s, z19.s, 90 \n\t" \
"fcadd z14.s, p5/m, z14.s, z20.s, 90 \n\t" \
"fcadd z15.s, p5/m, z15.s, z21.s, 270 \n\t" \
"fcadd z16.s, p5/m, z16.s, z22.s, 270 \n\t" \
"fcadd z17.s, p5/m, z17.s, z23.s, 270 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// TP_PROJ
#define TP_PROJ_A64FXf \
{ \
asm ( \
"fadd z12.s, p5/m, z12.s, z18.s \n\t" \
"fadd z13.s, p5/m, z13.s, z19.s \n\t" \
"fadd z14.s, p5/m, z14.s, z20.s \n\t" \
"fadd z15.s, p5/m, z15.s, z21.s \n\t" \
"fadd z16.s, p5/m, z16.s, z22.s \n\t" \
"fadd z17.s, p5/m, z17.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XM_PROJ
#define XM_PROJ_A64FXf \
{ \
asm ( \
"fcadd z12.s, p5/m, z12.s, z21.s, 270 \n\t" \
"fcadd z13.s, p5/m, z13.s, z22.s, 270 \n\t" \
"fcadd z14.s, p5/m, z14.s, z23.s, 270 \n\t" \
"fcadd z15.s, p5/m, z15.s, z18.s, 270 \n\t" \
"fcadd z16.s, p5/m, z16.s, z19.s, 270 \n\t" \
"fcadd z17.s, p5/m, z17.s, z20.s, 270 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XM_RECON
#define XM_RECON_A64FXf \
asm ( \
"movprfx z6.s, p5/m, z31.s \n\t" \
"fcadd z6.s, p5/m, z6.s, z21.s, 90 \n\t" \
"movprfx z7.s, p5/m, z31.s \n\t" \
"fcadd z7.s, p5/m, z7.s, z22.s, 90 \n\t" \
"movprfx z8.s, p5/m, z31.s \n\t" \
"fcadd z8.s, p5/m, z8.s, z23.s, 90 \n\t" \
"movprfx z9.s, p5/m, z31.s \n\t" \
"fcadd z9.s, p5/m, z9.s, z18.s, 90 \n\t" \
"movprfx z10.s, p5/m, z31.s \n\t" \
"fcadd z10.s, p5/m, z10.s, z19.s, 90 \n\t" \
"movprfx z11.s, p5/m, z31.s \n\t" \
"fcadd z11.s, p5/m, z11.s, z20.s, 90 \n\t" \
"mov z0.s, p5/m, z18.s \n\t" \
"mov z1.s, p5/m, z19.s \n\t" \
"mov z2.s, p5/m, z20.s \n\t" \
"mov z3.s, p5/m, z21.s \n\t" \
"mov z4.s, p5/m, z22.s \n\t" \
"mov z5.s, p5/m, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YM_PROJ
#define YM_PROJ_A64FXf \
{ \
asm ( \
"fadd z12.s, p5/m, z12.s, z21.s \n\t" \
"fadd z13.s, p5/m, z13.s, z22.s \n\t" \
"fadd z14.s, p5/m, z14.s, z23.s \n\t" \
"fsub z15.s, p5/m, z15.s, z18.s \n\t" \
"fsub z16.s, p5/m, z16.s, z19.s \n\t" \
"fsub z17.s, p5/m, z17.s, z20.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// ZM_PROJ
#define ZM_PROJ_A64FXf \
{ \
asm ( \
"fcadd z12.s, p5/m, z12.s, z18.s, 270 \n\t" \
"fcadd z13.s, p5/m, z13.s, z19.s, 270 \n\t" \
"fcadd z14.s, p5/m, z14.s, z20.s, 270 \n\t" \
"fcadd z15.s, p5/m, z15.s, z21.s, 90 \n\t" \
"fcadd z16.s, p5/m, z16.s, z22.s, 90 \n\t" \
"fcadd z17.s, p5/m, z17.s, z23.s, 90 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// TM_PROJ
#define TM_PROJ_A64FXf \
{ \
asm ( \
"ptrue p5.s \n\t" \
"fsub z12.s, p5/m, z12.s, z18.s \n\t" \
"fsub z13.s, p5/m, z13.s, z19.s \n\t" \
"fsub z14.s, p5/m, z14.s, z20.s \n\t" \
"fsub z15.s, p5/m, z15.s, z21.s \n\t" \
"fsub z16.s, p5/m, z16.s, z22.s \n\t" \
"fsub z17.s, p5/m, z17.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
); \
}
// XM_RECON_ACCUM
#define XM_RECON_ACCUM_A64FXf \
asm ( \
"fcadd z9.s, p5/m, z9.s, z18.s, 90 \n\t" \
"fcadd z10.s, p5/m, z10.s, z19.s, 90 \n\t" \
"fcadd z11.s, p5/m, z11.s, z20.s, 90 \n\t" \
"fcadd z6.s, p5/m, z6.s, z21.s, 90 \n\t" \
"fcadd z7.s, p5/m, z7.s, z22.s, 90 \n\t" \
"fcadd z8.s, p5/m, z8.s, z23.s, 90 \n\t" \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YP_RECON_ACCUM
#define YP_RECON_ACCUM_A64FXf \
asm ( \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fsub z9.s, p5/m, z9.s, z18.s \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fsub z10.s, p5/m, z10.s, z19.s \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fsub z11.s, p5/m, z11.s, z20.s \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fadd z6.s, p5/m, z6.s, z21.s \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fadd z7.s, p5/m, z7.s, z22.s \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
"fadd z8.s, p5/m, z8.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// YM_RECON_ACCUM
#define YM_RECON_ACCUM_A64FXf \
asm ( \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fadd z9.s, p5/m, z9.s, z18.s \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fadd z10.s, p5/m, z10.s, z19.s \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fadd z11.s, p5/m, z11.s, z20.s \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fsub z6.s, p5/m, z6.s, z21.s \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fsub z7.s, p5/m, z7.s, z22.s \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
"fsub z8.s, p5/m, z8.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// ZP_RECON_ACCUM
#define ZP_RECON_ACCUM_A64FXf \
asm ( \
"fcadd z6.s, p5/m, z6.s, z18.s, 270 \n\t" \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fcadd z7.s, p5/m, z7.s, z19.s, 270 \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fcadd z8.s, p5/m, z8.s, z20.s, 270 \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fcadd z9.s, p5/m, z9.s, z21.s, 90 \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fcadd z10.s, p5/m, z10.s, z22.s, 90 \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fcadd z11.s, p5/m, z11.s, z23.s, 90 \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// ZM_RECON_ACCUM
#define ZM_RECON_ACCUM_A64FXf \
asm ( \
"fcadd z6.s, p5/m, z6.s, z18.s, 90 \n\t" \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fcadd z7.s, p5/m, z7.s, z19.s, 90 \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fcadd z8.s, p5/m, z8.s, z20.s, 90 \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fcadd z9.s, p5/m, z9.s, z21.s, 270 \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fcadd z10.s, p5/m, z10.s, z22.s, 270 \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fcadd z11.s, p5/m, z11.s, z23.s, 270 \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// TP_RECON_ACCUM
#define TP_RECON_ACCUM_A64FXf \
asm ( \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fadd z6.s, p5/m, z6.s, z18.s \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fadd z7.s, p5/m, z7.s, z19.s \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fadd z8.s, p5/m, z8.s, z20.s \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fadd z9.s, p5/m, z9.s, z21.s \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fadd z10.s, p5/m, z10.s, z22.s \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
"fadd z11.s, p5/m, z11.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// TM_RECON_ACCUM
#define TM_RECON_ACCUM_A64FXf \
asm ( \
"fadd z0.s, p5/m, z0.s, z18.s \n\t" \
"fsub z6.s, p5/m, z6.s, z18.s \n\t" \
"fadd z1.s, p5/m, z1.s, z19.s \n\t" \
"fsub z7.s, p5/m, z7.s, z19.s \n\t" \
"fadd z2.s, p5/m, z2.s, z20.s \n\t" \
"fsub z8.s, p5/m, z8.s, z20.s \n\t" \
"fadd z3.s, p5/m, z3.s, z21.s \n\t" \
"fsub z9.s, p5/m, z9.s, z21.s \n\t" \
"fadd z4.s, p5/m, z4.s, z22.s \n\t" \
"fsub z10.s, p5/m, z10.s, z22.s \n\t" \
"fadd z5.s, p5/m, z5.s, z23.s \n\t" \
"fsub z11.s, p5/m, z11.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// ZERO_PSI
#define ZERO_PSI_A64FXf \
asm ( \
"ptrue p5.s \n\t" \
"fmov z0.s , 0 \n\t" \
"fmov z1.s , 0 \n\t" \
"fmov z2.s , 0 \n\t" \
"fmov z3.s , 0 \n\t" \
"fmov z4.s , 0 \n\t" \
"fmov z5.s , 0 \n\t" \
"fmov z6.s , 0 \n\t" \
"fmov z7.s , 0 \n\t" \
"fmov z8.s , 0 \n\t" \
"fmov z9.s , 0 \n\t" \
"fmov z10.s , 0 \n\t" \
"fmov z11.s , 0 \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);
// PREFETCH_RESULT_L2_STORE (prefetch store to L2)
#define PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXf(base) \
{ \
asm ( \
"prfd PSTL2STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PSTL2STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PSTL2STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// PREFETCH_RESULT_L1_STORE (prefetch store to L1)
#define PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXf(base) \
{ \
asm ( \
"prfd PSTL1STRM, p5, [%[fetchptr], 0, mul vl] \n\t" \
"prfd PSTL1STRM, p5, [%[fetchptr], 4, mul vl] \n\t" \
"prfd PSTL1STRM, p5, [%[fetchptr], 8, mul vl] \n\t" \
: \
: [fetchptr] "r" (base) \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31","memory" \
); \
}
// ADD_RESULT_INTERNAL
#define ADD_RESULT_INTERNAL_A64FXf \
asm ( \
"fadd z0.s, p5/m, z0.s, z12.s \n\t" \
"fadd z1.s, p5/m, z1.s, z13.s \n\t" \
"fadd z2.s, p5/m, z2.s, z14.s \n\t" \
"fadd z3.s, p5/m, z3.s, z15.s \n\t" \
"fadd z4.s, p5/m, z4.s, z16.s \n\t" \
"fadd z5.s, p5/m, z5.s, z17.s \n\t" \
"fadd z6.s, p5/m, z6.s, z18.s \n\t" \
"fadd z7.s, p5/m, z7.s, z19.s \n\t" \
"fadd z8.s, p5/m, z8.s, z20.s \n\t" \
"fadd z9.s, p5/m, z9.s, z21.s \n\t" \
"fadd z10.s, p5/m, z10.s, z22.s \n\t" \
"fadd z11.s, p5/m, z11.s, z23.s \n\t" \
: \
: \
: "p5","cc","z0","z1","z2","z3","z4","z5","z6","z7","z8","z9","z10","z11","z12","z13","z14","z15","z16","z17","z18","z19","z20","z21","z22","z23","z24","z25","z26","z27","z28","z29","z30","z31" \
);

View File

@ -38,10 +38,11 @@ Author: Nils Meyer <nils.meyer@ur.de>
#define LOCK_GAUGE(A)
#define UNLOCK_GAUGE(A)
#define MASK_REGS DECLARATIONS_A64FXd
#define SAVE_RESULT(A,B) RESULT_A64FXd(A); PREFETCH_RESULT_L2_STORE(B)
#define SAVE_RESULT(A,B) RESULT_A64FXd(A);
#define MULT_2SPIN_1(Dir) MULT_2SPIN_1_A64FXd(Dir)
#define MULT_2SPIN_2 MULT_2SPIN_2_A64FXd
#define LOAD_CHI(base) LOAD_CHI_A64FXd(base)
#define ZERO_PSI ZERO_PSI_A64FXd
#define ADD_RESULT(base,basep) LOAD_CHIMU(base); ADD_RESULT_INTERNAL_A64FXd; RESULT_A64FXd(base)
#define XP_PROJ XP_PROJ_A64FXd
#define YP_PROJ YP_PROJ_A64FXd
@ -70,6 +71,7 @@ Author: Nils Meyer <nils.meyer@ur.de>
#define MAYBEPERM(Dir,perm) if (Dir != 3) { if (perm) { PERMUTE; } }
// DECLARATIONS
#define DECLARATIONS_A64FXd \
uint64_t baseU; \
const uint64_t lut[4][8] = { \
{4, 5, 6, 7, 0, 1, 2, 3}, \
{2, 3, 0, 1, 6, 7, 4, 5}, \
@ -126,114 +128,114 @@ Author: Nils Meyer <nils.meyer@ur.de>
// RESULT
#define RESULT_A64FXd(base) \
{ \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + -6 * 64), result_00); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + -5 * 64), result_01); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + -4 * 64), result_02); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + -3 * 64), result_10); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + -2 * 64), result_11); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + -1 * 64), result_12); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + 0 * 64), result_20); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + 1 * 64), result_21); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + 2 * 64), result_22); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + 3 * 64), result_30); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + 4 * 64), result_31); \
svst1(pg1, (float64_t*)(base + 2 * 3 * 64 + 5 * 64), result_32); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-6), result_00); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-5), result_01); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-4), result_02); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-3), result_10); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-2), result_11); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(-1), result_12); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(0), result_20); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(1), result_21); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(2), result_22); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(3), result_30); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(4), result_31); \
svst1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64),(int64_t)(5), result_32); \
}
// PREFETCH_CHIMU_L2 (prefetch to L2)
#define PREFETCH_CHIMU_L2_INTERNAL_A64FXd(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL2STRM); \
}
// PREFETCH_CHIMU_L1 (prefetch to L1)
#define PREFETCH_CHIMU_L1_INTERNAL_A64FXd(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL1STRM); \
}
// PREFETCH_GAUGE_L2 (prefetch to L2)
#define PREFETCH_GAUGE_L2_INTERNAL_A64FXd(A) \
{ \
const auto & ref(U[sUn](A)); uint64_t baseU = (uint64_t)&ref + 3 * 3 * 64; \
svprfd(pg1, (int64_t*)(baseU + -256), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 0), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 256), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 512), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 768), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1024), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1280), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1536), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1792), SV_PLDL2STRM); \
const auto & ref(U[sUn](A)); baseU = (uint64_t)&ref + 3 * 3 * 64; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(-4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(12), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(16), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(20), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(24), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(28), SV_PLDL2STRM); \
}
// PREFETCH_GAUGE_L1 (prefetch to L1)
#define PREFETCH_GAUGE_L1_INTERNAL_A64FXd(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
svprfd(pg1, (int64_t*)(baseU + 0), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(baseU + 256), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(baseU + 512), SV_PLDL1STRM); \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL1STRM); \
}
// LOAD_CHI
#define LOAD_CHI_A64FXd(base) \
{ \
Chi_00 = svld1(pg1, (float64_t*)(base + 0 * 64)); \
Chi_01 = svld1(pg1, (float64_t*)(base + 1 * 64)); \
Chi_02 = svld1(pg1, (float64_t*)(base + 2 * 64)); \
Chi_10 = svld1(pg1, (float64_t*)(base + 3 * 64)); \
Chi_11 = svld1(pg1, (float64_t*)(base + 4 * 64)); \
Chi_12 = svld1(pg1, (float64_t*)(base + 5 * 64)); \
Chi_00 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(0)); \
Chi_01 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(1)); \
Chi_02 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(2)); \
Chi_10 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(3)); \
Chi_11 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(4)); \
Chi_12 = svld1_vnum(pg1, (float64_t*)(base), (int64_t)(5)); \
}
// LOAD_CHIMU
#define LOAD_CHIMU_INTERLEAVED_A64FXd(base) \
{ \
Chimu_00 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -6 * 64)); \
Chimu_30 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 3 * 64)); \
Chimu_10 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -3 * 64)); \
Chimu_20 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 0 * 64)); \
Chimu_01 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -5 * 64)); \
Chimu_31 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 4 * 64)); \
Chimu_11 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -2 * 64)); \
Chimu_21 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 1 * 64)); \
Chimu_02 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -4 * 64)); \
Chimu_32 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 5 * 64)); \
Chimu_12 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -1 * 64)); \
Chimu_22 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 2 * 64)); \
Chimu_00 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_10 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_11 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_12 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_CHIMU_0213
#define LOAD_CHIMU_0213_A64FXd \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -6 * 64)); \
Chimu_20 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 0 * 64)); \
Chimu_01 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -5 * 64)); \
Chimu_21 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 1 * 64)); \
Chimu_02 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -4 * 64)); \
Chimu_22 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 2 * 64)); \
Chimu_10 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -3 * 64)); \
Chimu_30 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 3 * 64)); \
Chimu_11 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -2 * 64)); \
Chimu_31 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 4 * 64)); \
Chimu_12 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -1 * 64)); \
Chimu_32 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 5 * 64)); \
Chimu_00 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_20 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_21 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_22 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
Chimu_10 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_30 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_11 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_31 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_12 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_32 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
}
// LOAD_CHIMU_0312
#define LOAD_CHIMU_0312_A64FXd \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -6 * 64)); \
Chimu_30 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 3 * 64)); \
Chimu_01 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -5 * 64)); \
Chimu_31 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 4 * 64)); \
Chimu_02 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -4 * 64)); \
Chimu_32 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 5 * 64)); \
Chimu_10 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -3 * 64)); \
Chimu_20 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 0 * 64)); \
Chimu_11 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -2 * 64)); \
Chimu_21 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 1 * 64)); \
Chimu_12 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + -1 * 64)); \
Chimu_22 = svld1(pg1, (float64_t*)(base + 2 * 3 * 64 + 2 * 64)); \
Chimu_00 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_01 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_02 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_10 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_11 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_12 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float64_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_TABLE0
#define LOAD_TABLE0 \
@ -261,26 +263,26 @@ Author: Nils Meyer <nils.meyer@ur.de>
Chi_12 = svtbl(Chi_12, table0);
// LOAD_GAUGE
#define LOAD_GAUGE \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
#define LOAD_GAUGE(A) \
{ \
U_00 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -6 * 64)); \
U_10 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -3 * 64)); \
U_20 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + 0 * 64)); \
U_01 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -5 * 64)); \
U_11 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -2 * 64)); \
U_21 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + 1 * 64)); \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
}
// MULT_2SPIN
#define MULT_2SPIN_1_A64FXd(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
U_00 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -6 * 64)); \
U_10 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -3 * 64)); \
U_20 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + 0 * 64)); \
U_01 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -5 * 64)); \
U_11 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -2 * 64)); \
U_21 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + 1 * 64)); \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
UChi_00 = svcmla_x(pg1, zero0, U_00, Chi_00, 0); \
UChi_10 = svcmla_x(pg1, zero0, U_00, Chi_10, 0); \
UChi_01 = svcmla_x(pg1, zero0, U_10, Chi_00, 0); \
@ -293,9 +295,9 @@ Author: Nils Meyer <nils.meyer@ur.de>
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_10, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_00, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_10, 90); \
U_00 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -4 * 64)); \
U_10 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + -1 * 64)); \
U_20 = svld1(pg1, (float64_t*)(baseU + 2 * 3 * 64 + 2 * 64)); \
U_00 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-4)); \
U_10 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(-1)); \
U_20 = svld1_vnum(pg1, (float64_t*)(baseU + 2 * 3 * 64), (int64_t)(2)); \
}
// MULT_2SPIN_BACKEND
#define MULT_2SPIN_2_A64FXd \
@ -570,12 +572,12 @@ Author: Nils Meyer <nils.meyer@ur.de>
result_31 = svdup_f64(0.); \
result_32 = svdup_f64(0.);
// PREFETCH_RESULT_L2_STORE (prefetch store to L2)
// PREFETCH_RESULT_L2_STORE (uses DC ZVA for cache line zeroing)
#define PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXd(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PSTL2STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PSTL2STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PSTL2STRM); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 0) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 1) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 2) : "memory" ); \
}
// PREFETCH_RESULT_L1_STORE (prefetch store to L1)
#define PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXd(base) \

View File

@ -38,10 +38,11 @@ Author: Nils Meyer <nils.meyer@ur.de>
#define LOCK_GAUGE(A)
#define UNLOCK_GAUGE(A)
#define MASK_REGS DECLARATIONS_A64FXf
#define SAVE_RESULT(A,B) RESULT_A64FXf(A); PREFETCH_RESULT_L2_STORE(B)
#define SAVE_RESULT(A,B) RESULT_A64FXf(A);
#define MULT_2SPIN_1(Dir) MULT_2SPIN_1_A64FXf(Dir)
#define MULT_2SPIN_2 MULT_2SPIN_2_A64FXf
#define LOAD_CHI(base) LOAD_CHI_A64FXf(base)
#define ZERO_PSI ZERO_PSI_A64FXf
#define ADD_RESULT(base,basep) LOAD_CHIMU(base); ADD_RESULT_INTERNAL_A64FXf; RESULT_A64FXf(base)
#define XP_PROJ XP_PROJ_A64FXf
#define YP_PROJ YP_PROJ_A64FXf
@ -70,6 +71,7 @@ Author: Nils Meyer <nils.meyer@ur.de>
#define MAYBEPERM(A,perm) if (perm) { PERMUTE; }
// DECLARATIONS
#define DECLARATIONS_A64FXf \
uint64_t baseU; \
const uint32_t lut[4][16] = { \
{8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7}, \
{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}, \
@ -126,114 +128,114 @@ Author: Nils Meyer <nils.meyer@ur.de>
// RESULT
#define RESULT_A64FXf(base) \
{ \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + -6 * 64), result_00); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + -5 * 64), result_01); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + -4 * 64), result_02); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + -3 * 64), result_10); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + -2 * 64), result_11); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + -1 * 64), result_12); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + 0 * 64), result_20); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + 1 * 64), result_21); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + 2 * 64), result_22); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + 3 * 64), result_30); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + 4 * 64), result_31); \
svst1(pg1, (float32_t*)(base + 2 * 3 * 64 + 5 * 64), result_32); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-6), result_00); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-5), result_01); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-4), result_02); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-3), result_10); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-2), result_11); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(-1), result_12); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(0), result_20); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(1), result_21); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(2), result_22); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(3), result_30); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(4), result_31); \
svst1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64),(int64_t)(5), result_32); \
}
// PREFETCH_CHIMU_L2 (prefetch to L2)
#define PREFETCH_CHIMU_L2_INTERNAL_A64FXf(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL2STRM); \
}
// PREFETCH_CHIMU_L1 (prefetch to L1)
#define PREFETCH_CHIMU_L1_INTERNAL_A64FXf(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(base), (int64_t)(8), SV_PLDL1STRM); \
}
// PREFETCH_GAUGE_L2 (prefetch to L2)
#define PREFETCH_GAUGE_L2_INTERNAL_A64FXf(A) \
{ \
const auto & ref(U[sUn](A)); uint64_t baseU = (uint64_t)&ref + 3 * 3 * 64; \
svprfd(pg1, (int64_t*)(baseU + -256), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 0), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 256), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 512), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 768), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1024), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1280), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1536), SV_PLDL2STRM); \
svprfd(pg1, (int64_t*)(baseU + 1792), SV_PLDL2STRM); \
const auto & ref(U[sUn](A)); baseU = (uint64_t)&ref + 3 * 3 * 64; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(-4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(12), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(16), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(20), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(24), SV_PLDL2STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(28), SV_PLDL2STRM); \
}
// PREFETCH_GAUGE_L1 (prefetch to L1)
#define PREFETCH_GAUGE_L1_INTERNAL_A64FXf(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
svprfd(pg1, (int64_t*)(baseU + 0), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(baseU + 256), SV_PLDL1STRM); \
svprfd(pg1, (int64_t*)(baseU + 512), SV_PLDL1STRM); \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(0), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(4), SV_PLDL1STRM); \
svprfd_vnum(pg1, (void*)(baseU), (int64_t)(8), SV_PLDL1STRM); \
}
// LOAD_CHI
#define LOAD_CHI_A64FXf(base) \
{ \
Chi_00 = svld1(pg1, (float32_t*)(base + 0 * 64)); \
Chi_01 = svld1(pg1, (float32_t*)(base + 1 * 64)); \
Chi_02 = svld1(pg1, (float32_t*)(base + 2 * 64)); \
Chi_10 = svld1(pg1, (float32_t*)(base + 3 * 64)); \
Chi_11 = svld1(pg1, (float32_t*)(base + 4 * 64)); \
Chi_12 = svld1(pg1, (float32_t*)(base + 5 * 64)); \
Chi_00 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(0)); \
Chi_01 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(1)); \
Chi_02 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(2)); \
Chi_10 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(3)); \
Chi_11 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(4)); \
Chi_12 = svld1_vnum(pg1, (float32_t*)(base), (int64_t)(5)); \
}
// LOAD_CHIMU
#define LOAD_CHIMU_INTERLEAVED_A64FXf(base) \
{ \
Chimu_00 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -6 * 64)); \
Chimu_30 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 3 * 64)); \
Chimu_10 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -3 * 64)); \
Chimu_20 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 0 * 64)); \
Chimu_01 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -5 * 64)); \
Chimu_31 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 4 * 64)); \
Chimu_11 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -2 * 64)); \
Chimu_21 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 1 * 64)); \
Chimu_02 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -4 * 64)); \
Chimu_32 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 5 * 64)); \
Chimu_12 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -1 * 64)); \
Chimu_22 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 2 * 64)); \
Chimu_00 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_10 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_11 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_12 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_CHIMU_0213
#define LOAD_CHIMU_0213_A64FXf \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -6 * 64)); \
Chimu_20 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 0 * 64)); \
Chimu_01 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -5 * 64)); \
Chimu_21 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 1 * 64)); \
Chimu_02 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -4 * 64)); \
Chimu_22 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 2 * 64)); \
Chimu_10 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -3 * 64)); \
Chimu_30 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 3 * 64)); \
Chimu_11 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -2 * 64)); \
Chimu_31 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 4 * 64)); \
Chimu_12 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -1 * 64)); \
Chimu_32 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 5 * 64)); \
Chimu_00 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_20 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_01 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_21 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_02 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_22 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
Chimu_10 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_30 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_11 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_31 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_12 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_32 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
}
// LOAD_CHIMU_0312
#define LOAD_CHIMU_0312_A64FXf \
{ \
const SiteSpinor & ref(in[offset]); \
Chimu_00 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -6 * 64)); \
Chimu_30 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 3 * 64)); \
Chimu_01 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -5 * 64)); \
Chimu_31 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 4 * 64)); \
Chimu_02 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -4 * 64)); \
Chimu_32 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 5 * 64)); \
Chimu_10 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -3 * 64)); \
Chimu_20 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 0 * 64)); \
Chimu_11 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -2 * 64)); \
Chimu_21 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 1 * 64)); \
Chimu_12 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + -1 * 64)); \
Chimu_22 = svld1(pg1, (float32_t*)(base + 2 * 3 * 64 + 2 * 64)); \
Chimu_00 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-6)); \
Chimu_30 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(3)); \
Chimu_01 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-5)); \
Chimu_31 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(4)); \
Chimu_02 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-4)); \
Chimu_32 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(5)); \
Chimu_10 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-3)); \
Chimu_20 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(0)); \
Chimu_11 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-2)); \
Chimu_21 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(1)); \
Chimu_12 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(-1)); \
Chimu_22 = svld1_vnum(pg1, (float32_t*)(base + 2 * 3 * 64), (int64_t)(2)); \
}
// LOAD_TABLE0
#define LOAD_TABLE0 \
@ -261,26 +263,26 @@ Author: Nils Meyer <nils.meyer@ur.de>
Chi_12 = svtbl(Chi_12, table0);
// LOAD_GAUGE
#define LOAD_GAUGE \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
#define LOAD_GAUGE(A) \
{ \
U_00 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -6 * 64)); \
U_10 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -3 * 64)); \
U_20 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + 0 * 64)); \
U_01 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -5 * 64)); \
U_11 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -2 * 64)); \
U_21 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + 1 * 64)); \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
}
// MULT_2SPIN
#define MULT_2SPIN_1_A64FXf(A) \
{ \
const auto & ref(U[sU](A)); uint64_t baseU = (uint64_t)&ref; \
U_00 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -6 * 64)); \
U_10 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -3 * 64)); \
U_20 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + 0 * 64)); \
U_01 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -5 * 64)); \
U_11 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -2 * 64)); \
U_21 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + 1 * 64)); \
const auto & ref(U[sU](A)); baseU = (uint64_t)&ref; \
U_00 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-6)); \
U_10 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-3)); \
U_20 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(0)); \
U_01 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-5)); \
U_11 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-2)); \
U_21 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(1)); \
UChi_00 = svcmla_x(pg1, zero0, U_00, Chi_00, 0); \
UChi_10 = svcmla_x(pg1, zero0, U_00, Chi_10, 0); \
UChi_01 = svcmla_x(pg1, zero0, U_10, Chi_00, 0); \
@ -293,9 +295,9 @@ Author: Nils Meyer <nils.meyer@ur.de>
UChi_11 = svcmla_x(pg1, UChi_11, U_10, Chi_10, 90); \
UChi_02 = svcmla_x(pg1, UChi_02, U_20, Chi_00, 90); \
UChi_12 = svcmla_x(pg1, UChi_12, U_20, Chi_10, 90); \
U_00 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -4 * 64)); \
U_10 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + -1 * 64)); \
U_20 = svld1(pg1, (float32_t*)(baseU + 2 * 3 * 64 + 2 * 64)); \
U_00 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-4)); \
U_10 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(-1)); \
U_20 = svld1_vnum(pg1, (float32_t*)(baseU + 2 * 3 * 64), (int64_t)(2)); \
}
// MULT_2SPIN_BACKEND
#define MULT_2SPIN_2_A64FXf \
@ -570,12 +572,12 @@ Author: Nils Meyer <nils.meyer@ur.de>
result_31 = svdup_f32(0.); \
result_32 = svdup_f32(0.);
// PREFETCH_RESULT_L2_STORE (prefetch store to L2)
// PREFETCH_RESULT_L2_STORE (uses DC ZVA for cache line zeroing)
#define PREFETCH_RESULT_L2_STORE_INTERNAL_A64FXf(base) \
{ \
svprfd(pg1, (int64_t*)(base + 0), SV_PSTL2STRM); \
svprfd(pg1, (int64_t*)(base + 256), SV_PSTL2STRM); \
svprfd(pg1, (int64_t*)(base + 512), SV_PSTL2STRM); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 0) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 1) : "memory" ); \
asm( "dc zva, %[fetchptr] \n\t" : : [fetchptr] "r" (base + 256 * 2) : "memory" ); \
}
// PREFETCH_RESULT_L1_STORE (prefetch store to L1)
#define PREFETCH_RESULT_L1_STORE_INTERNAL_A64FXf(base) \

View File

@ -46,6 +46,7 @@ Author: Nils Meyer <nils.meyer@ur.de>
#undef MULT_2SPIN_2
#undef MAYBEPERM
#undef LOAD_CHI
#undef ZERO_PSI
#undef XP_PROJ
#undef YP_PROJ
#undef ZP_PROJ

View File

@ -38,12 +38,20 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
#ifdef GRID_HIP
#include <hip/hip_fp16.h>
#endif
#ifdef GRID_SYCL
namespace Grid {
typedef struct { uint16_t x;} half;
typedef struct { half x; half y;} half2;
typedef struct { float x; float y;} float2;
typedef struct { double x; double y;} double2;
}
#endif
namespace Grid {
#if (!defined(GRID_CUDA)) && (!defined(GRID_HIP))
typedef struct { uint16_t x;} half;
#endif
typedef struct Half2_t { half x; half y; } Half2;
#define COALESCE_GRANULARITY ( GEN_SIMD_WIDTH )
@ -156,7 +164,7 @@ accelerator_inline float half2float(half h)
f = __half2float(h);
#else
Grid_half hh;
hh.x = hr.x;
hh.x = h.x;
f= sfw_half_to_float(hh);
#endif
return f;

File diff suppressed because it is too large Load Diff

View File

@ -269,7 +269,7 @@ public:
std::vector<Vector<std::pair<int,int> > > face_table ;
Vector<int> surface_list;
Vector<StencilEntry> _entries; // Resident in managed memory
stencilVector<StencilEntry> _entries; // Resident in managed memory
std::vector<Packet> Packets;
std::vector<Merge> Mergers;
std::vector<Merge> MergersSHM;

View File

@ -92,7 +92,6 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
{
// need a check for the group type?
iMatrix<vtype,N> ret(arg);
vtype rnrm;
vtype nrm;
vtype inner;
for(int c1=0;c1<N;c1++){
@ -118,7 +117,19 @@ accelerator_inline iMatrix<vtype,N> ProjectOnGroup(const iMatrix<vtype,N> &arg)
ret._internal[b][c] -= pr * ret._internal[c1][c];
}
}
}
// Normalise last row
{
int c1 = N-1;
zeroit(inner);
for(int c2=0;c2<N;c2++)
inner += innerProduct(ret._internal[c1][c2],ret._internal[c1][c2]);
nrm = sqrt(inner);
nrm = 1.0/nrm;
for(int c2=0;c2<N;c2++)
ret._internal[c1][c2]*= nrm;
}
// assuming the determinant is ok
return ret;

View File

@ -1,6 +1,7 @@
#include <Grid/GridCore.h>
NAMESPACE_BEGIN(Grid);
int acceleratorAbortOnGpuError=1;
uint32_t accelerator_threads=2;
uint32_t acceleratorThreads(void) {return accelerator_threads;};
void acceleratorThreads(uint32_t t) {accelerator_threads = t;};
@ -21,22 +22,26 @@ void acceleratorInit(void)
#define ENV_RANK_SLURM "SLURM_PROCID"
#define ENV_LOCAL_RANK_MVAPICH "MV2_COMM_WORLD_LOCAL_RANK"
#define ENV_RANK_MVAPICH "MV2_COMM_WORLD_RANK"
// We extract the local rank initialization using an environment variable
if ((localRankStr = getenv(ENV_LOCAL_RANK_OMPI)) != NULL) {
printf("OPENMPI detected\n");
rank = atoi(localRankStr);
} else if ((localRankStr = getenv(ENV_LOCAL_RANK_MVAPICH)) != NULL) {
printf("MVAPICH detected\n");
rank = atoi(localRankStr);
} else if ((localRankStr = getenv(ENV_LOCAL_RANK_SLURM)) != NULL) {
printf("SLURM detected\n");
rank = atoi(localRankStr);
} else {
printf("MPI version is unknown - bad things may happen\n");
}
if ((localRankStr = getenv(ENV_RANK_OMPI )) != NULL) { world_rank = atoi(localRankStr);}
if ((localRankStr = getenv(ENV_RANK_MVAPICH)) != NULL) { world_rank = atoi(localRankStr);}
if ((localRankStr = getenv(ENV_RANK_SLURM )) != NULL) { world_rank = atoi(localRankStr);}
// We extract the local rank initialization using an environment variable
if ((localRankStr = getenv(ENV_LOCAL_RANK_OMPI)) != NULL) {
if (!world_rank)
printf("OPENMPI detected\n");
rank = atoi(localRankStr);
} else if ((localRankStr = getenv(ENV_LOCAL_RANK_MVAPICH)) != NULL) {
if (!world_rank)
printf("MVAPICH detected\n");
rank = atoi(localRankStr);
} else if ((localRankStr = getenv(ENV_LOCAL_RANK_SLURM)) != NULL) {
if (!world_rank)
printf("SLURM detected\n");
rank = atoi(localRankStr);
} else {
if (!world_rank)
printf("MPI version is unknown - bad things may happen\n");
}
size_t totalDeviceMem=0;
for (int i = 0; i < nDevices; i++) {
@ -48,7 +53,7 @@ void acceleratorInit(void)
prop = gpu_props[i];
totalDeviceMem = prop.totalGlobalMem;
if ( world_rank == 0) {
#ifndef GRID_IBM_SUMMIT
#ifndef GRID_DEFAULT_GPU
if ( i==rank ) {
printf("AcceleratorCudaInit[%d]: ========================\n",rank);
printf("AcceleratorCudaInit[%d]: Device Number : %d\n", rank,i);
@ -73,11 +78,17 @@ void acceleratorInit(void)
#undef GPU_PROP_FMT
#undef GPU_PROP
#ifdef GRID_IBM_SUMMIT
#ifdef GRID_DEFAULT_GPU
// IBM Jsrun makes cuda Device numbering screwy and not match rank
if ( world_rank == 0 ) printf("AcceleratorCudaInit: IBM Summit or similar - use default device\n");
if ( world_rank == 0 ) {
printf("AcceleratorCudaInit: using default device \n");
printf("AcceleratorCudaInit: assume user either uses a) IBM jsrun, or \n");
printf("AcceleratorCudaInit: b) invokes through a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
printf("AcceleratorCudaInit: Configure options --enable-summit, --enable-select-gpu=no \n");
}
#else
printf("AcceleratorCudaInit: rank %d setting device to node rank %d\n",world_rank,rank);
printf("AcceleratorCudaInit: Configure options --enable-select-gpu=yes \n");
cudaSetDevice(rank);
#endif
if ( world_rank == 0 ) printf("AcceleratorCudaInit: ================================================\n");
@ -139,11 +150,18 @@ void acceleratorInit(void)
MemoryManager::DeviceMaxBytes = (8*totalDeviceMem)/10; // Assume 80% ours
#undef GPU_PROP_FMT
#undef GPU_PROP
#ifdef GRID_IBM_SUMMIT
// IBM Jsrun makes cuda Device numbering screwy and not match rank
if ( world_rank == 0 ) printf("AcceleratorHipInit: IBM Summit or similar - NOT setting device to node rank\n");
#ifdef GRID_DEFAULT_GPU
if ( world_rank == 0 ) {
printf("AcceleratorHipInit: using default device \n");
printf("AcceleratorHipInit: assume user either uses a wrapping script to set CUDA_VISIBLE_DEVICES, UCX_NET_DEVICES, and numa binding \n");
printf("AcceleratorHipInit: Configure options --enable-summit, --enable-select-gpu=no \n");
}
#else
if ( world_rank == 0 ) printf("AcceleratorHipInit: setting device to node rank\n");
if ( world_rank == 0 ) {
printf("AcceleratorHipInit: rank %d setting device to node rank %d\n",world_rank,rank);
printf("AcceleratorHipInit: Configure options --enable-select-gpu=yes \n");
}
hipSetDevice(rank);
#endif
if ( world_rank == 0 ) printf("AcceleratorHipInit: ================================================\n");

View File

@ -100,6 +100,8 @@ void acceleratorInit(void);
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
extern int acceleratorAbortOnGpuError;
accelerator_inline int acceleratorSIMTlane(int Nsimd) {
#ifdef GRID_SIMT
return threadIdx.z;
@ -140,6 +142,7 @@ void LambdaApply(uint64_t num1, uint64_t num2, uint64_t num3, lambda Lambda)
printf("Cuda error %s \n", cudaGetErrorString( err )); \
puts(__FILE__); \
printf("Line %d\n",__LINE__); \
if (acceleratorAbortOnGpuError) assert(err==cudaSuccess); \
} \
}
@ -166,15 +169,18 @@ inline void *acceleratorAllocDevice(size_t bytes)
inline void acceleratorFreeShared(void *ptr){ cudaFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ cudaFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyHostToDevice);}
inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes) { cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ cudaMemcpy(to,from,bytes, cudaMemcpyDeviceToHost);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { cudaMemset(base,value,bytes);}
inline int acceleratorIsCommunicable(void *ptr)
{
int uvm;
auto
cuerr = cuPointerGetAttribute( &uvm, CU_POINTER_ATTRIBUTE_IS_MANAGED, (CUdeviceptr) ptr);
assert(cuerr == cudaSuccess );
if(uvm) return 0;
else return 1;
// int uvm=0;
// auto
// cuerr = cuPointerGetAttribute( &uvm, CU_POINTER_ATTRIBUTE_IS_MANAGED, (CUdeviceptr) ptr);
// assert(cuerr == cudaSuccess );
// if(uvm) return 0;
// else return 1;
return 1;
}
#endif
@ -229,8 +235,10 @@ inline void *acceleratorAllocShared(size_t bytes){ return malloc_shared(bytes,*t
inline void *acceleratorAllocDevice(size_t bytes){ return malloc_device(bytes,*theGridAccelerator);};
inline void acceleratorFreeShared(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorFreeDevice(void *ptr){free(ptr,*theGridAccelerator);};
inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ theGridAccelerator->memcpy(to,from,bytes); theGridAccelerator->wait();}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { theGridAccelerator->memset(base,value,bytes); theGridAccelerator->wait();}
inline int acceleratorIsCommunicable(void *ptr)
{
#if 0
@ -332,6 +340,8 @@ inline void acceleratorFreeShared(void *ptr){ hipFree(ptr);};
inline void acceleratorFreeDevice(void *ptr){ hipFree(ptr);};
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyHostToDevice);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemcpy(to,from,bytes, hipMemcpyDeviceToHost);}
inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes) { hipMemcpy(to,from,bytes, hipMemcpyDeviceToDevice);}
inline void acceleratorMemSet(void *base,int value,size_t bytes) { hipMemset(base,value,bytes);}
#endif
@ -354,7 +364,7 @@ inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemc
//////////////////////////////////////////////
// CPU Target - No accelerator just thread instead
//////////////////////////////////////////////
#define GRID_ALLOC_ALIGN (2*1024*1024) // 2MB aligned
#if ( (!defined(GRID_SYCL)) && (!defined(GRID_CUDA)) && (!defined(GRID_HIP)) )
#undef GRID_SIMT
@ -369,8 +379,10 @@ inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ hipMemc
accelerator_inline int acceleratorSIMTlane(int Nsimd) { return 0; } // CUDA specific
inline void acceleratorCopyToDevice(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline void acceleratorCopyFromDevice(void *from,void *to,size_t bytes){ memcpy(to,from,bytes);}
inline void acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes) { memcpy(to,from,bytes);}
inline int acceleratorIsCommunicable(void *ptr){ return 1; }
inline void acceleratorMemSet(void *base,int value,size_t bytes) { memset(base,value,bytes);}
#ifdef HAVE_MM_MALLOC_H
inline void *acceleratorAllocShared(size_t bytes){return _mm_malloc(bytes,GRID_ALLOC_ALIGN);};
inline void *acceleratorAllocDevice(size_t bytes){return _mm_malloc(bytes,GRID_ALLOC_ALIGN);};
@ -393,6 +405,8 @@ inline void *acceleratorAllocCpu(size_t bytes){return memalign(GRID_ALLOC_ALIGN,
inline void acceleratorFreeCpu (void *ptr){free(ptr);};
#endif
///////////////////////////////////////////////////
// Synchronise across local threads for divergence resynch
///////////////////////////////////////////////////

View File

@ -473,11 +473,13 @@ void Grid_init(int *argc,char ***argv)
LebesgueOrder::UseLebesgueOrder=1;
}
CartesianCommunicator::nCommThreads = 1;
#ifdef GRID_COMMS_THREADS
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-threads") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--comms-threads");
GridCmdOptionInt(arg,CartesianCommunicator::nCommThreads);
assert(CartesianCommunicator::nCommThreads > 0);
}
#endif
if( GridCmdOptionExists(*argv,*argv+*argc,"--cacheblocking") ){
arg= GridCmdOptionPayload(*argv,*argv+*argc,"--cacheblocking");
GridCmdOptionIntVector(arg,LebesgueOrder::Block);

View File

@ -1,4 +1,3 @@
#include "Benchmark_IO.hpp"
#ifndef BENCH_IO_LMIN
@ -13,6 +12,7 @@
#define BENCH_IO_NPASS 10
#endif
#ifdef HAVE_LIME
using namespace Grid;
std::string filestem(const int l)
@ -196,3 +196,6 @@ int main (int argc, char ** argv)
return EXIT_SUCCESS;
}
#else
int main(int argc,char ** argv){}
#endif

View File

@ -2,12 +2,12 @@
#define Benchmark_IO_hpp_
#include <Grid/Grid.h>
#ifdef HAVE_LIME
#define MSG std::cout << GridLogMessage
#define SEP \
"-----------------------------------------------------------------------------"
#define BIGSEP \
"============================================================================="
#ifdef HAVE_LIME
namespace Grid {

View File

@ -1,5 +1,5 @@
#include "Benchmark_IO.hpp"
#ifdef HAVE_LIME
using namespace Grid;
int main (int argc, char ** argv)
@ -97,3 +97,6 @@ int main (int argc, char ** argv)
return EXIT_SUCCESS;
}
#else
int main(int argc,char ** argv){}
#endif

View File

@ -334,8 +334,9 @@ public:
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(Coordinate({72,72,72,72}),
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
@ -343,7 +344,6 @@ public:
NN_global=NN;
uint64_t SHM=NP/NN;
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;
@ -445,7 +445,11 @@ public:
// 1344= 3*(2*8+6)*2*8 + 8*3*2*2 + 3*4*2*8
// 1344 = Nc* (6+(Nc-1)*8)*2*Nd + Nd*Nc*2*2 + Nd*Nc*Ns*2
// double flops=(1344.0*volume)/2;
#if 1
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + Nd*Nc*Ns + Nd*Nc*Ns*2;
#else
double fps = Nc* (6+(Nc-1)*8)*Ns*Nd + 2*Nd*Nc*Ns + 2*Nd*Nc*Ns*2;
#endif
double flops=(fps*volume)/2;
double mf_hi, mf_lo, mf_err;
@ -498,8 +502,9 @@ public:
int threads = GridThread::GetThreads();
Coordinate mpi = GridDefaultMpi(); assert(mpi.size()==4);
Coordinate local({L,L,L,L});
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(Coordinate({72,72,72,72}),
GridCartesian * TmpGrid = SpaceTimeGrid::makeFourDimGrid(latt4,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
uint64_t NP = TmpGrid->RankCount();
@ -507,7 +512,6 @@ public:
NN_global=NN;
uint64_t SHM=NP/NN;
Coordinate latt4({local[0]*mpi[0],local[1]*mpi[1],local[2]*mpi[2],local[3]*mpi[3]});
///////// Welcome message ////////////
std::cout<<GridLogMessage << "=================================================================================="<<std::endl;

View File

@ -94,8 +94,8 @@ int main (int argc, char ** argv)
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<Vector<HalfSpinColourVectorD> > xbuf(8);
std::vector<Vector<HalfSpinColourVectorD> > rbuf(8);
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8);
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8);
for(int mu=0;mu<8;mu++){
xbuf[mu].resize(lat*lat*lat*Ls);

View File

@ -0,0 +1,260 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_comms.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
struct time_statistics{
double mean;
double err;
double min;
double max;
void statistics(std::vector<double> v){
double sum = std::accumulate(v.begin(), v.end(), 0.0);
mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(), [=](double x) { return x - mean; });
double sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
err = std::sqrt(sq_sum / (v.size()*(v.size() - 1)));
auto result = std::minmax_element(v.begin(), v.end());
min = *result.first;
max = *result.second;
}
};
void header(){
std::cout <<GridLogMessage << " L "<<"\t"<<" Ls "<<"\t"
<<std::setw(11)<<"bytes\t\t"<<"MB/s uni (err/min/max)"<<"\t\t"<<"MB/s bidi (err/min/max)"<<std::endl;
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
Coordinate simd_layout = GridDefaultSimd(Nd,vComplexD::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
int Nloop=250;
int nmu=0;
int maxlat=32;
for(int mu=0;mu<Nd;mu++) if (mpi_layout[mu]>1) nmu++;
std::cout << GridLogMessage << "Number of iterations to average: "<< Nloop << std::endl;
std::vector<double> t_time(Nloop);
time_statistics timestat;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking sequential halo exchange from host memory "<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
header();
for(int lat=8;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=8;Ls*=2){
Coordinate latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<std::vector<HalfSpinColourVectorD> > xbuf(8);
std::vector<std::vector<HalfSpinColourVectorD> > rbuf(8);
for(int mu=0;mu<8;mu++){
xbuf[mu].resize(lat*lat*lat*Ls);
rbuf[mu].resize(lat*lat*lat*Ls);
}
uint64_t bytes=lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
int ncomm;
for(int mu=0;mu<4;mu++){
if (mpi_layout[mu]>1 ) {
double start=usecond();
for(int i=0;i<Nloop;i++){
ncomm=0;
ncomm++;
int comm_proc=1;
int xmit_to_rank;
int recv_from_rank;
{
std::vector<CommsRequest_t> requests;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFrom((void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
}
comm_proc = mpi_layout[mu]-1;
{
std::vector<CommsRequest_t> requests;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFrom((void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
}
}
Grid.Barrier();
double stop=usecond();
double mean=(stop-start)/Nloop;
double dbytes = bytes*ppn;
double xbytes = dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)<<" "
<<std::right<< xbytes/mean<<" "
<< "\t\t"<<std::setw(7)<< bidibytes/mean<< std::endl;
}
}
}
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking sequential halo exchange from GPU memory "<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
header();
for(int lat=8;lat<=maxlat;lat+=4){
for(int Ls=8;Ls<=8;Ls*=2){
Coordinate latt_size ({lat*mpi_layout[0],
lat*mpi_layout[1],
lat*mpi_layout[2],
lat*mpi_layout[3]});
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
RealD Nrank = Grid._Nprocessors;
RealD Nnode = Grid.NodeCount();
RealD ppn = Nrank/Nnode;
std::vector<HalfSpinColourVectorD *> xbuf(8);
std::vector<HalfSpinColourVectorD *> rbuf(8);
uint64_t bytes = lat*lat*lat*Ls*sizeof(HalfSpinColourVectorD);
for(int d=0;d<8;d++){
xbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
rbuf[d] = (HalfSpinColourVectorD *)acceleratorAllocDevice(bytes);
}
int ncomm;
for(int mu=0;mu<4;mu++){
if (mpi_layout[mu]>1 ) {
double start=usecond();
for(int i=0;i<Nloop;i++){
ncomm=0;
ncomm++;
int comm_proc=1;
int xmit_to_rank;
int recv_from_rank;
{
std::vector<CommsRequest_t> requests;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFrom((void *)&xbuf[mu][0],
xmit_to_rank,
(void *)&rbuf[mu][0],
recv_from_rank,
bytes);
}
comm_proc = mpi_layout[mu]-1;
{
std::vector<CommsRequest_t> requests;
Grid.ShiftedRanks(mu,comm_proc,xmit_to_rank,recv_from_rank);
Grid.SendToRecvFrom((void *)&xbuf[mu+4][0],
xmit_to_rank,
(void *)&rbuf[mu+4][0],
recv_from_rank,
bytes);
}
}
Grid.Barrier();
double stop=usecond();
double mean=(stop-start)/Nloop;
double dbytes = bytes*ppn;
double xbytes = dbytes*2.0*ncomm;
double rbytes = xbytes;
double bidibytes = xbytes+rbytes;
std::cout<<GridLogMessage << std::setw(4) << lat<<"\t"<<Ls<<"\t"
<<std::setw(11) << bytes<< std::fixed << std::setprecision(1) << std::setw(7)<<" "
<<std::right<< xbytes/mean<<" "
<< "\t\t"<<std::setw(7)<< bidibytes/mean<< std::endl;
}
}
for(int d=0;d<8;d++){
acceleratorFreeDevice(xbuf[d]);
acceleratorFreeDevice(rbuf[d]);
}
}
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= All done; Bye Bye"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
Grid_finalize();
}

View File

@ -24,7 +24,7 @@ typedef typename GparityDomainWallFermionD::FermionField GparityLatticeFermionD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
#ifdef ENABLE_GPARITY
int Ls=16;
for(int i=0;i<argc;i++)
if(std::string(argv[i]) == "-Ls"){
@ -184,7 +184,7 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "mflop/s per node = "<< flops/(t1-t0)/NN<<std::endl;
DwD.Report();
}
#endif
Grid_finalize();
}

View File

@ -7,7 +7,12 @@ AM_INIT_AUTOMAKE([subdir-objects 1.13])
AM_EXTRA_RECURSIVE_TARGETS([tests bench])
AC_CONFIG_MACRO_DIR([m4])
AC_CONFIG_SRCDIR([Grid/Grid.h])
AC_CONFIG_HEADERS([Grid/Config.h],[sed -i 's|PACKAGE_|GRID_|' Grid/Config.h])
AC_CONFIG_HEADERS([Grid/Config.h],[[$SED_INPLACE -e 's|PACKAGE_|GRID_|' -e 's|[[:space:]]PACKAGE[[:space:]]| GRID_PACKAGE |' -e 's|[[:space:]]VERSION[[:space:]]| GRID_PACKAGE_VERSION |' Grid/Config.h]],
[if test x"$host_os" == x"${host_os#darwin}" ; then]
[SED_INPLACE="sed -i"]
[else]
[SED_INPLACE="sed -i .bak"]
[fi])
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
################ Get git info
@ -123,6 +128,24 @@ case ${ac_LAPACK} in
AC_DEFINE([USE_LAPACK],[1],[use LAPACK]);;
esac
############### fermions
AC_ARG_ENABLE([fermion-reps],
[AC_HELP_STRING([--enable-fermion-reps=yes|no], [enable extra fermion representation support])],
[ac_FERMION_REPS=${enable_fermion_reps}], [ac_FERMION_REPS=yes])
AM_CONDITIONAL(BUILD_FERMION_REPS, [ test "${ac_FERMION_REPS}X" == "yesX" ])
AC_ARG_ENABLE([gparity],
[AC_HELP_STRING([--enable-gparity=yes|no], [enable G-parity support])],
[ac_GPARITY=${enable_gparity}], [ac_GPARITY=yes])
AM_CONDITIONAL(BUILD_GPARITY, [ test "${ac_GPARITY}X" == "yesX" ])
case ${ac_FERMION_REPS} in
yes) AC_DEFINE([ENABLE_FERMION_REPS],[1],[non QCD fermion reps]);;
esac
case ${ac_GPARITY} in
yes) AC_DEFINE([ENABLE_GPARITY],[1],[fermion actions with GPARITY BCs]);;
esac
############### Nc
AC_ARG_ENABLE([Nc],
[AC_HELP_STRING([--enable-Nc=2|3|4], [enable number of colours])],
@ -153,18 +176,28 @@ case ${ac_SFW_FP16} in
AC_MSG_ERROR(["SFW FP16 option not supported ${ac_SFW_FP16}"]);;
esac
############### SUMMIT JSRUN
AC_ARG_ENABLE([summit],
[AC_HELP_STRING([--enable-summit=yes|no], [enable IBMs jsrun resource manager for SUMMIT])],
[ac_SUMMIT=${enable_summit}], [ac_SUMMIT=no])
case ${ac_SUMMIT} in
no);;
############### Default to accelerator cshift, but revert to host if UCX is buggy or other reasons
AC_ARG_ENABLE([accelerator-cshift],
[AC_HELP_STRING([--enable-accelerator-cshift=yes|no], [run cshift on the device])],
[ac_ACC_CSHIFT=${enable_accelerator_cshift}], [ac_ACC_CSHIFT=yes])
AC_ARG_ENABLE([ucx-buggy],
[AC_HELP_STRING([--enable-ucx-buggy=yes|no], [enable workaround for UCX device buffer bugs])],
[ac_UCXBUGGY=${enable_ucx_buggy}], [ac_UCXBUGGY=no])
case ${ac_UCXBUGGY} in
yes)
AC_DEFINE([GRID_IBM_SUMMIT],[1],[Let JSRUN manage the GPU device allocation]);;
*)
AC_DEFINE([GRID_IBM_SUMMIT],[1],[Let JSRUN manage the GPU device allocation]);;
ac_ACC_CSHIFT=no;;
*);;
esac
case ${ac_ACC_CSHIFT} in
yes)
AC_DEFINE([ACCELERATOR_CSHIFT],[1],[ UCX device buffer bugs are not present]);;
*);;
esac
############### SYCL/CUDA/HIP/none
AC_ARG_ENABLE([accelerator],
[AC_HELP_STRING([--enable-accelerator=cuda|sycl|hip|none], [enable none,cuda,sycl,hip acceleration])],
@ -181,8 +214,9 @@ case ${ac_ACCELERATOR} in
echo HIP acceleration
AC_DEFINE([GRID_HIP],[1],[Use HIP offload]);;
none)
echo NO acceleration
;;
echo NO acceleration ;;
no)
echo NO acceleration ;;
*)
AC_MSG_ERROR(["Acceleration not suppoorted ${ac_ACCELERATOR}"]);;
esac
@ -477,28 +511,48 @@ esac
AM_CXXFLAGS="$SIMD_FLAGS $AM_CXXFLAGS"
AM_CFLAGS="$SIMD_FLAGS $AM_CFLAGS"
############### Precision selection - deprecate
#AC_ARG_ENABLE([precision],
# [AC_HELP_STRING([--enable-precision=single|double],
# [Select default word size of Real])],
# [ac_PRECISION=${enable_precision}],[ac_PRECISION=double])
###### PRECISION ALWAYS DOUBLE
AC_DEFINE([GRID_DEFAULT_PRECISION_DOUBLE],[1],[GRID_DEFAULT_PRECISION is DOUBLE] )
#case ${ac_PRECISION} in
# single)
# AC_DEFINE([GRID_DEFAULT_PRECISION_SINGLE],[1],[GRID_DEFAULT_PRECISION is SINGLE] )
# ;;
# double)
# ;;
# *)
# AC_MSG_ERROR([${ac_PRECISION} unsupported --enable-precision option]);
# ;;
#esac
#########################################################
###################### GRID ALLOCATOR ALIGNMENT ##
#########################################################
AC_ARG_ENABLE([alloc-align],[AC_HELP_STRING([--enable-alloc-align=2MB|4k],
[Alignment in bytes of GRID Allocator ])],[ac_ALLOC_ALIGN=${enable_alloc_align}],[ac_ALLOC_ALIGN=2MB])
case ${ac_ALLOC_ALIGN} in
4k)
AC_DEFINE([GRID_ALLOC_ALIGN],[(4096)],[GRID_ALLOC_ALIGN]);;
2MB)
AC_DEFINE([GRID_ALLOC_ALIGN],[(2*1024*1024)],[GRID_ALLOC_ALIGN]);;
*);;
esac
###################### Shared memory allocation technique under MPI3
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmopen|shmget|hugetlbfs|shmnone],
[Select SHM allocation technique])],[ac_SHM=${enable_shm}],[ac_SHM=shmopen])
AC_ARG_ENABLE([alloc-cache],[AC_HELP_STRING([--enable-alloc-cache ],
[Cache a pool of recent "frees" to reuse])],[ac_ALLOC_CACHE=${enable_alloc_cache}],[ac_ALLOC_CACHE=yes])
case ${ac_ALLOC_CACHE} in
yes)
AC_DEFINE([ALLOCATION_CACHE],[1],[ALLOCATION_CACHE]);;
*);;
esac
#########################################################
###################### set GPU device to rank in node ##
#########################################################
AC_ARG_ENABLE([setdevice],[AC_HELP_STRING([--enable-setdevice | --disable-setdevice],
[Set GPU to rank in node with cudaSetDevice or similar])],[ac_SETDEVICE=${enable_SETDEVICE}],[ac_SETDEVICE=no])
case ${ac_SETDEVICE} in
yes);;
no)
AC_DEFINE([GRID_DEFAULT_GPU],[1],[GRID_DEFAULT_GPU] )
;;
esac
#########################################################
###################### Shared memory intranode #########
#########################################################
AC_ARG_ENABLE([shm],[AC_HELP_STRING([--enable-shm=shmopen|shmget|hugetlbfs|shmnone|nvlink|no],
[Select SHM allocation technique])],[ac_SHM=${enable_shm}],[ac_SHM=no])
case ${ac_SHM} in
@ -517,10 +571,14 @@ case ${ac_SHM} in
AC_DEFINE([GRID_MPI3_SHMGET],[1],[GRID_MPI3_SHMGET] )
;;
shmnone)
shmnone | no)
AC_DEFINE([GRID_MPI3_SHM_NONE],[1],[GRID_MPI3_SHM_NONE] )
;;
nvlink)
AC_DEFINE([GRID_MPI3_SHM_NVLINK],[1],[GRID_MPI3_SHM_NVLINK] )
;;
hugetlbfs)
AC_DEFINE([GRID_MPI3_SHMMMAP],[1],[GRID_MPI3_SHMMMAP] )
;;
@ -537,10 +595,32 @@ AC_ARG_ENABLE([shmpath],[AC_HELP_STRING([--enable-shmpath=path],
[ac_SHMPATH=/var/lib/hugetlbfs/global/pagesize-2MB/])
AC_DEFINE_UNQUOTED([GRID_SHM_PATH],["$ac_SHMPATH"],[Path to a hugetlbfs filesystem for MMAPing])
############### force MPI in SMP
AC_ARG_ENABLE([shm-force-mpi],[AC_HELP_STRING([--enable-shm-force-mpi],
[Force MPI within shared memory])],[ac_SHM_FORCE_MPI=${enable_shm_force_mpi}],[ac_SHM_FORCE_MPI=no])
case ${ac_SHM_FORCE_MPI} in
yes)
AC_DEFINE([GRID_SHM_FORCE_MPI],[1],[GRID_SHM_FORCE_MPI] )
;;
*) ;;
esac
############### communication type selection
AC_ARG_ENABLE([comms-threads],[AC_HELP_STRING([--enable-comms-threads | --disable-comms-threads],
[Use multiple threads in MPI calls])],[ac_COMMS_THREADS=${enable_comms_threads}],[ac_COMMS_THREADS=yes])
case ${ac_COMMS_THREADS} in
yes)
AC_DEFINE([GRID_COMMS_THREADING],[1],[GRID_COMMS_NONE] )
;;
*) ;;
esac
############### communication type selection
AC_ARG_ENABLE([comms],[AC_HELP_STRING([--enable-comms=none|mpi|mpi-auto],
[Select communications])],[ac_COMMS=${enable_comms}],[ac_COMMS=none])
case ${ac_COMMS} in
none)
AC_DEFINE([GRID_COMMS_NONE],[1],[GRID_COMMS_NONE] )

View File

@ -6,13 +6,27 @@ home=`pwd`
cd $home/Grid
HFILES=`find . -type f -name '*.h' -not -name '*Hdf5*' -not -path '*/gamma-gen/*' -not -path '*/Old/*' -not -path '*/Eigen/*'`
HFILES="$HFILES"
CCFILES=`find . -name '*.cc' -not -path '*/gamma-gen/*' -not -name '*Communicator*.cc' -not -name '*SharedMemory*.cc' -not -name '*Hdf5*'`
CCFILES=`find . -name '*.cc' -not -path '*/instantiation/*/*' -not -path '*/gamma-gen/*' -not -name '*Communicator*.cc' -not -name '*SharedMemory*.cc' -not -name '*Hdf5*'`
ZWILS_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/ZWilsonImpl*' `
WILS_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonImpl*' `
STAG_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/Staggered*' `
GP_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/Gparity*' `
ADJ_FERMION_FILES=` find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonAdj*' `
TWOIND_FERMION_FILES=`find . -name '*.cc' -path '*/instantiation/*' -path '*/instantiation/WilsonTwoIndex*'`
HPPFILES=`find . -type f -name '*.hpp'`
echo HFILES=$HFILES $HPPFILES > Make.inc
echo >> Make.inc
echo CCFILES=$CCFILES >> Make.inc
echo ZWILS_FERMION_FILES=$ZWILS_FERMION_FILES >> Make.inc
echo WILS_FERMION_FILES=$WILS_FERMION_FILES >> Make.inc
echo STAG_FERMION_FILES=$STAG_FERMION_FILES >> Make.inc
echo GP_FERMION_FILES=$GP_FERMION_FILES >> Make.inc
echo ADJ_FERMION_FILES=$ADJ_FERMION_FILES >> Make.inc
echo TWOIND_FERMION_FILES=$TWOIND_FERMION_FILES >> Make.inc
# tests Make.inc
cd $home/tests
@ -26,11 +40,10 @@ for subdir in $dirs; do
echo "tests-local: ${TESTLIST} " > Make.inc
echo ${PREF}_PROGRAMS = ${TESTLIST} >> Make.inc
echo >> Make.inc
HADLINK=`[ $subdir = './hadrons' ] && echo '-lHadrons '`
for f in $TESTS; do
BNAME=`basename $f .cc`
echo ${BNAME}_SOURCES=$f >> Make.inc
echo ${BNAME}_LDADD=${HADLINK}-lGrid >> Make.inc
echo ${BNAME}_LDADD='$(top_builddir)/Grid/libGrid.a' >> Make.inc
echo >> Make.inc
done
if [ $subdir != '.' ]; then
@ -49,7 +62,7 @@ echo >> Make.inc
for f in $TESTS; do
BNAME=`basename $f .cc`
echo ${BNAME}_SOURCES=$f >> Make.inc
echo ${BNAME}_LDADD=-lGrid>> Make.inc
echo ${BNAME}_LDADD='$(top_builddir)/Grid/libGrid.a' >> Make.inc
echo >> Make.inc
done
cd ..
@ -65,7 +78,7 @@ echo >> Make.inc
for f in $TESTS; do
BNAME=`basename $f .cc`
echo ${BNAME}_SOURCES=$f >> Make.inc
echo ${BNAME}_LDADD=-lGrid>> Make.inc
echo ${BNAME}_LDADD='$(top_builddir)/Grid/libGrid.a'>> Make.inc
echo >> Make.inc
done
cd ..

View File

@ -231,6 +231,20 @@ int main(int argc, char **argv) {
scalar = localInnerProduct(cVec, cVec);
scalar = localNorm2(cVec);
std::cout << "Testing maxLocalNorm2" <<std::endl;
LatticeComplex rand_scalar(&Fine);
random(FineRNG, rand_scalar); //uniform [0,1]
for(Integer gsite=0;gsite<Fine.gSites();gsite++){ //check on every site independently
scalar = rand_scalar;
TComplex big(10.0);
Coordinate coor;
Fine.GlobalIndexToGlobalCoor(gsite,coor);
pokeSite(big,scalar,coor);
RealD Linfty = maxLocalNorm2(scalar);
assert(Linfty == 100.0);
}
// -=,+=,*=,()
// add,+,sub,-,mult,mac,*
// adj,conjugate
@ -549,7 +563,8 @@ int main(int argc, char **argv) {
std::vector<int> shiftcoor = coor;
shiftcoor[dir] = (shiftcoor[dir] + shift + latt_size[dir]) %
(latt_size[dir] / mpi_layout[dir]);
(latt_size[dir]);
// (latt_size[dir] / mpi_layout[dir]);
std::vector<int> rl(4);
for (int dd = 0; dd < 4; dd++) {

View File

@ -0,0 +1,145 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_quenched_update.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt({8,8,8,8});
GridCartesian * grid = SpaceTimeGrid::makeFourDimGrid(latt,
GridDefaultSimd(Nd,vComplexD::Nsimd()),
GridDefaultMpi());
GridCartesian * gridF = SpaceTimeGrid::makeFourDimGrid(latt,
GridDefaultSimd(Nd,vComplexF::Nsimd()),
GridDefaultMpi());
///////////////////////////////
// Configuration of known size
///////////////////////////////
LatticeColourMatrixD ident(grid);
LatticeColourMatrixD U(grid);
LatticeColourMatrixD UU(grid);
LatticeColourMatrixD tmp(grid);
LatticeColourMatrixD org(grid);
LatticeColourMatrixF UF(gridF);
LatticeGaugeField Umu(grid);
ident =1.0;
// RNG set up for test
std::vector<int> pseeds({1,2,3,4,5}); // once I caught a fish alive
std::vector<int> sseeds({6,7,8,9,10});// then i let it go again
GridParallelRNG pRNG(grid); pRNG.SeedFixedIntegers(pseeds);
GridSerialRNG sRNG; sRNG.SeedFixedIntegers(sseeds);
SU<Nc>::HotConfiguration(pRNG,Umu);
U = PeekIndex<LorentzIndex>(Umu,0);
org=U;
tmp= U*adj(U) - ident ;
RealD Def1 = norm2( tmp );
std::cout << " Defect1 "<<Def1<<std::endl;
tmp = U - org;
std::cout << "Diff1 "<<norm2(tmp)<<std::endl;
precisionChange(UF,U);
precisionChange(U,UF);
tmp= U*adj(U) - ident ;
RealD Def2 = norm2( tmp );
std::cout << " Defect2 "<<Def2<<std::endl;
tmp = U - org;
std::cout << "Diff2 "<<norm2(tmp)<<std::endl;
U = ProjectOnGroup(U);
tmp= U*adj(U) - ident ;
RealD Def3 = norm2( tmp);
std::cout << " Defect3 "<<Def3<<std::endl;
tmp = U - org;
std::cout << "Diff3 "<<norm2(tmp)<<std::endl;
LatticeComplexD detU(grid);
LatticeComplexD detUU(grid);
detU= Determinant(U) ;
detU=detU-1.0;
std::cout << "Determinant defect before screw up " << norm2(detU)<<std::endl;
std::cout << " Screwing up determinant " << std::endl;
RealD theta = 0.2;
ComplexD phase(cos(theta),sin(theta));
for(int i=0;i<Nc;i++){
auto element = PeekIndex<ColourIndex>(U,Nc-1,i);
element = element * phase;
PokeIndex<ColourIndex>(U,element,Nc-1,i);
}
U=U*0.1;
UU=U;
detU= Determinant(U) ;
detU=detU-1.0;
std::cout << "Determinant defect before projection " <<norm2(detU)<<std::endl;
tmp = U*adj(U) - ident;
std::cout << "Unitarity check before projection " << norm2(tmp)<<std::endl;
ProjectSU3(U);
detU= Determinant(U) ;
detU= detU -1.0;
std::cout << "Determinant ProjectSU3 defect " <<norm2(detU)<<std::endl;
tmp = U*adj(U) - ident;
std::cout << "Unitarity check after projection " << norm2(tmp)<<std::endl;
ProjectSUn(UU);
detUU= Determinant(UU);
detUU= detUU -1.0;
std::cout << "Determinant ProjectSUn defect " <<norm2(detUU)<<std::endl;
tmp = UU*adj(UU) - ident;
std::cout << "Unitarity check after projection " << norm2(tmp)<<std::endl;
Grid_finalize();
}

View File

@ -108,8 +108,18 @@ int main (int argc, char ** argv)
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
LatticeGaugeField Umu(UGrid);
SU<Nc>::ColdConfiguration(Umu);
// SU<Nc>::HotConfiguration(RNG4,Umu);
if( argc > 1 && argv[1][0] != '-' )
{
std::cout<<GridLogMessage <<"Loading configuration from "<<argv[1]<<std::endl;
FieldMetaData header;
NerscIO::readConfiguration(Umu, header, argv[1]);
}
else
{
std::cout<<GridLogMessage <<"Using cold configuration"<<std::endl;
//SU<Nc>::ColdConfiguration(Umu);
SU<Nc>::HotConfiguration(RNG4,Umu);
}
RealD mass=0.3;
RealD M5 =1.0;

View File

@ -81,6 +81,10 @@ int main(int argc, char **argv) {
// that have a complex construction
// standard
RealD beta = 5.6 ;
const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
ConjugateGimplD::setDirections(twists);
ConjugateWilsonGaugeActionR Waction(beta);
const int Ls = 8;
@ -93,9 +97,6 @@ int main(int argc, char **argv) {
// temporarily need a gauge field
LatticeGaugeField U(GridPtr);
const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
FermionAction::ImplParams params;
params.twists = twists;
Real mass=0.04;

View File

@ -79,6 +79,10 @@ int main(int argc, char **argv) {
// that have a complex construction
// standard
RealD beta = 2.6 ;
const int nu = 3;
std::vector<int> twists(Nd,0);
twists[nu] = 1;
ConjugateGimplD::setDirections(twists);
ConjugateIwasakiGaugeActionR Waction(beta);

View File

@ -80,6 +80,9 @@ int main(int argc, char **argv) {
// that have a complex construction
// standard
RealD beta = 5.6 ;
std::vector<int> twists(Nd,0);
twists[3] = 1;
ConjugateGimplD::setDirections(twists);
ConjugateWilsonGaugeActionR Waction(beta);

View File

@ -0,0 +1,475 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_coarse_even_odd.cc
Copyright (C) 2015-2020
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace Grid;
#ifndef NBASIS
#define NBASIS 40
#endif
// NOTE: The tests in this file are written in analogy to
// - tests/core/Test_wilson_even_odd.cc
// - tests/core/Test_wilson_clover.cc
std::vector<int> readFromCommandlineIvec(int* argc,
char*** argv,
std::string&& option,
const std::vector<int>& defaultValue) {
std::string arg;
std::vector<int> ret(defaultValue);
if(GridCmdOptionExists(*argv, *argv + *argc, option)) {
arg = GridCmdOptionPayload(*argv, *argv + *argc, option);
GridCmdOptionIntVector(arg, ret);
}
return ret;
}
int main(int argc, char** argv) {
Grid_init(&argc, &argv);
/////////////////////////////////////////////////////////////////////////////
// Read from command line //
/////////////////////////////////////////////////////////////////////////////
const int nbasis = NBASIS; static_assert((nbasis & 0x1) == 0, "");
const int nb = nbasis/2;
Coordinate blockSize = readFromCommandlineIvec(&argc, &argv, "--blocksize", {2, 2, 2, 2});
std::cout << GridLogMessage << "Compiled with nbasis = " << nbasis << " -> nb = " << nb << std::endl;
/////////////////////////////////////////////////////////////////////////////
// General setup //
/////////////////////////////////////////////////////////////////////////////
Coordinate clatt = GridDefaultLatt();
for(int d=0; d<clatt.size(); d++) clatt[d] = clatt[d] / blockSize[d];
GridCartesian* Grid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridCartesian* Grid_c = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd, vComplex::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian* RBGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(Grid_f);
GridRedBlackCartesian* RBGrid_c = SpaceTimeGrid::makeFourDimRedBlackGrid(Grid_c);
std::cout << GridLogMessage << "Grid_f:" << std::endl; Grid_f->show_decomposition();
std::cout << GridLogMessage << "Grid_c:" << std::endl; Grid_c->show_decomposition();
std::cout << GridLogMessage << "RBGrid_f:" << std::endl; RBGrid_f->show_decomposition();
std::cout << GridLogMessage << "RBGrid_c:" << std::endl; RBGrid_c->show_decomposition();
GridParallelRNG pRNG_f(Grid_f);
GridParallelRNG pRNG_c(Grid_c);
std::vector<int> seeds({1, 2, 3, 4});
pRNG_f.SeedFixedIntegers(seeds);
pRNG_c.SeedFixedIntegers(seeds);
/////////////////////////////////////////////////////////////////////////////
// Setup of Dirac Matrix and Operator //
/////////////////////////////////////////////////////////////////////////////
LatticeGaugeField Umu(Grid_f); SU3::HotConfiguration(pRNG_f, Umu);
RealD checkTolerance = (getPrecision<LatticeFermion>::value == 1) ? 1e-7 : 1e-15;
RealD mass = -0.30;
RealD csw = 1.9192;
WilsonCloverFermionR Dwc(Umu, *Grid_f, *RBGrid_f, mass, csw, csw);
MdagMLinearOperator<WilsonCloverFermionR, LatticeFermion> MdagMOp_Dwc(Dwc);
/////////////////////////////////////////////////////////////////////////////
// Type definitions //
/////////////////////////////////////////////////////////////////////////////
typedef Aggregation<vSpinColourVector, vTComplex, nbasis> Aggregates;
typedef CoarsenedMatrix<vSpinColourVector, vTComplex, nbasis> CoarseDiracMatrix;
typedef CoarseDiracMatrix::CoarseVector CoarseVector;
/////////////////////////////////////////////////////////////////////////////
// Setup of Aggregation //
/////////////////////////////////////////////////////////////////////////////
Aggregates Aggs(Grid_c, Grid_f, 0);
{
LatticeFermion tmp(Aggs.subspace[0].Grid());
for(int n = 0; n < nb; n++) {
gaussian(pRNG_f, Aggs.subspace[n]);
G5C(tmp, Aggs.subspace[n]);
axpby(Aggs.subspace[n + nb], 0.5, -0.5, Aggs.subspace[n], tmp);
axpby(Aggs.subspace[n], 0.5, 0.5, Aggs.subspace[n], tmp);
}
}
/////////////////////////////////////////////////////////////////////////////
// Setup of CoarsenedMatrix and Operator //
/////////////////////////////////////////////////////////////////////////////
const int hermitian = 0;
CoarseDiracMatrix Dc(*Grid_c, *RBGrid_c, hermitian);
Dc.CoarsenOperator(Grid_f, MdagMOp_Dwc, Aggs);
MdagMLinearOperator<CoarseDiracMatrix, CoarseVector> MdagMOp_Dc(Dc);
/////////////////////////////////////////////////////////////////////////////
// Setup vectors used in all tests //
/////////////////////////////////////////////////////////////////////////////
CoarseVector src(Grid_c); random(pRNG_c, src);
CoarseVector diff(Grid_c); diff = Zero();
/////////////////////////////////////////////////////////////////////////////
// Start of tests //
/////////////////////////////////////////////////////////////////////////////
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test Dhop + Mdiag = Munprec" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector phi(Grid_c); phi = Zero();
CoarseVector chi(Grid_c); chi = Zero();
CoarseVector res(Grid_c); res = Zero();
CoarseVector ref(Grid_c); ref = Zero();
Dc.Mdiag(src, phi); std::cout << GridLogMessage << "Applied Mdiag" << std::endl;
Dc.Dhop(src, chi, DaggerNo); std::cout << GridLogMessage << "Applied Dhop" << std::endl;
Dc.M(src, ref); std::cout << GridLogMessage << "Applied M" << std::endl;
res = phi + chi;
diff = ref - res;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(ref);
std::cout << GridLogMessage << "norm2(Munprec), norm2(Dhop + Mdiag), abs. deviation, rel. deviation: "
<< norm2(ref) << " " << norm2(res) << " " << absDev << " " << relDev << " -> check "
<< ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test Meo + Moe = Dhop" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector src_e(RBGrid_c); src_e = Zero();
CoarseVector src_o(RBGrid_c); src_o = Zero();
CoarseVector res_e(RBGrid_c); res_e = Zero();
CoarseVector res_o(RBGrid_c); res_o = Zero();
CoarseVector res(Grid_c); res = Zero();
CoarseVector ref(Grid_c); ref = Zero();
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
Dc.Meooe(src_e, res_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
Dc.Meooe(src_o, res_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dc.Dhop(src, ref, DaggerNo); std::cout << GridLogMessage << "Applied Dhop" << std::endl;
setCheckerboard(res, res_o);
setCheckerboard(res, res_e);
diff = ref - res;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(ref);
std::cout << GridLogMessage << "norm2(Dhop), norm2(Meo + Moe), abs. deviation, rel. deviation: "
<< norm2(ref) << " " << norm2(res) << " " << absDev << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test |(Im(v^dag M^dag M v)| = 0" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector tmp(Grid_c); tmp = Zero();
CoarseVector phi(Grid_c); phi = Zero();
Dc.M(src, tmp); std::cout << GridLogMessage << "Applied M" << std::endl;
Dc.Mdag(tmp, phi); std::cout << GridLogMessage << "Applied Mdag" << std::endl;
std::cout << GridLogMessage << "src = " << norm2(src) << " tmp = " << norm2(tmp) << " phi = " << norm2(phi) << std::endl;
ComplexD dot = innerProduct(src, phi);
auto relDev = abs(imag(dot)) / abs(real(dot));
std::cout << GridLogMessage << "Re(v^dag M^dag M v), Im(v^dag M^dag M v), rel.deviation: "
<< real(dot) << " " << imag(dot) << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test |(Im(v^dag Mooee^dag Mooee v)| = 0 (full grid)" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector tmp(Grid_c); tmp = Zero();
CoarseVector phi(Grid_c); phi = Zero();
Dc.Mooee(src, tmp); std::cout << GridLogMessage << "Applied Mooee" << std::endl;
Dc.MooeeDag(tmp, phi); std::cout << GridLogMessage << "Applied MooeeDag" << std::endl;
ComplexD dot = innerProduct(src, phi);
auto relDev = abs(imag(dot)) / abs(real(dot));
std::cout << GridLogMessage << "Re(v^dag Mooee^dag Mooee v), Im(v^dag Mooee^dag Mooee v), rel.deviation: "
<< real(dot) << " " << imag(dot) << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test MooeeInv Mooee = 1 (full grid)" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector tmp(Grid_c); tmp = Zero();
CoarseVector phi(Grid_c); phi = Zero();
Dc.Mooee(src, tmp); std::cout << GridLogMessage << "Applied Mooee" << std::endl;
Dc.MooeeInv(tmp, phi); std::cout << GridLogMessage << "Applied MooeeInv" << std::endl;
diff = src - phi;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(src);
std::cout << GridLogMessage << "norm2(src), norm2(MooeeInv Mooee src), abs. deviation, rel. deviation: "
<< norm2(src) << " " << norm2(phi) << " " << absDev << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test MeooeDagger is the dagger of Meooe by requiring" << std::endl;
std::cout << GridLogMessage << "= < phi | Meooe | chi > * = < chi | Meooe^dag| phi>" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
// clang-format off
CoarseVector phi(Grid_c); random(pRNG_c, phi);
CoarseVector chi(Grid_c); random(pRNG_c, chi);
CoarseVector chi_e(RBGrid_c); chi_e = Zero();
CoarseVector chi_o(RBGrid_c); chi_o = Zero();
CoarseVector dchi_e(RBGrid_c); dchi_e = Zero();
CoarseVector dchi_o(RBGrid_c); dchi_o = Zero();
CoarseVector phi_e(RBGrid_c); phi_e = Zero();
CoarseVector phi_o(RBGrid_c); phi_o = Zero();
CoarseVector dphi_e(RBGrid_c); dphi_e = Zero();
CoarseVector dphi_o(RBGrid_c); dphi_o = Zero();
// clang-format on
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
Dc.Meooe(chi_e, dchi_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
Dc.Meooe(chi_o, dchi_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dc.MeooeDag(phi_e, dphi_o); std::cout << GridLogMessage << "Applied MeoDag" << std::endl;
Dc.MeooeDag(phi_o, dphi_e); std::cout << GridLogMessage << "Applied MoeDag" << std::endl;
ComplexD phiDchi_e = innerProduct(phi_e, dchi_e);
ComplexD phiDchi_o = innerProduct(phi_o, dchi_o);
ComplexD chiDphi_e = innerProduct(chi_e, dphi_e);
ComplexD chiDphi_o = innerProduct(chi_o, dphi_o);
std::cout << GridLogDebug << "norm dchi_e = " << norm2(dchi_e) << " norm dchi_o = " << norm2(dchi_o) << " norm dphi_e = " << norm2(dphi_e)
<< " norm dphi_o = " << norm2(dphi_e) << std::endl;
std::cout << GridLogMessage << "e " << phiDchi_e << " " << chiDphi_e << std::endl;
std::cout << GridLogMessage << "o " << phiDchi_o << " " << chiDphi_o << std::endl;
std::cout << GridLogMessage << "phiDchi_e - conj(chiDphi_o) " << phiDchi_e - conj(chiDphi_o) << std::endl;
std::cout << GridLogMessage << "phiDchi_o - conj(chiDphi_e) " << phiDchi_o - conj(chiDphi_e) << std::endl;
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test MooeeInv Mooee = 1 (checkerboards separately)" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector chi(Grid_c); random(pRNG_c, chi);
CoarseVector tmp(Grid_c); tmp = Zero();
CoarseVector phi(Grid_c); phi = Zero();
CoarseVector chi_e(RBGrid_c); chi_e = Zero();
CoarseVector chi_o(RBGrid_c); chi_o = Zero();
CoarseVector phi_e(RBGrid_c); phi_e = Zero();
CoarseVector phi_o(RBGrid_c); phi_o = Zero();
CoarseVector tmp_e(RBGrid_c); tmp_e = Zero();
CoarseVector tmp_o(RBGrid_c); tmp_o = Zero();
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, tmp_e, tmp);
pickCheckerboard(Odd, tmp_o, tmp);
Dc.Mooee(chi_e, tmp_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
Dc.MooeeInv(tmp_e, phi_e); std::cout << GridLogMessage << "Applied MeeInv" << std::endl;
Dc.Mooee(chi_o, tmp_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
Dc.MooeeInv(tmp_o, phi_o); std::cout << GridLogMessage << "Applied MooInv" << std::endl;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
diff = chi - phi;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(chi);
std::cout << GridLogMessage << "norm2(chi), norm2(MeeInv Mee chi), abs. deviation, rel. deviation: "
<< norm2(chi) << " " << norm2(phi) << " " << absDev << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test MooeeDag MooeeInvDag = 1 (checkerboards separately)" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector chi(Grid_c); random(pRNG_c, chi);
CoarseVector tmp(Grid_c); tmp = Zero();
CoarseVector phi(Grid_c); phi = Zero();
CoarseVector chi_e(RBGrid_c); chi_e = Zero();
CoarseVector chi_o(RBGrid_c); chi_o = Zero();
CoarseVector phi_e(RBGrid_c); phi_e = Zero();
CoarseVector phi_o(RBGrid_c); phi_o = Zero();
CoarseVector tmp_e(RBGrid_c); tmp_e = Zero();
CoarseVector tmp_o(RBGrid_c); tmp_o = Zero();
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, tmp_e, tmp);
pickCheckerboard(Odd, tmp_o, tmp);
Dc.MooeeDag(chi_e, tmp_e); std::cout << GridLogMessage << "Applied MeeDag" << std::endl;
Dc.MooeeInvDag(tmp_e, phi_e); std::cout << GridLogMessage << "Applied MeeInvDag" << std::endl;
Dc.MooeeDag(chi_o, tmp_o); std::cout << GridLogMessage << "Applied MooDag" << std::endl;
Dc.MooeeInvDag(tmp_o, phi_o); std::cout << GridLogMessage << "Applied MooInvDag" << std::endl;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
diff = chi - phi;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(chi);
std::cout << GridLogMessage << "norm2(chi), norm2(MeeDag MeeInvDag chi), abs. deviation, rel. deviation: "
<< norm2(chi) << " " << norm2(phi) << " " << absDev << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test Meo + Moe + Moo + Mee = Munprec" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector chi(Grid_c); chi = Zero();
CoarseVector phi(Grid_c); phi = Zero();
CoarseVector ref(Grid_c); ref = Zero();
CoarseVector src_e(RBGrid_c); src_e = Zero();
CoarseVector src_o(RBGrid_c); src_o = Zero();
CoarseVector phi_e(RBGrid_c); phi_e = Zero();
CoarseVector phi_o(RBGrid_c); phi_o = Zero();
CoarseVector chi_e(RBGrid_c); chi_e = Zero();
CoarseVector chi_o(RBGrid_c); chi_o = Zero();
pickCheckerboard(Even, src_e, src);
pickCheckerboard(Odd, src_o, src);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
// M phi = (Mooee src_e + Meooe src_o , Mooee src_o + Meooe src_e)
Dc.M(src, ref); // Reference result from the unpreconditioned operator
// EO matrix
Dc.Mooee(src_e, chi_e); std::cout << GridLogMessage << "Applied Mee" << std::endl;
Dc.Mooee(src_o, chi_o); std::cout << GridLogMessage << "Applied Moo" << std::endl;
Dc.Meooe(src_o, phi_e); std::cout << GridLogMessage << "Applied Moe" << std::endl;
Dc.Meooe(src_e, phi_o); std::cout << GridLogMessage << "Applied Meo" << std::endl;
phi_o += chi_o;
phi_e += chi_e;
setCheckerboard(phi, phi_e);
setCheckerboard(phi, phi_o);
std::cout << GridLogDebug << "norm phi_e = " << norm2(phi_e) << " norm phi_o = " << norm2(phi_o) << " norm phi = " << norm2(phi) << std::endl;
diff = ref - phi;
auto absDev = norm2(diff);
auto relDev = absDev / norm2(ref);
std::cout << GridLogMessage << "norm2(Dunprec), norm2(Deoprec), abs. deviation, rel. deviation: "
<< norm2(ref) << " " << norm2(phi) << " " << absDev << " " << relDev
<< " -> check " << ((relDev < checkTolerance) ? "passed" : "failed") << std::endl;
assert(relDev <= checkTolerance);
}
{
std::cout << GridLogMessage << "===========================================================================" << std::endl;
std::cout << GridLogMessage << "= Test MpcDagMpc is hermitian" << std::endl;
std::cout << GridLogMessage << "===========================================================================" << std::endl;
CoarseVector phi(Grid_c); random(pRNG_c, phi);
CoarseVector chi(Grid_c); random(pRNG_c, chi);
CoarseVector chi_e(RBGrid_c); chi_e = Zero();
CoarseVector chi_o(RBGrid_c); chi_o = Zero();
CoarseVector dchi_e(RBGrid_c); dchi_e = Zero();
CoarseVector dchi_o(RBGrid_c); dchi_o = Zero();
CoarseVector phi_e(RBGrid_c); phi_e = Zero();
CoarseVector phi_o(RBGrid_c); phi_o = Zero();
CoarseVector dphi_e(RBGrid_c); dphi_e = Zero();
CoarseVector dphi_o(RBGrid_c); dphi_o = Zero();
pickCheckerboard(Even, chi_e, chi);
pickCheckerboard(Odd, chi_o, chi);
pickCheckerboard(Even, phi_e, phi);
pickCheckerboard(Odd, phi_o, phi);
SchurDiagMooeeOperator<CoarseDiracMatrix,CoarseVector> HermOpEO(Dc);
HermOpEO.MpcDagMpc(chi_e, dchi_e); std::cout << GridLogMessage << "Applied MpcDagMpc to chi_e" << std::endl;
HermOpEO.MpcDagMpc(chi_o, dchi_o); std::cout << GridLogMessage << "Applied MpcDagMpc to chi_o" << std::endl;
HermOpEO.MpcDagMpc(phi_e, dphi_e); std::cout << GridLogMessage << "Applied MpcDagMpc to phi_e" << std::endl;
HermOpEO.MpcDagMpc(phi_o, dphi_o); std::cout << GridLogMessage << "Applied MpcDagMpc to phi_o" << std::endl;
ComplexD phiDchi_e = innerProduct(phi_e, dchi_e);
ComplexD phiDchi_o = innerProduct(phi_o, dchi_o);
ComplexD chiDphi_e = innerProduct(chi_e, dphi_e);
ComplexD chiDphi_o = innerProduct(chi_o, dphi_o);
std::cout << GridLogMessage << "e " << phiDchi_e << " " << chiDphi_e << std::endl;
std::cout << GridLogMessage << "o " << phiDchi_o << " " << chiDphi_o << std::endl;
std::cout << GridLogMessage << "phiDchi_e - conj(chiDphi_e) " << phiDchi_e - conj(chiDphi_e) << std::endl;
std::cout << GridLogMessage << "phiDchi_o - conj(chiDphi_o) " << phiDchi_o - conj(chiDphi_o) << std::endl;
}
Grid_finalize();
}

View File

@ -222,9 +222,16 @@ int main (int argc, char ** argv)
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
GridRedBlackCartesian *CoarseCoarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseCoarse4d);
GridRedBlackCartesian *CoarseCoarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
@ -282,8 +289,7 @@ int main (int argc, char ** argv)
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
Level1Op LDOp(*Coarse5d,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
//////////////////////////////////////////////////
// Deflate the course space. Recursive multigrid?
@ -311,12 +317,11 @@ int main (int argc, char ** argv)
}
}
Level2Op L2Op(*CoarseCoarse5d,1); // Hermitian matrix
Level2Op L2Op(*CoarseCoarse5d,*CoarseCoarse5dRB,1); // Hermitian matrix
typedef Level2Op::CoarseVector CoarseCoarseVector;
HermitianLinearOperator<Level1Op,CoarseVector> L1LinOp(LDOp);
L2Op.CoarsenOperator(Coarse5d,L1LinOp,CoarseAggregates);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running CoarseCoarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;

View File

@ -0,0 +1,397 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
using namespace std;
using namespace Grid;
/* Params
* Grid:
* block1(4)
* block2(4)
*
* Subspace
* * Fine : Subspace(nbasis,hi,lo,order,first,step) -- 32, 60,0.02,500,100,100
* * Coarse: Subspace(nbasis,hi,lo,order,first,step) -- 32, 18,0.02,500,100,100
* Smoother:
* * Fine: Cheby(hi, lo, order) -- 60,0.5,10
* * Coarse: Cheby(hi, lo, order) -- 12,0.1,4
* Lanczos:
* CoarseCoarse IRL( Nk, Nm, Nstop, poly(lo,hi,order)) 24,36,24,0.002,4.0,61
*/
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field> class SolverWrapper : public LinearFunction<Field> {
private:
CheckerBoardedSparseMatrixBase<Field> & _Matrix;
SchurRedBlackBase<Field> & _Solver;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
SolverWrapper(CheckerBoardedSparseMatrixBase<Field> &Matrix,
SchurRedBlackBase<Field> &Solver)
: _Matrix(Matrix), _Solver(Solver) {};
void operator() (const Field &in, Field &out){
_Solver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
_SmootherOperator(SmootherOperator),
_SmootherMatrix(SmootherMatrix),
Cheby(_lo,_hi,_ord,InverseApproximation)
{};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
_SmootherOperator.AdjOp(in,tmp);
Cheby(MdagMOp,tmp,out);
}
};
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & SmootherMatrix;
FineOperator & SmootherOperator;
RealD tol;
RealD shift;
int maxit;
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
shift(_shift),tol(_tol),maxit(_maxit),
SmootherOperator(_SmootherOperator),
SmootherMatrix(_SmootherMatrix)
{};
void operator() (const Field &in, Field &out)
{
ZeroGuesser<Field> Guess;
ConjugateGradient<Field> CG(tol,maxit,false);
Field src(in.Grid());
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
SmootherOperator.AdjOp(in,src);
Guess(src,out);
CG(MdagMOp,src,out);
}
};
template<class Fobj,class CComplex,int nbasis, class Matrix, class Guesser, class CoarseSolver>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Guesser & _Guess;
FineSmoother & _Smoother;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineSmoother &Smoother,
Guesser &Guess_,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_Smoother(Smoother),
_Guess(Guess_),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
FineField vec1(in.Grid());
FineField vec2(in.Grid());
double t;
// Fine Smoother
t=-usecond();
_Smoother(in,out);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
_CoarseSolve(Csrc,Csol);
t+=usecond();
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// Fine Smoother
t=-usecond();
_Smoother(vec1,vec2);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
std::vector<int> blockc ({2,2,2,2});
const int nbasis= 32;
const int nbasisc= 32;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
auto cclatt = clatt;
for(int d=0;d<clatt.size();d++){
cclatt[d] = clatt[d]/blockc[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
// GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
// GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src;
LatticeFermion result(FGrid);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
//std::string file("./ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
RealD mass=0.001;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
typedef CoarseOperator::siteVector siteVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid,0);
assert ( (nbasis & 0x1)==0);
{
int nb=nbasis/2;
LatticeFermion A(FGrid);
LatticeFermion B(FGrid);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.002,1000,800,100,0.0);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.02,1000,800,100,0.0);
Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.05,500,200,150,0.0);//
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.01,1000,100,100,0.0); // Slightly faster
for(int n=0;n<nb;n++){
std::cout << GridLogMessage << " G5R5 "<<n<<std::endl;
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
std::cout << GridLogMessage << " Projection "<<n<<std::endl;
A = Aggregates.subspace[n];
B = Aggregates.subspace[n+nb];
std::cout << GridLogMessage << " Copy "<<n<<std::endl;
Aggregates.subspace[n] = A+B; // 1+G5 // eigen value of G5R5 is +1
std::cout << GridLogMessage << " P+ "<<n<<std::endl;
Aggregates.subspace[n+nb]= A-B; // 1-G5 // eigen value of G5R5 is -1
std::cout << GridLogMessage << " P- "<<n<<std::endl;
}
}
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op;
typedef CoarsenedMatrix<siteVector,iScalar<vTComplex>,nbasisc> Level2Op;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
std::cout << " Making 5D coarse RB grid " <<std::endl;
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
std::cout << " Made 5D coarse RB grid " <<std::endl;
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
//////////////////////////////////////////////////
// Deflate the course space. Recursive multigrid?
//////////////////////////////////////////////////
typedef Aggregation<siteVector,iScalar<vTComplex>,nbasisc> CoarseSubspace;
// CoarseSubspace CoarseAggregates(CoarseCoarse5d,Coarse5d,0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Build deflation space in coarse operator "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
typedef Level2Op::CoarseVector CoarseCoarseVector;
CoarseVector c_src(Coarse5d); c_src=1.0;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building 3 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector> , SolverWrapper<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<siteVector,iScalar<vTComplex>,nbasisc,Level1Op, DeflatedGuesser<CoarseCoarseVector>, NormalEquations<CoarseCoarseVector> > CoarseMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector>, LinearFunction<CoarseVector> > ThreeLevelMG;
ChebyshevSmoother<LatticeFermion,DomainWallFermionR> FineSmoother(0.5,60.0,12,HermIndefOp,Ddwf);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling 2 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ConjugateGradient<CoarseVector> CoarseCG(0.005,1000);
// SchurDiagMooeeOperator<CoarseOperator,CoarseVector> CoarseMpcDagMpc(LDOp);
SchurRedBlackDiagMooeeSolve<CoarseVector> CoarseRBCG(CoarseCG);
SolverWrapper<CoarseVector> CoarseSolver(LDOp,CoarseRBCG);
// NormalEquations<CoarseVector> CoarseCGNE(LDOp,CoarseCG,CoarseZeroGuesser);
TwoLevelMG TwoLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
CoarseSolver);
TwoLevelPrecon.Level(1);
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,20,HermIndefOp,TwoLevelPrecon,16,16);
l1PGCR.Level(1);
l1PGCR(src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
ConjugateGradient<LatticeFermion> pCG(1.0e-8,60000);
result=Zero();
// pCG(HermDefOp,src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling red black CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=Zero();
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
// pCG(HermOpEO,src_o,result_o);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Fine PowerMethod "<< std::endl;
PowerMethod<LatticeFermion> PM; PM(HermDefOp,src);
std::cout<<GridLogMessage << " Coarse PowerMethod "<< std::endl;
PowerMethod<CoarseVector> cPM; cPM(PosdefLdop,c_src);
// std::cout<<GridLogMessage << " CoarseCoarse PowerMethod "<< std::endl;
// PowerMethod<CoarseCoarseVector> ccPM; ccPM(IRLHermOpL2,cc_src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,477 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
using namespace std;
using namespace Grid;
/* Params
* Grid:
* block1(4)
* block2(4)
*
* Subspace
* * Fine : Subspace(nbasis,hi,lo,order,first,step) -- 32, 60,0.02,500,100,100
* * Coarse: Subspace(nbasis,hi,lo,order,first,step) -- 32, 18,0.02,500,100,100
* Smoother:
* * Fine: Cheby(hi, lo, order) -- 60,0.5,10
* * Coarse: Cheby(hi, lo, order) -- 12,0.1,4
* Lanczos:
* CoarseCoarse IRL( Nk, Nm, Nstop, poly(lo,hi,order)) 24,36,24,0.002,4.0,61
*/
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
_SmootherOperator(SmootherOperator),
_SmootherMatrix(SmootherMatrix),
Cheby(_lo,_hi,_ord,InverseApproximation)
{};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
_SmootherOperator.AdjOp(in,tmp);
Cheby(MdagMOp,tmp,out);
}
};
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & SmootherMatrix;
FineOperator & SmootherOperator;
RealD tol;
RealD shift;
int maxit;
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
shift(_shift),tol(_tol),maxit(_maxit),
SmootherOperator(_SmootherOperator),
SmootherMatrix(_SmootherMatrix)
{};
void operator() (const Field &in, Field &out)
{
ZeroGuesser<Field> Guess;
ConjugateGradient<Field> CG(tol,maxit,false);
Field src(in.Grid());
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
SmootherOperator.AdjOp(in,src);
Guess(src,out);
CG(MdagMOp,src,out);
}
};
template<class Fobj,class CComplex,int nbasis, class Matrix, class Guesser, class CoarseSolver>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Guesser & _Guess;
FineSmoother & _Smoother;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineSmoother &Smoother,
Guesser &Guess_,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_Smoother(Smoother),
_Guess(Guess_),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
FineField vec1(in.Grid());
FineField vec2(in.Grid());
double t;
// Fine Smoother
t=-usecond();
_Smoother(in,out);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
_CoarseSolve(Csrc,Csol);
t+=usecond();
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// Fine Smoother
t=-usecond();
_Smoother(vec1,vec2);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
std::vector<int> blockc ({2,2,2,2});
const int nbasis= 40;
const int nbasisc= 40;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
auto cclatt = clatt;
for(int d=0;d<clatt.size();d++){
cclatt[d] = clatt[d]/blockc[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
// GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
// GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src;
LatticeFermion result(FGrid);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
// std::string file("./ckpoint_lat.4000");
// std::string file("./ckpoint_lat.1000");
// NerscIO::readConfiguration(Umu,header,file);
SU<Nc>::HotConfiguration(RNG4,Umu);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
RealD mass=0.00078;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
typedef CoarseOperator::siteVector siteVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid,0);
assert ( (nbasis & 0x1)==0);
{
int nb=nbasis/2;
LatticeFermion A(FGrid);
LatticeFermion B(FGrid);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.002,1000,800,100,0.0);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.02,1000,800,100,0.0);
Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.01,400,50,50,0.0); // Slightly faster
for(int n=0;n<nb;n++){
std::cout << GridLogMessage << " G5R5 "<<n<<std::endl;
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
std::cout << GridLogMessage << " Projection "<<n<<std::endl;
A = Aggregates.subspace[n];
B = Aggregates.subspace[n+nb];
std::cout << GridLogMessage << " Copy "<<n<<std::endl;
Aggregates.subspace[n] = A+B; // 1+G5 // eigen value of G5R5 is +1
std::cout << GridLogMessage << " P+ "<<n<<std::endl;
Aggregates.subspace[n+nb]= A-B; // 1-G5 // eigen value of G5R5 is -1
std::cout << GridLogMessage << " P- "<<n<<std::endl;
}
}
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op;
typedef CoarsenedMatrix<siteVector,iScalar<vTComplex>,nbasisc> Level2Op;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
std::cout << " Making 5D coarse RB grid " <<std::endl;
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
std::cout << " Made 5D coarse RB grid " <<std::endl;
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1);
std::cout << " LDOp.CoarsenOperator " <<std::endl;
LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
std::cout << " Coarsened Operator " <<std::endl;
//////////////////////////////////////////////////
// Deflate the course space. Recursive multigrid?
//////////////////////////////////////////////////
typedef Aggregation<siteVector,iScalar<vTComplex>,nbasisc> CoarseSubspace;
// CoarseSubspace CoarseAggregates(CoarseCoarse5d,Coarse5d,0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Build deflation space in coarse operator "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
/*
{
int nb=nbasisc/2;
CoarseAggregates.CreateSubspaceChebyshev(CRNG,PosdefLdop,nb,15.0,0.02,1000,800,100,0.0);
for(int n=0;n<nb;n++){
autoView( subspace , CoarseAggregates.subspace[n],CpuWrite);
autoView( subspace_g5, CoarseAggregates.subspace[n+nb],CpuWrite);
for(int nn=0;nn<nb;nn++){
for(int site=0;site<Coarse5d->oSites();site++){
subspace_g5[site](nn) = subspace[site](nn);
subspace_g5[site](nn+nb)=-subspace[site](nn+nb);
}
}
}
}
*/
typedef Level2Op::CoarseVector CoarseCoarseVector;
/*
Level2Op L2Op(*CoarseCoarse5d,1); // Hermitian matrix
HermitianLinearOperator<Level1Op,CoarseVector> L1LinOp(LDOp);
L2Op.CoarsenOperator(Coarse5d,L1LinOp,CoarseAggregates);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running CoarseCoarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<Level2Op,CoarseCoarseVector> IRLHermOpL2(L2Op);
CoarseCoarseVector cc_src(CoarseCoarse5d); cc_src=1.0;
*/
/*
Chebyshev<CoarseCoarseVector> IRLChebyL2(0.001,15.0,301);
FunctionHermOp<CoarseCoarseVector> IRLOpChebyL2(IRLChebyL2,IRLHermOpL2);
PlainHermOp<CoarseCoarseVector> IRLOpL2 (IRLHermOpL2);
int cNk=24;
int cNm=36;
int cNstop=24;
ImplicitlyRestartedLanczos<CoarseCoarseVector> IRLL2(IRLOpChebyL2,IRLOpL2,cNstop,cNk,cNm,1.0e-3,20);
int cNconv;
std::vector<RealD> eval2(cNm);
std::vector<CoarseCoarseVector> evec2(cNm,CoarseCoarse5d);
IRLL2.calc(eval2,evec2,cc_src,cNconv);
ConjugateGradient<CoarseCoarseVector> CoarseCoarseCG(0.1,1000);
DeflatedGuesser<CoarseCoarseVector> DeflCoarseCoarseGuesser(evec2,eval2);
NormalEquations<CoarseCoarseVector> DeflCoarseCoarseCGNE(L2Op,CoarseCoarseCG,DeflCoarseCoarseGuesser);
*/
/*
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running Coarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<Level1Op,CoarseVector> IRLHermOp(LDOp);
// Chebyshev<CoarseVector> IRLCheby(0.001,15.0,301);
Chebyshev<CoarseVector> IRLCheby(0.03,12.0,101);
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,IRLHermOp);
PlainHermOp<CoarseVector> IRLOp (IRLHermOp);
int Nk=64;
int Nm=128;
int Nstop=Nk;
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-3,20);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
IRL.calc(eval,evec,c_src,Nconv);
*/
CoarseVector c_src(Coarse5d); c_src=1.0;
// DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
// NormalEquations<CoarseVector> DeflCoarseCGNE(LDOp,CoarseCG,DeflCoarseGuesser);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building 3 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,DeflatedGuesser<CoarseVector> , NormalEquations<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector> , NormalEquations<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<siteVector,iScalar<vTComplex>,nbasisc,Level1Op, DeflatedGuesser<CoarseCoarseVector>, NormalEquations<CoarseCoarseVector> > CoarseMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector>, LinearFunction<CoarseVector> > ThreeLevelMG;
ChebyshevSmoother<LatticeFermion,DomainWallFermionR> FineSmoother(0.25,60.0,12,HermIndefOp,Ddwf);
/*
// MultiGrid preconditioner acting on the coarse space <-> coarsecoarse space
ChebyshevSmoother<CoarseVector, Level1Op > CoarseSmoother(0.1,15.0,3,L1LinOp,LDOp);
// MirsSmoother<CoarseVector, Level1Op > CoarseCGSmoother(0.1,0.1,4,L1LinOp,LDOp);
// MirsSmoother<LatticeFermion,DomainWallFermionR> FineCGSmoother(0.0,0.01,8,HermIndefOp,Ddwf);
CoarseMG Level2Precon (CoarseAggregates, L2Op,
L1LinOp,LDOp,
CoarseSmoother,
DeflCoarseCoarseGuesser,
DeflCoarseCoarseCGNE);
Level2Precon.Level(2);
// PGCR Applying this solver to solve the coarse space problem
PrecGeneralisedConjugateResidual<CoarseVector> l2PGCR(0.1, 100, L1LinOp,Level2Precon,16,16);
l2PGCR.Level(2);
// Wrap the 2nd level solver in a MultiGrid preconditioner acting on the fine space
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ThreeLevelMG ThreeLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
l2PGCR);
ThreeLevelPrecon.Level(1);
// Apply the fine-coarse-coarsecoarse 2 deep MG preconditioner in an outer PGCR on the fine fgrid
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,1000,HermIndefOp,ThreeLevelPrecon,16,16);
l1PGCR.Level(1);
*/
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling 2 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ConjugateGradient<CoarseVector> CoarseCG(0.01,1000);
NormalEquations<CoarseVector> CoarseCGNE(LDOp,CoarseCG,CoarseZeroGuesser);
TwoLevelMG TwoLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
CoarseCGNE);
TwoLevelPrecon.Level(1);
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,20,HermIndefOp,TwoLevelPrecon,16,16);
l1PGCR.Level(1);
l1PGCR(src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
ConjugateGradient<LatticeFermion> pCG(1.0e-8,60000);
result=Zero();
// pCG(HermDefOp,src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling red black CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=Zero();
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
// pCG(HermOpEO,src_o,result_o);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Fine PowerMethod "<< std::endl;
PowerMethod<LatticeFermion> PM; PM(HermDefOp,src);
std::cout<<GridLogMessage << " Coarse PowerMethod "<< std::endl;
PowerMethod<CoarseVector> cPM; cPM(PosdefLdop,c_src);
// std::cout<<GridLogMessage << " CoarseCoarse PowerMethod "<< std::endl;
// PowerMethod<CoarseCoarseVector> ccPM; ccPM(IRLHermOpL2,cc_src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Grid_finalize();
}

View File

@ -262,6 +262,8 @@ int main (int argc, char ** argv)
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
@ -328,7 +330,7 @@ int main (int argc, char ** argv)
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
Level1Op LDOp(*Coarse5d,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running Coarse grid Lanczos "<< std::endl;
@ -352,7 +354,9 @@ int main (int argc, char ** argv)
// ConjugateGradient<CoarseVector> CoarseCG(0.01,1000);
ConjugateGradient<CoarseVector> CoarseCG(0.02,1000);// 14.7s
ConjugateGradient<CoarseVector> CoarseCG(0.01,2000);// 14.7s
eval.resize(0);
evec.resize(0,Coarse5d);
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
NormalEquations<CoarseVector> DeflCoarseCGNE(LDOp,CoarseCG,DeflCoarseGuesser);

View File

@ -0,0 +1,397 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
using namespace std;
using namespace Grid;
/* Params
* Grid:
* block1(4)
* block2(4)
*
* Subspace
* * Fine : Subspace(nbasis,hi,lo,order,first,step) -- 32, 60,0.02,500,100,100
* * Coarse: Subspace(nbasis,hi,lo,order,first,step) -- 32, 18,0.02,500,100,100
* Smoother:
* * Fine: Cheby(hi, lo, order) -- 60,0.5,10
* * Coarse: Cheby(hi, lo, order) -- 12,0.1,4
* Lanczos:
* CoarseCoarse IRL( Nk, Nm, Nstop, poly(lo,hi,order)) 24,36,24,0.002,4.0,61
*/
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field> class SolverWrapper : public LinearFunction<Field> {
private:
CheckerBoardedSparseMatrixBase<Field> & _Matrix;
SchurRedBlackBase<Field> & _Solver;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
SolverWrapper(CheckerBoardedSparseMatrixBase<Field> &Matrix,
SchurRedBlackBase<Field> &Solver)
: _Matrix(Matrix), _Solver(Solver) {};
void operator() (const Field &in, Field &out){
_Solver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
_SmootherOperator(SmootherOperator),
_SmootherMatrix(SmootherMatrix),
Cheby(_lo,_hi,_ord,InverseApproximation)
{};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
_SmootherOperator.AdjOp(in,tmp);
Cheby(MdagMOp,tmp,out);
}
};
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & SmootherMatrix;
FineOperator & SmootherOperator;
RealD tol;
RealD shift;
int maxit;
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
shift(_shift),tol(_tol),maxit(_maxit),
SmootherOperator(_SmootherOperator),
SmootherMatrix(_SmootherMatrix)
{};
void operator() (const Field &in, Field &out)
{
ZeroGuesser<Field> Guess;
ConjugateGradient<Field> CG(tol,maxit,false);
Field src(in.Grid());
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
SmootherOperator.AdjOp(in,src);
Guess(src,out);
CG(MdagMOp,src,out);
}
};
template<class Fobj,class CComplex,int nbasis, class Matrix, class Guesser, class CoarseSolver>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Guesser & _Guess;
FineSmoother & _Smoother;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineSmoother &Smoother,
Guesser &Guess_,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_Smoother(Smoother),
_Guess(Guess_),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
FineField vec1(in.Grid());
FineField vec2(in.Grid());
double t;
// Fine Smoother
t=-usecond();
_Smoother(in,out);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
_CoarseSolve(Csrc,Csol);
t+=usecond();
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// Fine Smoother
t=-usecond();
_Smoother(vec1,vec2);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
//std::vector<int> block ({2,2,2,2});
const int nbasis= 40;
const int nbasisc= 40;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
// GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
// GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src;
LatticeFermion result(FGrid);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
//std::string file("./ckpoint_lat.4000");
std::string file("./ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
RealD mass=0.00078;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
typedef CoarseOperator::siteVector siteVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid,0);
assert ( (nbasis & 0x1)==0);
{
int nb=nbasis/2;
LatticeFermion A(FGrid);
LatticeFermion B(FGrid);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.002,1000,800,100,0.0);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.02,1000,800,100,0.0);
Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.01,1000,100,100,0.0); // Slightly faster
for(int n=0;n<nb;n++){
std::cout << GridLogMessage << " G5R5 "<<n<<std::endl;
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
std::cout << GridLogMessage << " Projection "<<n<<std::endl;
A = Aggregates.subspace[n];
B = Aggregates.subspace[n+nb];
std::cout << GridLogMessage << " Copy "<<n<<std::endl;
Aggregates.subspace[n] = A+B; // 1+G5 // eigen value of G5R5 is +1
std::cout << GridLogMessage << " P+ "<<n<<std::endl;
Aggregates.subspace[n+nb]= A-B; // 1-G5 // eigen value of G5R5 is -1
std::cout << GridLogMessage << " P- "<<n<<std::endl;
}
}
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op;
typedef CoarsenedMatrix<siteVector,iScalar<vTComplex>,nbasisc> Level2Op;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
//////////////////////////////////////////////////
// Deflate the course space. Recursive multigrid?
//////////////////////////////////////////////////
typedef Aggregation<siteVector,iScalar<vTComplex>,nbasisc> CoarseSubspace;
// CoarseSubspace CoarseAggregates(CoarseCoarse5d,Coarse5d,0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Build deflation space in coarse operator "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
typedef Level2Op::CoarseVector CoarseCoarseVector;
CoarseVector c_src(Coarse5d); c_src=1.0;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building 3 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector> , SolverWrapper<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<siteVector,iScalar<vTComplex>,nbasisc,Level1Op, DeflatedGuesser<CoarseCoarseVector>, NormalEquations<CoarseCoarseVector> > CoarseMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector>, LinearFunction<CoarseVector> > ThreeLevelMG;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling 2 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::vector<RealD> tols({0.015});
std::vector<int> ords({12});
std::vector<RealD> los({0.8});
for(int l=0;l<los.size();l++){
for(int o=0;o<ords.size();o++){
for(int t=0;t<tols.size();t++){
result=Zero();
std::cout << GridLogMessage <<" tol " << tols[t] << " cheby order " <<ords[o]<< " lo "<<los[l] <<std::endl;
ChebyshevSmoother<LatticeFermion,DomainWallFermionR> FineSmoother(los[l],60.0,ords[o],HermIndefOp,Ddwf);
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ConjugateGradient<CoarseVector> CoarseCG(tols[t],10000);
SchurRedBlackDiagMooeeSolve<CoarseVector> CoarseRBCG(CoarseCG);
SolverWrapper<CoarseVector> CoarseSolver(LDOp,CoarseRBCG);
TwoLevelMG TwoLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
CoarseSolver);
TwoLevelPrecon.Level(1);
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,20,HermIndefOp,TwoLevelPrecon,16,16);
l1PGCR.Level(1);
l1PGCR(src,result);
}}}
ConjugateGradient<LatticeFermion> pCG(1.0e-8,60000);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling red black CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=Zero();
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
pCG(HermOpEO,src_o,result_o);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
pCG(HermDefOp,src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Fine PowerMethod "<< std::endl;
PowerMethod<LatticeFermion> PM; PM(HermDefOp,src);
std::cout<<GridLogMessage << " Coarse PowerMethod "<< std::endl;
PowerMethod<CoarseVector> cPM; cPM(PosdefLdop,c_src);
// std::cout<<GridLogMessage << " CoarseCoarse PowerMethod "<< std::endl;
// PowerMethod<CoarseCoarseVector> ccPM; ccPM(IRLHermOpL2,cc_src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Grid_finalize();
}

View File

@ -0,0 +1,473 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
using namespace std;
using namespace Grid;
/* Params
* Grid:
* block1(4)
* block2(4)
*
* Subspace
* * Fine : Subspace(nbasis,hi,lo,order,first,step) -- 32, 60,0.02,500,100,100
* * Coarse: Subspace(nbasis,hi,lo,order,first,step) -- 32, 18,0.02,500,100,100
* Smoother:
* * Fine: Cheby(hi, lo, order) -- 60,0.5,10
* * Coarse: Cheby(hi, lo, order) -- 12,0.1,4
* Lanczos:
* CoarseCoarse IRL( Nk, Nm, Nstop, poly(lo,hi,order)) 24,36,24,0.002,4.0,61
*/
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
_SmootherOperator(SmootherOperator),
_SmootherMatrix(SmootherMatrix),
Cheby(_lo,_hi,_ord,InverseApproximation)
{};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
_SmootherOperator.AdjOp(in,tmp);
Cheby(MdagMOp,tmp,out);
}
};
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & SmootherMatrix;
FineOperator & SmootherOperator;
RealD tol;
RealD shift;
int maxit;
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
shift(_shift),tol(_tol),maxit(_maxit),
SmootherOperator(_SmootherOperator),
SmootherMatrix(_SmootherMatrix)
{};
void operator() (const Field &in, Field &out)
{
ZeroGuesser<Field> Guess;
ConjugateGradient<Field> CG(tol,maxit,false);
Field src(in.Grid());
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
SmootherOperator.AdjOp(in,src);
Guess(src,out);
CG(MdagMOp,src,out);
}
};
template<class Fobj,class CComplex,int nbasis, class Matrix, class Guesser, class CoarseSolver>
class MultiGridPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
Aggregates & _Aggregates;
CoarseOperator & _CoarseOperator;
Matrix & _FineMatrix;
FineOperator & _FineOperator;
Guesser & _Guess;
FineSmoother & _Smoother;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
MultiGridPreconditioner(Aggregates &Agg, CoarseOperator &Coarse,
FineOperator &Fine,Matrix &FineMatrix,
FineSmoother &Smoother,
Guesser &Guess_,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_CoarseOperator(Coarse),
_FineOperator(Fine),
_FineMatrix(FineMatrix),
_Smoother(Smoother),
_Guess(Guess_),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
CoarseVector Csrc(_CoarseOperator.Grid());
CoarseVector Csol(_CoarseOperator.Grid());
FineField vec1(in.Grid());
FineField vec2(in.Grid());
double t;
// Fine Smoother
t=-usecond();
_Smoother(in,out);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
_CoarseSolve(Csrc,Csol);
t+=usecond();
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// Fine Smoother
t=-usecond();
_Smoother(vec1,vec2);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=24;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
std::vector<int> blockc ({2,2,2,2});
const int nbasis= 40;
const int nbasisc= 40;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
auto cclatt = clatt;
for(int d=0;d<clatt.size();d++){
cclatt[d] = clatt[d]/blockc[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
// GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
// GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
LatticeFermion src(FGrid); gaussian(RNG5,src);// src=src+g5*src;
LatticeFermion result(FGrid);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
// std::string file("./ckpoint_lat.4000");
std::string file("./ckpoint_lat.1000");
NerscIO::readConfiguration(Umu,header,file);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
RealD mass=0.00078;
RealD M5=1.8;
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
typedef CoarseOperator::siteVector siteVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<DomainWallFermionR,LatticeFermion> HermDefOp(Ddwf);
Subspace Aggregates(Coarse5d,FGrid,0);
assert ( (nbasis & 0x1)==0);
{
int nb=nbasis/2;
LatticeFermion A(FGrid);
LatticeFermion B(FGrid);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.002,1000,800,100,0.0);
// Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.02,1000,800,100,0.0);
Aggregates.CreateSubspaceChebyshev(RNG5,HermDefOp,nb,60.0,0.01,1000,100,100,0.0); // Slightly faster
for(int n=0;n<nb;n++){
std::cout << GridLogMessage << " G5R5 "<<n<<std::endl;
G5R5(Aggregates.subspace[n+nb],Aggregates.subspace[n]);
std::cout << GridLogMessage << " Projection "<<n<<std::endl;
A = Aggregates.subspace[n];
B = Aggregates.subspace[n+nb];
std::cout << GridLogMessage << " Copy "<<n<<std::endl;
Aggregates.subspace[n] = A+B; // 1+G5 // eigen value of G5R5 is +1
std::cout << GridLogMessage << " P+ "<<n<<std::endl;
Aggregates.subspace[n+nb]= A-B; // 1-G5 // eigen value of G5R5 is -1
std::cout << GridLogMessage << " P- "<<n<<std::endl;
}
}
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op;
typedef CoarsenedMatrix<siteVector,iScalar<vTComplex>,nbasisc> Level2Op;
Gamma5R5HermitianLinearOperator<DomainWallFermionR,LatticeFermion> HermIndefOp(Ddwf);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
std::cout << " Making 5D coarse RB grid " <<std::endl;
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
std::cout << " Made 5D coarse RB grid " <<std::endl;
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
//////////////////////////////////////////////////
// Deflate the course space. Recursive multigrid?
//////////////////////////////////////////////////
typedef Aggregation<siteVector,iScalar<vTComplex>,nbasisc> CoarseSubspace;
// CoarseSubspace CoarseAggregates(CoarseCoarse5d,Coarse5d,0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Build deflation space in coarse operator "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<CoarseOperator,CoarseVector> PosdefLdop(LDOp);
/*
{
int nb=nbasisc/2;
CoarseAggregates.CreateSubspaceChebyshev(CRNG,PosdefLdop,nb,15.0,0.02,1000,800,100,0.0);
for(int n=0;n<nb;n++){
autoView( subspace , CoarseAggregates.subspace[n],CpuWrite);
autoView( subspace_g5, CoarseAggregates.subspace[n+nb],CpuWrite);
for(int nn=0;nn<nb;nn++){
for(int site=0;site<Coarse5d->oSites();site++){
subspace_g5[site](nn) = subspace[site](nn);
subspace_g5[site](nn+nb)=-subspace[site](nn+nb);
}
}
}
}
*/
typedef Level2Op::CoarseVector CoarseCoarseVector;
/*
Level2Op L2Op(*CoarseCoarse5d,1); // Hermitian matrix
HermitianLinearOperator<Level1Op,CoarseVector> L1LinOp(LDOp);
L2Op.CoarsenOperator(Coarse5d,L1LinOp,CoarseAggregates);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running CoarseCoarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<Level2Op,CoarseCoarseVector> IRLHermOpL2(L2Op);
CoarseCoarseVector cc_src(CoarseCoarse5d); cc_src=1.0;
*/
/*
Chebyshev<CoarseCoarseVector> IRLChebyL2(0.001,15.0,301);
FunctionHermOp<CoarseCoarseVector> IRLOpChebyL2(IRLChebyL2,IRLHermOpL2);
PlainHermOp<CoarseCoarseVector> IRLOpL2 (IRLHermOpL2);
int cNk=24;
int cNm=36;
int cNstop=24;
ImplicitlyRestartedLanczos<CoarseCoarseVector> IRLL2(IRLOpChebyL2,IRLOpL2,cNstop,cNk,cNm,1.0e-3,20);
int cNconv;
std::vector<RealD> eval2(cNm);
std::vector<CoarseCoarseVector> evec2(cNm,CoarseCoarse5d);
IRLL2.calc(eval2,evec2,cc_src,cNconv);
ConjugateGradient<CoarseCoarseVector> CoarseCoarseCG(0.1,1000);
DeflatedGuesser<CoarseCoarseVector> DeflCoarseCoarseGuesser(evec2,eval2);
NormalEquations<CoarseCoarseVector> DeflCoarseCoarseCGNE(L2Op,CoarseCoarseCG,DeflCoarseCoarseGuesser);
*/
/*
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Running Coarse grid Lanczos "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<Level1Op,CoarseVector> IRLHermOp(LDOp);
// Chebyshev<CoarseVector> IRLCheby(0.001,15.0,301);
Chebyshev<CoarseVector> IRLCheby(0.03,12.0,101);
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,IRLHermOp);
PlainHermOp<CoarseVector> IRLOp (IRLHermOp);
int Nk=64;
int Nm=128;
int Nstop=Nk;
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-3,20);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
IRL.calc(eval,evec,c_src,Nconv);
*/
CoarseVector c_src(Coarse5d); c_src=1.0;
// DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
// NormalEquations<CoarseVector> DeflCoarseCGNE(LDOp,CoarseCG,DeflCoarseGuesser);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building 3 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
// typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,DeflatedGuesser<CoarseVector> , NormalEquations<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector> , NormalEquations<CoarseVector> > TwoLevelMG;
typedef MultiGridPreconditioner<siteVector,iScalar<vTComplex>,nbasisc,Level1Op, DeflatedGuesser<CoarseCoarseVector>, NormalEquations<CoarseCoarseVector> > CoarseMG;
typedef MultiGridPreconditioner<vSpinColourVector, vTComplex,nbasis, DomainWallFermionR,ZeroGuesser<CoarseVector>, LinearFunction<CoarseVector> > ThreeLevelMG;
ChebyshevSmoother<LatticeFermion,DomainWallFermionR> FineSmoother(0.25,60.0,12,HermIndefOp,Ddwf);
/*
// MultiGrid preconditioner acting on the coarse space <-> coarsecoarse space
ChebyshevSmoother<CoarseVector, Level1Op > CoarseSmoother(0.1,15.0,3,L1LinOp,LDOp);
// MirsSmoother<CoarseVector, Level1Op > CoarseCGSmoother(0.1,0.1,4,L1LinOp,LDOp);
// MirsSmoother<LatticeFermion,DomainWallFermionR> FineCGSmoother(0.0,0.01,8,HermIndefOp,Ddwf);
CoarseMG Level2Precon (CoarseAggregates, L2Op,
L1LinOp,LDOp,
CoarseSmoother,
DeflCoarseCoarseGuesser,
DeflCoarseCoarseCGNE);
Level2Precon.Level(2);
// PGCR Applying this solver to solve the coarse space problem
PrecGeneralisedConjugateResidual<CoarseVector> l2PGCR(0.1, 100, L1LinOp,Level2Precon,16,16);
l2PGCR.Level(2);
// Wrap the 2nd level solver in a MultiGrid preconditioner acting on the fine space
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ThreeLevelMG ThreeLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
l2PGCR);
ThreeLevelPrecon.Level(1);
// Apply the fine-coarse-coarsecoarse 2 deep MG preconditioner in an outer PGCR on the fine fgrid
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,1000,HermIndefOp,ThreeLevelPrecon,16,16);
l1PGCR.Level(1);
*/
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling 2 level Multigrid "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
ConjugateGradient<CoarseVector> CoarseCG(0.01,1000);
NormalEquations<CoarseVector> CoarseCGNE(LDOp,CoarseCG,CoarseZeroGuesser);
TwoLevelMG TwoLevelPrecon(Aggregates, LDOp,
HermIndefOp,Ddwf,
FineSmoother,
CoarseZeroGuesser,
CoarseCGNE);
TwoLevelPrecon.Level(1);
PrecGeneralisedConjugateResidual<LatticeFermion> l1PGCR(1.0e-8,20,HermIndefOp,TwoLevelPrecon,16,16);
l1PGCR.Level(1);
l1PGCR(src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
ConjugateGradient<LatticeFermion> pCG(1.0e-8,60000);
result=Zero();
// pCG(HermDefOp,src,result);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling red black CG "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
result=Zero();
LatticeFermion src_o(FrbGrid);
LatticeFermion result_o(FrbGrid);
pickCheckerboard(Odd,src_o,src);
result_o=Zero();
SchurDiagMooeeOperator<DomainWallFermionR,LatticeFermion> HermOpEO(Ddwf);
pCG(HermOpEO,src_o,result_o);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Fine PowerMethod "<< std::endl;
PowerMethod<LatticeFermion> PM; PM(HermDefOp,src);
std::cout<<GridLogMessage << " Coarse PowerMethod "<< std::endl;
PowerMethod<CoarseVector> cPM; cPM(PosdefLdop,c_src);
// std::cout<<GridLogMessage << " CoarseCoarse PowerMethod "<< std::endl;
// PowerMethod<CoarseCoarseVector> ccPM; ccPM(IRLHermOpL2,cc_src);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Grid_finalize();
}

View File

@ -370,6 +370,11 @@ int main (int argc, char ** argv)
GridCartesian *CoarseCoarse4d = SpaceTimeGrid::makeFourDimGrid(cclatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *CoarseCoarse5d = SpaceTimeGrid::makeFiveDimGrid(1,CoarseCoarse4d);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
GridRedBlackCartesian *CoarseCoarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(CoarseCoarse4d);
GridRedBlackCartesian *CoarseCoarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,CoarseCoarse4d);
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
@ -434,8 +439,8 @@ int main (int argc, char ** argv)
std::cout<<GridLogMessage << "Building coarse representation of Indef operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Level1Op LDOp(*Coarse5d,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
Level1Op LDOpPV(*Coarse5d,1); LDOpPV.CoarsenOperator(FGrid,HermIndefOpPV,Aggregates);
Level1Op LDOp(*Coarse5d,*Coarse5dRB,1); LDOp.CoarsenOperator(FGrid,HermIndefOp,Aggregates);
Level1Op LDOpPV(*Coarse5d,*Coarse5dRB,1); LDOpPV.CoarsenOperator(FGrid,HermIndefOpPV,Aggregates);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;

View File

@ -274,6 +274,8 @@ int main (int argc, char ** argv)
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(Ls,Coarse4d);
GridRedBlackCartesian * Coarse4dRB = SpaceTimeGrid::makeFourDimRedBlackGrid(Coarse4d);
GridRedBlackCartesian * Coarse5dRB = SpaceTimeGrid::makeFiveDimRedBlackGrid(1,Coarse4d);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds);
@ -335,7 +337,7 @@ int main (int argc, char ** argv)
NonHermitianLinearOperator<DomainWallFermionR,LatticeFermion> LinOpDwf(Ddwf);
Level1Op LDOp (*Coarse5d,0);
Level1Op LDOp (*Coarse5d,*Coarse5dRB,0);
std::cout<<GridLogMessage << " Callinig Coarsen the operator " <<std::endl;
LDOp.CoarsenOperator(FGrid,LinOpDwf,Aggregates5D);

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff