1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-06 20:25:56 +01:00

Merge branch 'feature/hadrons' into feature/qed-fvol

This commit is contained in:
James Harrison 2018-06-04 16:59:43 +01:00
commit 0fe5aeffbb
45 changed files with 2780 additions and 712 deletions

View File

@ -49,11 +49,10 @@ Environment::Environment(void)
dim_, GridDefaultSimd(nd_, vComplex::Nsimd()),
GridDefaultMpi()));
gridRb4d_.reset(SpaceTimeGrid::makeFourDimRedBlackGrid(grid4d_.get()));
auto loc = getGrid()->LocalDimensions();
locVol_ = 1;
for (unsigned int d = 0; d < loc.size(); ++d)
vol_ = 1.;
for (auto d: dim_)
{
locVol_ *= loc[d];
vol_ *= d;
}
rng4d_.reset(new GridParallelRNG(grid4d_.get()));
}
@ -190,9 +189,9 @@ int Environment::getDim(const unsigned int mu) const
return dim_[mu];
}
unsigned long int Environment::getLocalVolume(void) const
double Environment::getVolume(void) const
{
return locVol_;
return vol_;
}
// random number generator /////////////////////////////////////////////////////

View File

@ -94,8 +94,8 @@ public:
const unsigned int Ls = 1) const;
std::vector<int> getDim(void) const;
int getDim(const unsigned int mu) const;
unsigned long int getLocalVolume(void) const;
unsigned int getNd(void) const;
double getVolume(void) const;
// random number generator
void setSeed(const std::vector<int> &seed);
GridParallelRNG * get4dRng(void) const;
@ -155,7 +155,7 @@ public:
void printContent(void) const;
private:
// general
unsigned long int locVol_;
double vol_;
bool protect_{true};
// grids
std::vector<int> dim_;

View File

@ -7,6 +7,7 @@
#include <Grid/Hadrons/Modules/MContraction/Gamma3pt.hpp>
#include <Grid/Hadrons/Modules/MContraction/WardIdentity.hpp>
#include <Grid/Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
#include <Grid/Hadrons/Modules/MSource/SeqGamma.hpp>
#include <Grid/Hadrons/Modules/MSource/Point.hpp>

View File

@ -45,8 +45,8 @@ BEGIN_HADRONS_NAMESPACE
- q1: input propagator 1 (string)
- q2: input propagator 2 (string)
- gammas: gamma products to insert at sink & source, pairs of gamma matrices
(space-separated strings) in angled brackets (i.e. <g_sink g_src>),
in a sequence (e.g. "<Gamma5 Gamma5><Gamma5 GammaT>").
(space-separated strings) in round brackets (i.e. (g_sink g_src)),
in a sequence (e.g. "(Gamma5 Gamma5)(Gamma5 GammaT)").
Special values: "all" - perform all possible contractions.
- sink: module to compute the sink to use in contraction (string).

View File

@ -0,0 +1,36 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MFermion/FreeProp.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Hadrons/Modules/MFermion/FreeProp.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MFermion;
template class Grid::Hadrons::MFermion::TFreeProp<FIMPL>;

View File

@ -0,0 +1,189 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MFermion/FreeProp.hpp
Copyright (C) 2015-2018
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MFermion_FreeProp_hpp_
#define Hadrons_MFermion_FreeProp_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/Modules/MFermion/GaugeProp.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* FreeProp *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MFermion)
class FreePropPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(FreePropPar,
std::string, source,
std::string, action,
double, mass,
std::string, twist);
};
template <typename FImpl>
class TFreeProp: public Module<FreePropPar>
{
public:
FGS_TYPE_ALIASES(FImpl,);
public:
// constructor
TFreeProp(const std::string name);
// destructor
virtual ~TFreeProp(void) {};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
protected:
// setup
virtual void setup(void);
// execution
virtual void execute(void);
private:
unsigned int Ls_;
};
MODULE_REGISTER_TMP(FreeProp, TFreeProp<FIMPL>, MFermion);
/******************************************************************************
* TFreeProp implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TFreeProp<FImpl>::TFreeProp(const std::string name)
: Module<FreePropPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TFreeProp<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().source, par().action};
return in;
}
template <typename FImpl>
std::vector<std::string> TFreeProp<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName(), getName() + "_5d"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFreeProp<FImpl>::setup(void)
{
Ls_ = env().getObjectLs(par().action);
envCreateLat(PropagatorField, getName());
envTmpLat(FermionField, "source", Ls_);
envTmpLat(FermionField, "sol", Ls_);
envTmpLat(FermionField, "tmp");
if (Ls_ > 1)
{
envCreateLat(PropagatorField, getName() + "_5d", Ls_);
}
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TFreeProp<FImpl>::execute(void)
{
LOG(Message) << "Computing free fermion propagator '" << getName() << "'"
<< std::endl;
std::string propName = (Ls_ == 1) ? getName() : (getName() + "_5d");
auto &prop = envGet(PropagatorField, propName);
auto &fullSrc = envGet(PropagatorField, par().source);
auto &mat = envGet(FMat, par().action);
RealD mass = par().mass;
envGetTmp(FermionField, source);
envGetTmp(FermionField, sol);
envGetTmp(FermionField, tmp);
LOG(Message) << "Calculating a free Propagator with mass " << mass
<< " using the action '" << par().action
<< "' on source '" << par().source << "'" << std::endl;
for (unsigned int s = 0; s < Ns; ++s)
for (unsigned int c = 0; c < FImpl::Dimension; ++c)
{
LOG(Message) << "Calculation for spin= " << s << ", color= " << c
<< std::endl;
// source conversion for 4D sources
if (!env().isObject5d(par().source))
{
if (Ls_ == 1)
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
else
{
PropToFerm<FImpl>(tmp, fullSrc, s, c);
make_5D(tmp, source, Ls_);
}
}
// source conversion for 5D sources
else
{
if (Ls_ != env().getObjectLs(par().source))
{
HADRONS_ERROR(Size, "Ls mismatch between quark action and source");
}
else
{
PropToFerm<FImpl>(source, fullSrc, s, c);
}
}
sol = zero;
std::vector<Real> twist = strToVec<Real>(par().twist);
if(twist.size() != Nd) HADRONS_ERROR(Size, "number of twist angles does not match number of dimensions");
mat.FreePropagator(source,sol,mass,twist);
FermToProp<FImpl>(prop, sol, s, c);
// create 4D propagators from 5D one if necessary
if (Ls_ > 1)
{
PropagatorField &p4d = envGet(PropagatorField, getName());
make_4D(sol, tmp, Ls_);
FermToProp<FImpl>(p4d, tmp, s, c);
}
}
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MFermion_FreeProp_hpp_

View File

@ -7,6 +7,7 @@ modules_cc =\
Modules/MContraction/WardIdentity.cc \
Modules/MContraction/DiscLoop.cc \
Modules/MContraction/Gamma3pt.cc \
Modules/MFermion/FreeProp.cc \
Modules/MFermion/GaugeProp.cc \
Modules/MSource/Point.cc \
Modules/MSource/Wall.cc \
@ -60,6 +61,7 @@ modules_hpp =\
Modules/MContraction/Gamma3pt.hpp \
Modules/MContraction/WardIdentity.hpp \
Modules/MContraction/WeakHamiltonianEye.hpp \
Modules/MFermion/FreeProp.hpp \
Modules/MFermion/GaugeProp.hpp \
Modules/MSource/SeqGamma.hpp \
Modules/MSource/Point.hpp \

View File

@ -51,7 +51,7 @@ namespace Grid {
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) = 0;
virtual void HermOp(const Field &in, Field &out)=0;
};
@ -309,36 +309,59 @@ namespace Grid {
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
Field tmp;
RealD mass;
double tMpc;
double tIP;
double tMeo;
double taxpby_norm;
uint64_t ncall;
public:
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat){};
void Report(void)
{
std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " HermOpAndNorm.IP "<< tIP /ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " Mpc.MeoMoe "<< tMeo/ncall<<" usec "<<std::endl;
std::cout << GridLogMessage << " Mpc.axpby_norm "<< taxpby_norm/ncall<<" usec "<<std::endl;
}
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
{
assert( _Mat.isTrivialEE() );
mass = _Mat.Mass();
tMpc=0;
tIP =0;
tMeo=0;
taxpby_norm=0;
ncall=0;
}
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
GridLogIterative.TimingMode(1);
std::cout << GridLogIterative << " HermOpAndNorm "<<std::endl;
ncall++;
tMpc-=usecond();
n2 = Mpc(in,out);
std::cout << GridLogIterative << " HermOpAndNorm.Mpc "<<std::endl;
tMpc+=usecond();
tIP-=usecond();
ComplexD dot= innerProduct(in,out);
std::cout << GridLogIterative << " HermOpAndNorm.innerProduct "<<std::endl;
tIP+=usecond();
n1 = real(dot);
}
virtual void HermOp(const Field &in, Field &out){
std::cout << GridLogIterative << " HermOp "<<std::endl;
Mpc(in,out);
ncall++;
tMpc-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp);
tMpc+=usecond();
taxpby_norm-=usecond();
axpby(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
}
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
Field tmp2(in._grid);
std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
_Mat.Mooee(in,out);
_Mat.Mooee(out,tmp);
std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
tMeo-=usecond();
_Mat.Meooe(in,out);
_Mat.Meooe(out,tmp2);
std::cout << GridLogIterative << " HermOp.MeooeMeooe "<<std::endl;
RealD nn=axpy_norm(out,-1.0,tmp2,tmp);
std::cout << GridLogIterative << " HermOp.axpy_norm "<<std::endl;
_Mat.Meooe(out,tmp);
tMeo+=usecond();
taxpby_norm-=usecond();
RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in);
taxpby_norm+=usecond();
return nn;
}
virtual RealD MpcDag (const Field &in, Field &out){

View File

@ -54,6 +54,7 @@ class ConjugateGradient : public OperatorFunction<Field> {
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
psi.checkerboard = src.checkerboard;
conformable(psi, src);
@ -69,7 +70,6 @@ class ConjugateGradient : public OperatorFunction<Field> {
Linop.HermOpAndNorm(psi, mmp, d, b);
r = src - mmp;
p = r;
@ -96,38 +96,44 @@ class ConjugateGradient : public OperatorFunction<Field> {
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
GridStopWatch LinalgTimer;
GridStopWatch InnerTimer;
GridStopWatch AxpyNormTimer;
GridStopWatch LinearCombTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
int k;
for (k = 1; k <= MaxIterations; k++) {
for (k = 1; k <= MaxIterations*1000; k++) {
c = cp;
MatrixTimer.Start();
Linop.HermOpAndNorm(p, mmp, d, qq);
Linop.HermOp(p, mmp);
MatrixTimer.Stop();
LinalgTimer.Start();
// RealD qqck = norm2(mmp);
// ComplexD dck = innerProduct(p,mmp);
InnerTimer.Start();
ComplexD dc = innerProduct(p,mmp);
InnerTimer.Stop();
d = dc.real();
a = c / d;
b_pred = a * (a * qq - d) / c;
AxpyNormTimer.Start();
cp = axpy_norm(r, -a, mmp, r);
AxpyNormTimer.Stop();
b = cp / c;
// Fuse these loops ; should be really easy
psi = a * p + psi;
p = p * b + r;
LinearCombTimer.Start();
parallel_for(int ss=0;ss<src._grid->oSites();ss++){
vstream(psi[ss], a * p[ss] + psi[ss]);
vstream(p [ss], b * p[ss] + r[ss]);
}
LinearCombTimer.Stop();
LinalgTimer.Stop();
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
<< " residual " << cp << " target " << rsq << std::endl;
std::cout << GridLogDebug << "a = "<< a << " b_pred = "<< b_pred << " b = "<< b << std::endl;
std::cout << GridLogDebug << "qq = "<< qq << " d = "<< d << " c = "<< c << std::endl;
// Stopping condition
if (cp <= rsq) {
@ -148,6 +154,9 @@ class ConjugateGradient : public OperatorFunction<Field> {
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);

View File

@ -43,6 +43,7 @@ namespace Grid {
public:
RealD Tolerance;
Integer MaxIterations;
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
int verbose;
MultiShiftFunction shifts;
@ -163,7 +164,16 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
for(int s=0;s<nshift;s++) {
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
}
///////////////////////////////////////
// Timers
///////////////////////////////////////
GridStopWatch AXPYTimer;
GridStopWatch ShiftTimer;
GridStopWatch QRTimer;
GridStopWatch MatrixTimer;
GridStopWatch SolverTimer;
SolverTimer.Start();
// Iteration loop
int k;
@ -171,7 +181,9 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
for (k=1;k<=MaxIterations;k++){
a = c /cp;
AXPYTimer.Start();
axpy(p,a,p,r);
AXPYTimer.Stop();
// Note to self - direction ps is iterated seperately
// for each shift. Does not appear to have any scope
@ -180,6 +192,7 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
// However SAME r is used. Could load "r" and update
// ALL ps[s]. 2/3 Bandwidth saving
// New Kernel: Load r, vector of coeffs, vector of pointers ps
AXPYTimer.Start();
for(int s=0;s<nshift;s++){
if ( ! converged[s] ) {
if (s==0){
@ -190,22 +203,34 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
}
}
}
AXPYTimer.Stop();
cp=c;
MatrixTimer.Start();
//Linop.HermOpAndNorm(p,mmp,d,qq); // d is used
// The below is faster on KNL
Linop.HermOp(p,mmp);
d=real(innerProduct(p,mmp));
Linop.HermOpAndNorm(p,mmp,d,qq);
MatrixTimer.Stop();
AXPYTimer.Start();
axpy(mmp,mass[0],p,mmp);
AXPYTimer.Stop();
RealD rn = norm2(p);
d += rn*mass[0];
bp=b;
b=-cp/d;
AXPYTimer.Start();
c=axpy_norm(r,b,mmp,r);
AXPYTimer.Stop();
// Toggle the recurrence history
bs[0] = b;
iz = 1-iz;
ShiftTimer.Start();
for(int s=1;s<nshift;s++){
if((!converged[s])){
RealD z0 = z[s][1-iz];
@ -215,6 +240,7 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
}
}
ShiftTimer.Stop();
for(int s=0;s<nshift;s++){
int ss = s;
@ -257,6 +283,9 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
if ( all_converged ){
SolverTimer.Stop();
std::cout<<GridLogMessage<< "CGMultiShift: All shifts have converged iteration "<<k<<std::endl;
std::cout<<GridLogMessage<< "CGMultiShift: Checking solutions"<<std::endl;
@ -269,8 +298,19 @@ void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector
RealD cn = norm2(src);
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
}
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
IterationsToComplete = k;
return;
}
}
// ugly hack
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;

View File

@ -244,19 +244,11 @@ namespace Grid {
template<class sobj,class vobj> strong_inline
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
axpy(ret,a,x,y);
return norm2(ret);
return axpy_norm_fast(ret,a,x,y);
}
template<class sobj,class vobj> strong_inline
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
ret.checkerboard = x.checkerboard;
conformable(ret,x);
conformable(x,y);
axpby(ret,a,b,x,y);
return norm2(ret); // FIXME implement parallel norm in ss loop
return axpby_norm_fast(ret,a,b,x,y);
}
}

View File

@ -33,7 +33,7 @@ namespace Grid {
// Deterministic Reduction operations
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
ComplexD nrm = innerProduct(arg,arg);
auto nrm = innerProduct(arg,arg);
return std::real(nrm);
}
@ -43,31 +43,84 @@ inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &righ
{
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
scalar_type nrm;
GridBase *grid = left._grid;
std::vector<vector_type,alignedAllocator<vector_type> > sumarray(grid->SumArraySize());
const int pad = 8;
ComplexD inner;
Vector<ComplexD> sumarray(grid->SumArraySize()*pad);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(left._grid->oSites(),thr,mywork,myoff);
decltype(innerProductD(left._odata[0],right._odata[0])) vnrm=zero; // private to thread; sub summation
decltype(innerProductD(left._odata[0],right._odata[0])) vinner=zero; // private to thread; sub summation
for(int ss=myoff;ss<mywork+myoff; ss++){
vnrm = vnrm + innerProductD(left._odata[ss],right._odata[ss]);
vinner = vinner + innerProductD(left._odata[ss],right._odata[ss]);
}
sumarray[thr]=TensorRemove(vnrm) ;
// All threads sum across SIMD; reduce serial work at end
// one write per cacheline with streaming store
ComplexD tmp = Reduce(TensorRemove(vinner)) ;
vstream(sumarray[thr*pad],tmp);
}
vector_type vvnrm; vvnrm=zero; // sum across threads
inner=0.0;
for(int i=0;i<grid->SumArraySize();i++){
vvnrm = vvnrm+sumarray[i];
inner = inner+sumarray[i*pad];
}
nrm = Reduce(vvnrm);// sum across simd
right._grid->GlobalSum(nrm);
return nrm;
right._grid->GlobalSum(inner);
return inner;
}
/////////////////////////
// Fast axpby_norm
// z = a x + b y
// return norm z
/////////////////////////
template<class sobj,class vobj> strong_inline RealD
axpy_norm_fast(Lattice<vobj> &z,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
sobj one(1.0);
return axpby_norm_fast(z,a,one,x,y);
}
template<class sobj,class vobj> strong_inline RealD
axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
{
const int pad = 8;
z.checkerboard = x.checkerboard;
conformable(z,x);
conformable(x,y);
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_typeD vector_type;
RealD nrm;
GridBase *grid = x._grid;
Vector<RealD> sumarray(grid->SumArraySize()*pad);
parallel_for(int thr=0;thr<grid->SumArraySize();thr++){
int nwork, mywork, myoff;
GridThread::GetWork(x._grid->oSites(),thr,mywork,myoff);
// private to thread; sub summation
decltype(innerProductD(z._odata[0],z._odata[0])) vnrm=zero;
for(int ss=myoff;ss<mywork+myoff; ss++){
vobj tmp = a*x._odata[ss]+b*y._odata[ss];
vnrm = vnrm + innerProductD(tmp,tmp);
vstream(z._odata[ss],tmp);
}
vstream(sumarray[thr*pad],real(Reduce(TensorRemove(vnrm)))) ;
}
nrm = 0.0; // sum across threads; linear in thread count but fast
for(int i=0;i<grid->SumArraySize();i++){
nrm = nrm+sumarray[i*pad];
}
z._grid->GlobalSum(nrm);
return nrm;
}
template<class Op,class T1>
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)

View File

@ -158,10 +158,19 @@ namespace Grid {
// tens of seconds per trajectory so this is clean in all reasonable cases,
// and margin of safety is orders of magnitude.
// We could hack Sitmo to skip in the higher order words of state if necessary
//
// Replace with 2^30 ; avoid problem on large volumes
//
/////////////////////////////////////////////////////////////////////////////////////
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
const int shift = 30;
uint64_t skip = site;
skip = skip<<40;
skip = skip<<shift;
assert((skip >> shift)==site); // check for overflow
eng.discard(skip);
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
}

View File

@ -49,7 +49,8 @@ inline double usecond(void) {
typedef std::chrono::system_clock GridClock;
typedef std::chrono::time_point<GridClock> GridTimePoint;
typedef std::chrono::milliseconds GridTime;
typedef std::chrono::milliseconds GridMillisecs;
typedef std::chrono::microseconds GridTime;
typedef std::chrono::microseconds GridUsecs;
inline std::ostream& operator<< (std::ostream & stream, const std::chrono::milliseconds & time)
@ -57,6 +58,11 @@ inline std::ostream& operator<< (std::ostream & stream, const std::chrono::milli
stream << time.count()<<" ms";
return stream;
}
inline std::ostream& operator<< (std::ostream & stream, const std::chrono::microseconds & time)
{
stream << time.count()<<" usec";
return stream;
}
class GridStopWatch {
private:

View File

@ -8,6 +8,7 @@
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -42,8 +43,58 @@ namespace Grid {
INHERIT_IMPL_TYPES(Impl);
public:
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m) {
this->MomentumSpacePropagatorHt(out,in,_m);
void FreePropagator(const FermionField &in,FermionField &out,RealD mass, std::vector<double> twist, bool fiveD) {
FermionField in_k(in._grid);
FermionField prop_k(in._grid);
FFT theFFT((GridCartesian *) in._grid);
//phase for boundary condition
ComplexField coor(in._grid);
ComplexField ph(in._grid); ph = zero;
FermionField in_buf(in._grid); in_buf = zero;
Complex ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
int shift = 0;
if(fiveD) shift = 1;
for(unsigned int nu = 0; nu < Nd; nu++)
{
// Shift coordinate lattice index by 1 to account for 5th dimension.
LatticeCoordinate(coor, nu + shift);
ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu+shift])));
}
in_buf = exp((Real)(2.0*M_PI)*ci*ph*(-1.0))*in;
if(fiveD){//FFT only on temporal and spatial dimensions
std::vector<int> mask(Nd+1,1); mask[0] = 0;
theFFT.FFT_dim_mask(in_k,in_buf,mask,FFT::forward);
this->MomentumSpacePropagatorHt_5d(prop_k,in_k,mass,twist);
theFFT.FFT_dim_mask(out,prop_k,mask,FFT::backward);
}
else{
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagatorHt(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
}
//phase for boundary condition
out = out * exp((Real)(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
bool fiveD = true; //5d propagator by default
FreePropagator(in,out,mass,twist,fiveD);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass, bool fiveD) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist,fiveD);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
bool fiveD = true; //5d propagator by default
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist,fiveD);
};
virtual void Instantiatable(void) {};

View File

@ -9,6 +9,7 @@
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -63,9 +64,12 @@ namespace Grid {
virtual RealD M (const FermionField &in, FermionField &out)=0;
virtual RealD Mdag (const FermionField &in, FermionField &out)=0;
// half checkerboard operaions
// Query the even even properties to make algorithmic decisions
virtual int ConstEE(void) { return 1; }; // clover returns zero as EE depends on gauge field
virtual int isTrivialEE(void) { return 0; };
virtual RealD Mass(void) {return 0.0;};
// half checkerboard operaions
virtual void Meooe (const FermionField &in, FermionField &out)=0;
virtual void MeooeDag (const FermionField &in, FermionField &out)=0;
virtual void Mooee (const FermionField &in, FermionField &out)=0;
@ -95,17 +99,38 @@ namespace Grid {
virtual void Mdir (const FermionField &in, FermionField &out,int dir,int disp)=0; // case by case Wilson, Clover, Cayley, ContFrac, PartFrac
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m) { assert(0);};
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) { assert(0);};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass,std::vector<double> twist) {
FFT theFFT((GridCartesian *) in._grid);
FermionField in_k(in._grid);
FermionField prop_k(in._grid);
theFFT.FFT_all_dim(in_k,in,FFT::forward);
this->MomentumSpacePropagator(prop_k,in_k,mass);
//phase for boundary condition
ComplexField coor(in._grid);
ComplexField ph(in._grid); ph = zero;
FermionField in_buf(in._grid); in_buf = zero;
Complex ci(0.0,1.0);
assert(twist.size() == Nd);//check that twist is Nd
for(unsigned int nu = 0; nu < Nd; nu++)
{
LatticeCoordinate(coor, nu);
ph = ph + twist[nu]*coor*((1./(in._grid->_fdimensions[nu])));
}
in_buf = exp((Real)(2.0*M_PI)*ci*ph*(-1.0))*in;
theFFT.FFT_all_dim(in_k,in_buf,FFT::forward);
this->MomentumSpacePropagator(prop_k,in_k,mass,twist);
theFFT.FFT_all_dim(out,prop_k,FFT::backward);
//phase for boundary condition
out = out * exp((Real)(2.0*M_PI)*ci*ph);
};
virtual void FreePropagator(const FermionField &in,FermionField &out,RealD mass) {
std::vector<double> twist(Nd,0.0); //default: periodic boundarys in all directions
FreePropagator(in,out,mass,twist);
};
///////////////////////////////////////////////

View File

@ -764,7 +764,12 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
inline void loadLinkElement(Simd &reg, ref &memory) {
reg = memory;
}
inline void InsertGaugeField(DoubledGaugeField &U_ds,
const GaugeLinkField &U,int mu)
{
PokeIndex<LorentzIndex>(U_ds, U, mu);
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term
DoubledGaugeField &Uds,
@ -803,8 +808,10 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
U = U *phases;
Udag = Udag *phases;
PokeIndex<LorentzIndex>(Uds, U, mu);
PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
InsertGaugeField(Uds,U,mu);
InsertGaugeField(Uds,Udag,mu+4);
// PokeIndex<LorentzIndex>(Uds, U, mu);
// PokeIndex<LorentzIndex>(Uds, Udag, mu + 4);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
@ -816,8 +823,8 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
UUU = UUU *phases;
UUUdag = UUUdag *phases;
PokeIndex<LorentzIndex>(UUUds, UUU, mu);
PokeIndex<LorentzIndex>(UUUds, UUUdag, mu+4);
InsertGaugeField(UUUds,UUU,mu);
InsertGaugeField(UUUds,UUUdag,mu+4);
}
}
@ -910,6 +917,23 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
mac(&phi(), &UU(), &chi());
}
inline void InsertGaugeField(DoubledGaugeField &U_ds,const GaugeLinkField &U,int mu)
{
GridBase *GaugeGrid = U_ds._grid;
parallel_for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
std::vector<int> lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, U_ds, lcoor);
peekLocalSite(ScalarU, U, lcoor);
ScalarUds(mu) = ScalarU();
}
}
inline void DoubleStore(GridBase *GaugeGrid,
DoubledGaugeField &UUUds, // for Naik term
DoubledGaugeField &Uds,
@ -951,23 +975,8 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
U = U *phases;
Udag = Udag *phases;
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
std::vector<int> lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, Uds, lcoor);
peekLocalSite(ScalarU, U, lcoor);
ScalarUds(mu) = ScalarU();
peekLocalSite(ScalarU, Udag, lcoor);
ScalarUds(mu + 4) = ScalarU();
pokeLocalSite(ScalarUds, Uds, lcoor);
}
InsertGaugeField(Uds,U,mu);
InsertGaugeField(Uds,Udag,mu+4);
// 3 hop based on thin links. Crazy huh ?
U = PeekIndex<LorentzIndex>(Uthin, mu);
@ -979,24 +988,8 @@ class StaggeredImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation:
UUU = UUU *phases;
UUUdag = UUUdag *phases;
for (int lidx = 0; lidx < GaugeGrid->lSites(); lidx++) {
SiteScalarGaugeLink ScalarU;
SiteDoubledGaugeField ScalarUds;
std::vector<int> lcoor;
GaugeGrid->LocalIndexToLocalCoor(lidx, lcoor);
peekLocalSite(ScalarUds, UUUds, lcoor);
peekLocalSite(ScalarU, UUU, lcoor);
ScalarUds(mu) = ScalarU();
peekLocalSite(ScalarU, UUUdag, lcoor);
ScalarUds(mu + 4) = ScalarU();
pokeLocalSite(ScalarUds, UUUds, lcoor);
}
InsertGaugeField(UUUds,UUU,mu);
InsertGaugeField(UUUds,UUUdag,mu+4);
}
}

View File

@ -44,6 +44,7 @@ ImprovedStaggeredFermionStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3, 3,
template <class Impl>
ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid,
RealD _mass,
RealD _c1, RealD _c2,RealD _u0,
const ImplParams &p)
: Kernels(p),
_grid(&Fgrid),
@ -62,6 +63,16 @@ ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GridCartesian &Fgrid, G
UUUmuOdd(&Hgrid) ,
_tmp(&Hgrid)
{
int vol4;
int LLs=1;
c1=_c1;
c2=_c2;
u0=_u0;
vol4= _grid->oSites();
Stencil.BuildSurfaceList(LLs,vol4);
vol4= _cbgrid->oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
}
template <class Impl>
@ -69,22 +80,10 @@ ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GaugeField &_Uthin, Gau
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _c2,RealD _u0,
const ImplParams &p)
: ImprovedStaggeredFermion(Fgrid,Hgrid,_mass,p)
: ImprovedStaggeredFermion(Fgrid,Hgrid,_mass,_c1,_c2,_u0,p)
{
c1=_c1;
c2=_c2;
u0=_u0;
ImportGauge(_Uthin,_Ufat);
}
template <class Impl>
ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GaugeField &_Uthin,GaugeField &_Utriple, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
const ImplParams &p)
: ImprovedStaggeredFermion(Fgrid,Hgrid,_mass,p)
{
ImportGaugeSimple(_Utriple,_Ufat);
}
////////////////////////////////////////////////////////////
// Momentum space propagator should be
@ -98,11 +97,6 @@ ImprovedStaggeredFermion<Impl>::ImprovedStaggeredFermion(GaugeField &_Uthin,Gaug
// of above link to implmement fourier based solver.
////////////////////////////////////////////////////////////
template <class Impl>
void ImprovedStaggeredFermion<Impl>::ImportGauge(const GaugeField &_Uthin)
{
ImportGauge(_Uthin,_Uthin);
};
template <class Impl>
void ImprovedStaggeredFermion<Impl>::ImportGaugeSimple(const GaugeField &_Utriple,const GaugeField &_Ufat)
{
/////////////////////////////////////////////////////////////////
@ -125,6 +119,20 @@ void ImprovedStaggeredFermion<Impl>::ImportGaugeSimple(const GaugeField &_Utripl
PokeIndex<LorentzIndex>(Umu, -U, mu+4);
}
CopyGaugeCheckerboards();
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U)
{
Umu = _U;
UUUmu = _UUU;
CopyGaugeCheckerboards();
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::CopyGaugeCheckerboards(void)
{
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven,UUUmu);
@ -160,10 +168,7 @@ void ImprovedStaggeredFermion<Impl>::ImportGauge(const GaugeField &_Uthin,const
PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4);
}
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven, UUUmu);
pickCheckerboard(Odd, UUUmuOdd, UUUmu);
CopyGaugeCheckerboards();
}
/////////////////////////////
@ -322,6 +327,7 @@ void ImprovedStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionF
template <class Impl>
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag) {
DhopCalls+=2;
conformable(in._grid, _grid); // verifies full grid
conformable(in._grid, out._grid);
@ -332,6 +338,7 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag) {
DhopCalls+=1;
conformable(in._grid, _cbgrid); // verifies half grid
conformable(in._grid, out._grid); // drops the cb check
@ -343,6 +350,7 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag) {
DhopCalls+=1;
conformable(in._grid, _cbgrid); // verifies half grid
conformable(in._grid, out._grid); // drops the cb check
@ -374,25 +382,193 @@ void ImprovedStaggeredFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out, int dag) {
FermionField &out, int dag)
{
#ifdef GRID_OMP
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else
#endif
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out, int dag)
{
#ifdef GRID_OMP
Compressor compressor;
int len = U._grid->oSites();
const int LLs = 1;
DhopTotalTime -= usecond();
DhopFaceTime -= usecond();
st.Prepare();
st.HaloGather(in,compressor);
st.CommsMergeSHM(compressor);
DhopFaceTime += usecond();
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Ugly explicit thread mapping introduced for OPA reasons.
//////////////////////////////////////////////////////////////////////////////////////////////////////
DhopComputeTime -= usecond();
#pragma omp parallel
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = len;
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
if (dag == DaggerYes) {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
// Interior = 1; Exterior = 0; must implement for staggered
Kernels::DhopSiteDag(st,lo,U,UUU,st.CommBuf(),1,sU,in,out,1,0);
}
} else {
for (int ss = myblock; ss < myblock+myn; ++ss) {
// Interior = 1; Exterior = 0;
int sU = ss;
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),1,sU,in,out,1,0);
}
}
} else {
st.CommunicateThreaded();
}
}
DhopComputeTime += usecond();
// First to enter, last to leave timing
DhopFaceTime -= usecond();
st.CommsMerge(compressor);
DhopFaceTime -= usecond();
DhopComputeTime2 -= usecond();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
Kernels::DhopSiteDag(st,lo,U,UUU,st.CommBuf(),1,sU,in,out,0,1);
}
} else {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),1,sU,in,out,0,1);
}
}
DhopComputeTime2 += usecond();
#else
assert(0);
#endif
}
template <class Impl>
void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out, int dag)
{
assert((dag == DaggerNo) || (dag == DaggerYes));
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
Compressor compressor;
st.HaloExchange(in, compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
if (dag == DaggerYes) {
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSiteDag(st, lo, U, UUU, st.CommBuf(), 1, sss, in, out);
}
} else {
PARALLEL_FOR_LOOP
for (int sss = 0; sss < in._grid->oSites(); sss++) {
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSite(st, lo, U, UUU, st.CommBuf(), 1, sss, in, out);
}
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
};
////////////////////////////////////////////////////////////////
// Reporting
////////////////////////////////////////////////////////////////
template<class Impl>
void ImprovedStaggeredFermion<Impl>::Report(void)
{
std::vector<int> latt = GridDefaultLatt();
RealD volume = 1; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
RealD NP = _grid->_Nprocessors;
RealD NN = _grid->NodeCount();
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion Number of DhopEO Calls : "
<< DhopCalls << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion TotalTime /Calls : "
<< DhopTotalTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion CommTime /Calls : "
<< DhopCommTime / DhopCalls << " us" << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion ComputeTime/Calls : "
<< DhopComputeTime / DhopCalls << " us" << std::endl;
// Average the compute time
_grid->GlobalSum(DhopComputeTime);
DhopComputeTime/=NP;
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
std::cout << GridLogMessage << "ImprovedStaggeredFermion Stencil" <<std::endl; Stencil.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilEven"<<std::endl; StencilEven.Report();
std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilOdd" <<std::endl; StencilOdd.Report();
}
template<class Impl>
void ImprovedStaggeredFermion<Impl>::ZeroCounters(void)
{
DhopCalls = 0;
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopFaceTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();
}
////////////////////////////////////////////////////////
// Conserved current - not yet implemented.
////////////////////////////////////////////////////////

View File

@ -49,6 +49,18 @@ class ImprovedStaggeredFermion : public StaggeredKernels<Impl>, public ImprovedS
FermionField _tmp;
FermionField &tmp(void) { return _tmp; }
////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////
void Report(void);
void ZeroCounters(void);
double DhopTotalTime;
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
///////////////////////////////////////////////////////////////
@ -105,25 +117,34 @@ class ImprovedStaggeredFermion : public StaggeredKernels<Impl>, public ImprovedS
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerialComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
const FermionField &in, FermionField &out, int dag);
// Constructor
//////////////////////////////////////////////////////////////////////////
// Grid own interface Constructor
//////////////////////////////////////////////////////////////////////////
ImprovedStaggeredFermion(GaugeField &_Uthin, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1=9.0/8.0, RealD _c2=-1.0/24.0,RealD _u0=1.0,
const ImplParams &p = ImplParams());
ImprovedStaggeredFermion(GaugeField &_Uthin, GaugeField &_Utriple, GaugeField &_Ufat, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1, RealD _c2,RealD _u0,
const ImplParams &p = ImplParams());
//////////////////////////////////////////////////////////////////////////
// MILC constructor no gauge fields
//////////////////////////////////////////////////////////////////////////
ImprovedStaggeredFermion(GridCartesian &Fgrid, GridRedBlackCartesian &Hgrid, RealD _mass,
RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
const ImplParams &p = ImplParams());
// DoubleStore impl dependent
void ImportGaugeSimple(const GaugeField &_Utriple, const GaugeField &_Ufat);
void ImportGauge(const GaugeField &_Uthin, const GaugeField &_Ufat);
void ImportGauge(const GaugeField &_Uthin);
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
void ImportGauge (const GaugeField &_Uthin ,const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU ,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
@ -132,7 +153,8 @@ class ImprovedStaggeredFermion : public StaggeredKernels<Impl>, public ImprovedS
// protected:
public:
// any other parameters of action ???
virtual int isTrivialEE(void) { return 1; };
virtual RealD Mass(void) { return mass; }
RealD mass;
RealD u0;
RealD c1;

View File

@ -41,8 +41,7 @@ ImprovedStaggeredFermion5DStatic::displacements({1, 1, 1, 1, -1, -1, -1, -1, 3,
// 5d lattice for DWF.
template<class Impl>
ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GaugeField &_Uthin,GaugeField &_Ufat,
GridCartesian &FiveDimGrid,
ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
@ -121,16 +120,74 @@ ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GaugeField &_Uthin,
assert(FiveDimGrid._simd_layout[0] ==1);
}
int LLs = FiveDimGrid._rdimensions[0];
int vol4= FourDimGrid.oSites();
Stencil.BuildSurfaceList(LLs,vol4);
// Allocate the required comms buffer
vol4=FourDimRedBlackGrid.oSites();
StencilEven.BuildSurfaceList(LLs,vol4);
StencilOdd.BuildSurfaceList(LLs,vol4);
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::CopyGaugeCheckerboards(void)
{
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven,UUUmu);
pickCheckerboard(Odd, UUUmuOdd, UUUmu);
}
template<class Impl>
ImprovedStaggeredFermion5D<Impl>::ImprovedStaggeredFermion5D(GaugeField &_Uthin,GaugeField &_Ufat,
GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
RealD _mass,
RealD _c1,RealD _c2, RealD _u0,
const ImplParams &p) :
ImprovedStaggeredFermion5D(FiveDimGrid,FiveDimRedBlackGrid,
FourDimGrid,FourDimRedBlackGrid,
_mass,_c1,_c2,_u0,p)
{
ImportGauge(_Uthin,_Ufat);
}
///////////////////////////////////////////////////
// For MILC use; pass three link U's and 1 link U
///////////////////////////////////////////////////
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::ImportGauge(const GaugeField &_Uthin)
void ImprovedStaggeredFermion5D<Impl>::ImportGaugeSimple(const GaugeField &_Utriple,const GaugeField &_Ufat)
{
ImportGauge(_Uthin,_Uthin);
};
/////////////////////////////////////////////////////////////////
// Trivial import; phases and fattening and such like preapplied
/////////////////////////////////////////////////////////////////
for (int mu = 0; mu < Nd; mu++) {
auto U = PeekIndex<LorentzIndex>(_Utriple, mu);
Impl::InsertGaugeField(UUUmu,U,mu);
U = adj( Cshift(U, mu, -3));
Impl::InsertGaugeField(UUUmu,-U,mu+4);
U = PeekIndex<LorentzIndex>(_Ufat, mu);
Impl::InsertGaugeField(Umu,U,mu);
U = adj( Cshift(U, mu, -1));
Impl::InsertGaugeField(Umu,-U,mu+4);
}
CopyGaugeCheckerboards();
}
template <class Impl>
void ImprovedStaggeredFermion5D<Impl>::ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U)
{
/////////////////////////////////////////////////////////////////
// Trivial import; phases and fattening and such like preapplied
/////////////////////////////////////////////////////////////////
Umu = _U;
UUUmu = _UUU;
CopyGaugeCheckerboards();
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat)
{
@ -159,10 +216,7 @@ void ImprovedStaggeredFermion5D<Impl>::ImportGauge(const GaugeField &_Uthin,cons
PokeIndex<LorentzIndex>(UUUmu, U*(-0.5*c2/u0/u0/u0), mu+4);
}
pickCheckerboard(Even, UmuEven, Umu);
pickCheckerboard(Odd, UmuOdd , Umu);
pickCheckerboard(Even, UUUmuEven, UUUmu);
pickCheckerboard(Odd, UUUmuOdd, UUUmu);
CopyGaugeCheckerboards();
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopDir(const FermionField &in, FermionField &out,int dir5,int disp)
@ -223,6 +277,162 @@ void ImprovedStaggeredFermion5D<Impl>::DhopDerivOE(GaugeField &mat,
assert(0);
}
/*CHANGE */
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef GRID_OMP
if ( StaggeredKernelsStatic::Comms == StaggeredKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,UUU,in,out,dag);
else
#endif
DhopInternalSerialComms(st,lo,U,UUU,in,out,dag);
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef GRID_OMP
// assert((dag==DaggerNo) ||(dag==DaggerYes));
Compressor compressor;
int LLs = in._grid->_rdimensions[0];
int len = U._grid->oSites();
DhopFaceTime-=usecond();
st.Prepare();
st.HaloGather(in,compressor);
// st.HaloExchangeOptGather(in,compressor); // Wilson compressor
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
DhopFaceTime+=usecond();
double ctime=0;
double ptime=0;
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Ugly explicit thread mapping introduced for OPA reasons.
//////////////////////////////////////////////////////////////////////////////////////////////////////
#pragma omp parallel reduction(max:ctime) reduction(max:ptime)
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
double start = usecond();
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = U._grid->oSites(); // 4d vol
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
if (dag == DaggerYes) {
for (int ss = myblock; ss < myblock+myn; ++ss) {
int sU = ss;
// Interior = 1; Exterior = 0; must implement for staggered
Kernels::DhopSiteDag(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out,1,0); //<---------
}
} else {
for (int ss = myblock; ss < myblock+myn; ++ss) {
// Interior = 1; Exterior = 0;
int sU = ss;
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out,1,0); //<------------
}
}
ptime = usecond() - start;
} else {
double start = usecond();
st.CommunicateThreaded();
ctime = usecond() - start;
}
}
DhopCommTime += ctime;
DhopComputeTime+=ptime;
// First to enter, last to leave timing
st.CollateThreads();
DhopFaceTime-=usecond();
st.CommsMerge(compressor);
DhopFaceTime+=usecond();
DhopComputeTime2-=usecond();
if (dag == DaggerYes) {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
Kernels::DhopSiteDag(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out,0,1); //<----------
}
} else {
int sz=st.surface_list.size();
parallel_for (int ss = 0; ss < sz; ss++) {
int sU = st.surface_list[ss];
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out,0,1);//<----------
}
}
DhopComputeTime2+=usecond();
#else
assert(0);
#endif
}
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
const FermionField &in, FermionField &out,int dag)
{
Compressor compressor;
int LLs = in._grid->_rdimensions[0];
//double t1=usecond();
DhopTotalTime -= usecond();
DhopCommTime -= usecond();
st.HaloExchange(in,compressor);
DhopCommTime += usecond();
DhopComputeTime -= usecond();
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
if (dag == DaggerYes) {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU=ss;
Kernels::DhopSiteDag(st, lo, U, UUU, st.CommBuf(), LLs, sU,in, out);
}
} else {
parallel_for (int ss = 0; ss < U._grid->oSites(); ss++) {
int sU=ss;
Kernels::DhopSite(st,lo,U,UUU,st.CommBuf(),LLs,sU,in,out);
}
}
DhopComputeTime += usecond();
DhopTotalTime += usecond();
//double t2=usecond();
//std::cout << __FILE__ << " " << __func__ << " Total Time " << DhopTotalTime << std::endl;
//std::cout << __FILE__ << " " << __func__ << " Total Time Org " << t2-t1 << std::endl;
//std::cout << __FILE__ << " " << __func__ << " Comml Time " << DhopCommTime << std::endl;
//std::cout << __FILE__ << " " << __func__ << " Compute Time " << DhopComputeTime << std::endl;
}
/*CHANGE END*/
/* ORG
template<class Impl>
void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
DoubledGaugeField & U,DoubledGaugeField & UUU,
@ -254,6 +464,7 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOr
DhopComputeTime += usecond();
DhopTotalTime += usecond();
}
*/
template<class Impl>
@ -336,6 +547,9 @@ void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void)
DhopTotalTime = 0;
DhopCommTime = 0;
DhopComputeTime = 0;
DhopFaceTime = 0;
Stencil.ZeroCounters();
StencilEven.ZeroCounters();
StencilOdd.ZeroCounters();

View File

@ -64,6 +64,8 @@ namespace QCD {
double DhopCalls;
double DhopCommTime;
double DhopComputeTime;
double DhopComputeTime2;
double DhopFaceTime;
///////////////////////////////////////////////////////////////
// Implement the abstract base
@ -119,7 +121,27 @@ namespace QCD {
FermionField &out,
int dag);
void DhopInternalOverlappedComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out,
int dag);
void DhopInternalSerialComms(StencilImpl & st,
LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
const FermionField &in,
FermionField &out,
int dag);
// Constructors
////////////////////////////////////////////////////////////////////////////////////////////////
// Grid internal interface -- Thin link and fat link, with coefficients
////////////////////////////////////////////////////////////////////////////////////////////////
ImprovedStaggeredFermion5D(GaugeField &_Uthin,
GaugeField &_Ufat,
GridCartesian &FiveDimGrid,
@ -127,17 +149,37 @@ namespace QCD {
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _mass,
RealD _c1=9.0/8.0, RealD _c2=-1.0/24.0,RealD _u0=1.0,
RealD _c1, RealD _c2,RealD _u0,
const ImplParams &p= ImplParams());
// DoubleStore
void ImportGauge(const GaugeField &_U);
void ImportGauge(const GaugeField &_Uthin,const GaugeField &_Ufat);
////////////////////////////////////////////////////////////////////////////////////////////////
// MILC constructor ; triple links, no rescale factors; must be externally pre multiplied
////////////////////////////////////////////////////////////////////////////////////////////////
ImprovedStaggeredFermion5D(GridCartesian &FiveDimGrid,
GridRedBlackCartesian &FiveDimRedBlackGrid,
GridCartesian &FourDimGrid,
GridRedBlackCartesian &FourDimRedBlackGrid,
double _mass,
RealD _c1=1.0, RealD _c2=1.0,RealD _u0=1.0,
const ImplParams &p= ImplParams());
// DoubleStore gauge field in operator
void ImportGauge (const GaugeField &_Uthin ) { assert(0); }
void ImportGauge (const GaugeField &_Uthin ,const GaugeField &_Ufat);
void ImportGaugeSimple(const GaugeField &_UUU,const GaugeField &_U);
void ImportGaugeSimple(const DoubledGaugeField &_UUU,const DoubledGaugeField &_U);
// Give a reference; can be used to do an assignment or copy back out after import
// if Carleton wants to cache them and not use the ImportSimple
DoubledGaugeField &GetU(void) { return Umu ; } ;
DoubledGaugeField &GetUUU(void) { return UUUmu; };
void CopyGaugeCheckerboards(void);
///////////////////////////////////////////////////////////////
// Data members require to support the functionality
///////////////////////////////////////////////////////////////
public:
virtual int isTrivialEE(void) { return 1; };
virtual RealD Mass(void) { return mass; }
GridBase *_FourDimGrid;
GridBase *_FourDimRedBlackGrid;

View File

@ -42,8 +42,8 @@ namespace Grid {
INHERIT_IMPL_TYPES(Impl);
public:
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m) {
this->MomentumSpacePropagatorHw(out,in,_m);
void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _m,std::vector<double> twist) {
this->MomentumSpacePropagatorHw(out,in,_m,twist);
};
// Constructors

View File

@ -32,223 +32,241 @@ namespace Grid {
namespace QCD {
int StaggeredKernelsStatic::Opt= StaggeredKernelsStatic::OptGeneric;
int StaggeredKernelsStatic::Comms = StaggeredKernelsStatic::CommsAndCompute;
#define GENERIC_STENCIL_LEG(U,Dir,skew,multLink) \
SE = st.GetEntry(ptype, Dir+skew, sF); \
if (SE->_is_local ) { \
if (SE->_permute) { \
chi_p = &chi; \
permute(chi, in._odata[SE->_offset], ptype); \
} else { \
chi_p = &in._odata[SE->_offset]; \
} \
} else { \
chi_p = &buf[SE->_offset]; \
} \
multLink(Uchi, U._odata[sU], *chi_p, Dir);
#define GENERIC_STENCIL_LEG_INT(U,Dir,skew,multLink) \
SE = st.GetEntry(ptype, Dir+skew, sF); \
if (SE->_is_local ) { \
if (SE->_permute) { \
chi_p = &chi; \
permute(chi, in._odata[SE->_offset], ptype); \
} else { \
chi_p = &in._odata[SE->_offset]; \
} \
} else if ( st.same_node[Dir] ) { \
chi_p = &buf[SE->_offset]; \
} \
if (SE->_is_local || st.same_node[Dir] ) { \
multLink(Uchi, U._odata[sU], *chi_p, Dir); \
}
#define GENERIC_STENCIL_LEG_EXT(U,Dir,skew,multLink) \
SE = st.GetEntry(ptype, Dir+skew, sF); \
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
nmu++; \
chi_p = &buf[SE->_offset]; \
multLink(Uchi, U._odata[sU], *chi_p, Dir); \
}
template <class Impl>
StaggeredKernels<Impl>::StaggeredKernels(const ImplParams &p) : Base(p){};
////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// Generic implementation; move to different file?
////////////////////////////////////////////
// Int, Ext, Int+Ext cases for comms overlap
////////////////////////////////////////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteDepth(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteSpinor *buf, int sF,
int sU, const FermionField &in, SiteSpinor &out,int threeLink) {
void StaggeredKernels<Impl>::DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out, int dag) {
const SiteSpinor *chi_p;
SiteSpinor chi;
SiteSpinor Uchi;
StencilEntry *SE;
int ptype;
int skew = 0;
if (threeLink) skew=8;
///////////////////////////
// Xp
///////////////////////////
int skew;
SE = st.GetEntry(ptype, Xp+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
skew = 0;
GENERIC_STENCIL_LEG(U,Xp,skew,Impl::multLink);
GENERIC_STENCIL_LEG(U,Yp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Zp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Tp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Xm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(U,Tm,skew,Impl::multLinkAdd);
skew=8;
GENERIC_STENCIL_LEG(UUU,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Yp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Zp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Tp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Xm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG(UUU,Tm,skew,Impl::multLinkAdd);
if ( dag ) {
Uchi = - Uchi;
}
vstream(out._odata[sF], Uchi);
}
Impl::multLink(Uchi, U._odata[sU], *chi_p, Xp);
///////////////////////////
// Yp
///////////////////////////
SE = st.GetEntry(ptype, Yp+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Yp);
///////////////////////////
// Zp
///////////////////////////
SE = st.GetEntry(ptype, Zp+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Zp);
///////////////////////////
// Tp
///////////////////////////
SE = st.GetEntry(ptype, Tp+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Tp);
///////////////////////////
// Xm
///////////////////////////
SE = st.GetEntry(ptype, Xm+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Xm);
///////////////////////////
// Ym
///////////////////////////
SE = st.GetEntry(ptype, Ym+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Ym);
///////////////////////////
// Zm
///////////////////////////
SE = st.GetEntry(ptype, Zm+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Zm);
///////////////////////////
// Tm
///////////////////////////
SE = st.GetEntry(ptype, Tm+skew, sF);
if (SE->_is_local) {
if (SE->_permute) {
chi_p = &chi;
permute(chi, in._odata[SE->_offset], ptype);
} else {
chi_p = &in._odata[SE->_offset];
}
} else {
chi_p = &buf[SE->_offset];
}
Impl::multLinkAdd(Uchi, U._odata[sU], *chi_p, Tm);
vstream(out, Uchi);
};
///////////////////////////////////////////////////
// Only contributions from interior of our node
///////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag) {
const SiteSpinor *chi_p;
SiteSpinor chi;
SiteSpinor Uchi;
StencilEntry *SE;
int ptype;
int skew ;
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
skew = 0;
Uchi=zero;
GENERIC_STENCIL_LEG_INT(U,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Yp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Zp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Tp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Xm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(U,Tm,skew,Impl::multLinkAdd);
skew=8;
GENERIC_STENCIL_LEG_INT(UUU,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Yp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Zp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Tp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Xm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_INT(UUU,Tm,skew,Impl::multLinkAdd);
if ( dag ) {
Uchi = - Uchi;
}
vstream(out._odata[sF], Uchi);
}
};
///////////////////////////////////////////////////
// Only contributions from exterior of our node
///////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag) {
const SiteSpinor *chi_p;
SiteSpinor chi;
SiteSpinor Uchi;
StencilEntry *SE;
int ptype;
int nmu=0;
int skew ;
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
skew = 0;
Uchi=zero;
GENERIC_STENCIL_LEG_EXT(U,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Yp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Zp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Tp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Xm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(U,Tm,skew,Impl::multLinkAdd);
skew=8;
GENERIC_STENCIL_LEG_EXT(UUU,Xp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Yp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Zp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Tp,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Xm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Ym,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Zm,skew,Impl::multLinkAdd);
GENERIC_STENCIL_LEG_EXT(UUU,Tm,skew,Impl::multLinkAdd);
if ( nmu ) {
if ( dag ) {
out._odata[sF] = out._odata[sF] - Uchi;
} else {
out._odata[sF] = out._odata[sF] + Uchi;
}
}
}
};
////////////////////////////////////////////////////////////////////////////////////
// Driving / wrapping routine to select right kernel
////////////////////////////////////////////////////////////////////////////////////
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out) {
SiteSpinor naik;
SiteSpinor naive;
int oneLink =0;
int threeLink=1;
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,
int interior,int exterior)
{
int dag=1;
switch(Opt) {
#ifdef AVX512
//FIXME; move the sign into the Asm routine
case OptInlineAsm:
DhopSiteAsm(st,lo,U,UUU,buf,LLs,sU,in,out);
for(int s=0;s<LLs;s++) {
int sF=s+LLs*sU;
out._odata[sF]=-out._odata[sF];
}
break;
#endif
case OptHandUnroll:
DhopSiteHand(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
break;
case OptGeneric:
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
DhopSiteDepth(st,lo,U,buf,sF,sU,in,naive,oneLink);
DhopSiteDepth(st,lo,UUU,buf,sF,sU,in,naik,threeLink);
out._odata[sF] =-naive-naik;
}
break;
default:
std::cout<<"Oops Opt = "<<Opt<<std::endl;
assert(0);
break;
}
DhopSite(st,lo,U,UUU,buf,LLs,sU,in,out,dag,interior,exterior);
};
template <class Impl>
void StaggeredKernels<Impl>::DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,
int interior,int exterior)
{
int dag=0;
DhopSite(st,lo,U,UUU,buf,LLs,sU,in,out,dag,interior,exterior);
};
template <class Impl>
void StaggeredKernels<Impl>::DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out)
int sU, const FermionField &in, FermionField &out,
int dag,int interior,int exterior)
{
int oneLink =0;
int threeLink=1;
SiteSpinor naik;
SiteSpinor naive;
int dag=0;
switch(Opt) {
#ifdef AVX512
case OptInlineAsm:
DhopSiteAsm(st,lo,U,UUU,buf,LLs,sU,in,out);
if ( interior && exterior ) {
DhopSiteAsm(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else {
std::cout << GridLogError << "Cannot overlap comms and compute with Staggered assembly"<<std::endl;
assert(0);
}
break;
#endif
case OptHandUnroll:
DhopSiteHand(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
if ( interior && exterior ) {
DhopSiteHand (st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( interior ) {
DhopSiteHandInt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( exterior ) {
DhopSiteHandExt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
}
break;
case OptGeneric:
for(int s=0;s<LLs;s++){
int sF=LLs*sU+s;
// assert(sF<in._odata.size());
// assert(sU< U._odata.size());
// assert(sF>=0); assert(sU>=0);
DhopSiteDepth(st,lo,U,buf,sF,sU,in,naive,oneLink);
DhopSiteDepth(st,lo,UUU,buf,sF,sU,in,naik,threeLink);
out._odata[sF] =naive+naik;
if ( interior && exterior ) {
DhopSiteGeneric (st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( interior ) {
DhopSiteGenericInt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
} else if ( exterior ) {
DhopSiteGenericExt(st,lo,U,UUU,buf,LLs,sU,in,out,dag);
}
break;
default:

View File

@ -38,8 +38,9 @@ namespace QCD {
class StaggeredKernelsStatic {
public:
enum { OptGeneric, OptHandUnroll, OptInlineAsm };
// S-direction is INNERMOST and takes no part in the parity.
static int Opt; // these are a temporary hack
enum { CommsAndCompute, CommsThenCompute };
static int Opt;
static int Comms;
};
template<class Impl> class StaggeredKernels : public FermionOperator<Impl> , public StaggeredKernelsStatic {
@ -53,24 +54,62 @@ public:
void DhopDir(StencilImpl &st, DoubledGaugeField &U, DoubledGaugeField &UUU, SiteSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out, int dir,int disp);
void DhopSiteDepth(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteSpinor * buf,
int sF, int sU, const FermionField &in, SiteSpinor &out,int threeLink);
///////////////////////////////////////////////////////////////////////////////////////
// Generic Nc kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteGeneric(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
void DhopSiteGenericInt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
void DhopSiteGenericExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
///////////////////////////////////////////////////////////////////////////////////////
// Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
void DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
void DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
void DhopSiteDepthHand(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteSpinor * buf,
int sF, int sU, const FermionField &in, SiteSpinor&out,int threeLink);
///////////////////////////////////////////////////////////////////////////////////////
// Asm Nc=3 specific kernels
///////////////////////////////////////////////////////////////////////////////////////
void DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag);
///////////////////////////////////////////////////////////////////////////////////////////////////
// Generic interface; fan out to right routine
///////////////////////////////////////////////////////////////////////////////////////////////////
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out, int interior=1,int exterior=1);
void DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, DoubledGaugeField &UUU,SiteSpinor * buf,
int LLs, int sU, const FermionField &in, FermionField &out, int dag);
void DhopSiteDag(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out, int interior=1,int exterior=1);
void DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU, SiteSpinor * buf,
int LLs, int sU, const FermionField &in, FermionField &out);
void DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, DoubledGaugeField &UUU, SiteSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void DhopSiteDag(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, DoubledGaugeField &UUU, SiteSpinor *buf,
int LLs, int sU, const FermionField &in, FermionField &out);
void DhopSite(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor * buf, int LLs, int sU,
const FermionField &in, FermionField &out, int dag, int interior,int exterior);
public:

View File

@ -560,16 +560,53 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
VSTORE(2,%0,pUChi_02) \
: : "r" (out) : "memory" );
#define nREDUCE(out) \
asm ( \
VADD(UChi_00,UChi_10,UChi_00) \
VADD(UChi_01,UChi_11,UChi_01) \
VADD(UChi_02,UChi_12,UChi_02) \
VADD(UChi_30,UChi_20,UChi_30) \
VADD(UChi_31,UChi_21,UChi_31) \
VADD(UChi_32,UChi_22,UChi_32) \
VADD(UChi_00,UChi_30,UChi_00) \
VADD(UChi_01,UChi_31,UChi_01) \
VADD(UChi_02,UChi_32,UChi_02) ); \
asm (VZERO(Chi_00) \
VSUB(UChi_00,Chi_00,UChi_00) \
VSUB(UChi_01,Chi_00,UChi_01) \
VSUB(UChi_02,Chi_00,UChi_02) ); \
asm ( \
VSTORE(0,%0,pUChi_00) \
VSTORE(1,%0,pUChi_01) \
VSTORE(2,%0,pUChi_02) \
: : "r" (out) : "memory" );
#define REDUCEa(out) \
asm ( \
VADD(UChi_00,UChi_10,UChi_00) \
VADD(UChi_01,UChi_11,UChi_01) \
VADD(UChi_02,UChi_12,UChi_02) ); \
asm ( \
VSTORE(0,%0,pUChi_00) \
VSTORE(1,%0,pUChi_01) \
VSTORE(2,%0,pUChi_02) \
: : "r" (out) : "memory" );
// FIXME is sign right in the VSUB ?
#define nREDUCEa(out) \
asm ( \
VSTORE(0,%0,pUChi_00) \
VSTORE(1,%0,pUChi_01) \
VSTORE(2,%0,pUChi_02) \
: : "r" (out) : "memory" );
VADD(UChi_00,UChi_10,UChi_00) \
VADD(UChi_01,UChi_11,UChi_01) \
VADD(UChi_02,UChi_12,UChi_02) ); \
asm (VZERO(Chi_00) \
VSUB(UChi_00,Chi_00,UChi_00) \
VSUB(UChi_01,Chi_00,UChi_01) \
VSUB(UChi_02,Chi_00,UChi_02) ); \
asm ( \
VSTORE(0,%0,pUChi_00) \
VSTORE(1,%0,pUChi_01) \
VSTORE(2,%0,pUChi_02) \
: : "r" (out) : "memory" );
#define PERMUTE_DIR(dir) \
permute##dir(Chi_0,Chi_0);\
@ -581,10 +618,9 @@ namespace QCD {
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out)
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
assert(0);
};
@ -645,10 +681,9 @@ void StaggeredKernels<Impl>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
// This is the single precision 5th direction vectorised kernel
#include <simd/Intel512single.h>
template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out)
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -685,7 +720,11 @@ template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl
MULT_ADD_LS(gauge0,gauge1,gauge2,gauge3);
addr0 = (uint64_t) &out._odata[sF];
REDUCE(addr0);
if ( dag ) {
nREDUCE(addr0);
} else {
REDUCE(addr0);
}
}
#else
assert(0);
@ -695,10 +734,9 @@ template <> void StaggeredKernels<StaggeredVec5dImplF>::DhopSiteAsm(StencilImpl
#include <simd/Intel512double.h>
template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out)
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -734,7 +772,11 @@ template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl
MULT_ADD_LS(gauge0,gauge1,gauge2,gauge3);
addr0 = (uint64_t) &out._odata[sF];
REDUCE(addr0);
if ( dag ) {
nREDUCE(addr0);
} else {
REDUCE(addr0);
}
}
#else
assert(0);
@ -776,10 +818,9 @@ template <> void StaggeredKernels<StaggeredVec5dImplD>::DhopSiteAsm(StencilImpl
#include <simd/Intel512single.h>
template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out)
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -832,7 +873,11 @@ template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st,
MULT_ADD_XYZT(gauge2,gauge3);
addr0 = (uint64_t) &out._odata[sF];
REDUCEa(addr0);
if ( dag ) {
nREDUCEa(addr0);
} else {
REDUCEa(addr0);
}
}
#else
assert(0);
@ -841,10 +886,9 @@ template <> void StaggeredKernels<StaggeredImplF>::DhopSiteAsm(StencilImpl &st,
#include <simd/Intel512double.h>
template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out)
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
#ifdef AVX512
uint64_t gauge0,gauge1,gauge2,gauge3;
@ -897,7 +941,11 @@ template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilImpl &st,
MULT_ADD_XYZT(gauge2,gauge3);
addr0 = (uint64_t) &out._odata[sF];
REDUCEa(addr0);
if ( dag ) {
nREDUCEa(addr0);
} else {
REDUCEa(addr0);
}
}
#else
assert(0);
@ -909,7 +957,7 @@ template <> void StaggeredKernels<StaggeredImplD>::DhopSiteAsm(StencilImpl &st,
DoubledGaugeField &U, \
DoubledGaugeField &UUU, \
SiteSpinor *buf, int LLs, \
int sU, const FermionField &in, FermionField &out);
int sU, const FermionField &in, FermionField &out,int dag);
KERNEL_INSTANTIATE(StaggeredKernels,DhopSiteAsm,StaggeredImplD);
KERNEL_INSTANTIATE(StaggeredKernels,DhopSiteAsm,StaggeredImplF);

View File

@ -28,7 +28,6 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
/* END LEGAL */
#include <Grid.h>
#define REGISTER
#define LOAD_CHI(b) \
const SiteSpinor & ref (b[offset]); \
@ -59,7 +58,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
UChi ## _1 += U_12*Chi_2;\
UChi ## _2 += U_22*Chi_2;
#define MULT_ADD(A,UChi) \
#define MULT_ADD(U,A,UChi) \
auto & ref(U._odata[sU](A)); \
Impl::loadLinkElement(U_00,ref()(0,0)); \
Impl::loadLinkElement(U_10,ref()(1,0)); \
@ -82,241 +81,319 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
#define PERMUTE_DIR(dir) \
permute##dir(Chi_0,Chi_0);\
permute##dir(Chi_1,Chi_1);\
permute##dir(Chi_2,Chi_2);
permute##dir(Chi_0,Chi_0); \
permute##dir(Chi_1,Chi_1); \
permute##dir(Chi_2,Chi_2);
#define HAND_STENCIL_LEG_BASE(Dir,Perm,skew) \
SE=st.GetEntry(ptype,Dir+skew,sF); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHI(in._odata); \
if ( perm) { \
PERMUTE_DIR(Perm); \
} \
} else { \
LOAD_CHI(buf); \
}
#define HAND_STENCIL_LEG_BEGIN(Dir,Perm,skew,even) \
HAND_STENCIL_LEG_BASE(Dir,Perm,skew) \
{ \
MULT(Dir,even); \
}
#define HAND_STENCIL_LEG(U,Dir,Perm,skew,even) \
HAND_STENCIL_LEG_BASE(Dir,Perm,skew) \
{ \
MULT_ADD(U,Dir,even); \
}
#define HAND_STENCIL_LEG_INT(U,Dir,Perm,skew,even) \
SE=st.GetEntry(ptype,Dir+skew,sF); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ( local ) { \
LOAD_CHI(in._odata); \
if ( perm) { \
PERMUTE_DIR(Perm); \
} \
} else if ( st.same_node[Dir] ) { \
LOAD_CHI(buf); \
} \
if (SE->_is_local || st.same_node[Dir] ) { \
MULT_ADD(U,Dir,even); \
}
#define HAND_STENCIL_LEG_EXT(U,Dir,Perm,skew,even) \
SE=st.GetEntry(ptype,Dir+skew,sF); \
offset = SE->_offset; \
local = SE->_is_local; \
perm = SE->_permute; \
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
nmu++; \
{ LOAD_CHI(buf); } \
{ MULT_ADD(U,Dir,even); } \
}
namespace Grid {
namespace QCD {
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs,
int sU, const FermionField &in, FermionField &out, int dag)
{
SiteSpinor naik;
SiteSpinor naive;
int oneLink =0;
int threeLink=1;
int skew(0);
Real scale(1.0);
if(dag) scale = -1.0;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
DhopSiteDepthHand(st,lo,U,buf,sF,sU,in,naive,oneLink);
DhopSiteDepthHand(st,lo,UUU,buf,sF,sU,in,naik,threeLink);
out._odata[sF] =scale*(naive+naik);
}
}
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteDepthHand(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
SiteSpinor *buf, int sF,
int sU, const FermionField &in, SiteSpinor &out,int threeLink)
void StaggeredKernels<Impl>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
REGISTER Simd even_0; // 12 regs on knc
REGISTER Simd even_1;
REGISTER Simd even_2;
REGISTER Simd odd_0; // 12 regs on knc
REGISTER Simd odd_1;
REGISTER Simd odd_2;
Simd even_0; // 12 regs on knc
Simd even_1;
Simd even_2;
Simd odd_0; // 12 regs on knc
Simd odd_1;
Simd odd_2;
REGISTER Simd Chi_0; // two spinor; 6 regs
REGISTER Simd Chi_1;
REGISTER Simd Chi_2;
REGISTER Simd U_00; // two rows of U matrix
REGISTER Simd U_10;
REGISTER Simd U_20;
REGISTER Simd U_01;
REGISTER Simd U_11;
REGISTER Simd U_21; // 2 reg left.
REGISTER Simd U_02;
REGISTER Simd U_12;
REGISTER Simd U_22;
int skew = 0;
if (threeLink) skew=8;
Simd Chi_0; // two spinor; 6 regs
Simd Chi_1;
Simd Chi_2;
Simd U_00; // two rows of U matrix
Simd U_10;
Simd U_20;
Simd U_01;
Simd U_11;
Simd U_21; // 2 reg left.
Simd U_02;
Simd U_12;
Simd U_22;
SiteSpinor result;
int offset,local,perm, ptype;
StencilEntry *SE;
int skew;
// Xp
SE=st.GetEntry(ptype,Xp+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT(Xp,even);
}
// Yp
SE=st.GetEntry(ptype,Yp+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT(Yp,odd);
}
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
// Zp
SE=st.GetEntry(ptype,Zp+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
skew = 0;
HAND_STENCIL_LEG_BEGIN(Xp,3,skew,even);
HAND_STENCIL_LEG_BEGIN(Yp,2,skew,odd);
HAND_STENCIL_LEG (U,Zp,1,skew,even);
HAND_STENCIL_LEG (U,Tp,0,skew,odd);
HAND_STENCIL_LEG (U,Xm,3,skew,even);
HAND_STENCIL_LEG (U,Ym,2,skew,odd);
HAND_STENCIL_LEG (U,Zm,1,skew,even);
HAND_STENCIL_LEG (U,Tm,0,skew,odd);
skew = 8;
HAND_STENCIL_LEG(UUU,Xp,3,skew,even);
HAND_STENCIL_LEG(UUU,Yp,2,skew,odd);
HAND_STENCIL_LEG(UUU,Zp,1,skew,even);
HAND_STENCIL_LEG(UUU,Tp,0,skew,odd);
HAND_STENCIL_LEG(UUU,Xm,3,skew,even);
HAND_STENCIL_LEG(UUU,Ym,2,skew,odd);
HAND_STENCIL_LEG(UUU,Zm,1,skew,even);
HAND_STENCIL_LEG(UUU,Tm,0,skew,odd);
if ( dag ) {
result()()(0) = - even_0 - odd_0;
result()()(1) = - even_1 - odd_1;
result()()(2) = - even_2 - odd_2;
} else {
result()()(0) = even_0 + odd_0;
result()()(1) = even_1 + odd_1;
result()()(2) = even_2 + odd_2;
}
} else {
LOAD_CHI(buf);
vstream(out._odata[sF],result);
}
{
MULT_ADD(Zp,even);
}
// Tp
SE=st.GetEntry(ptype,Tp+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT_ADD(Tp,odd);
}
// Xm
SE=st.GetEntry(ptype,Xm+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(3); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT_ADD(Xm,even);
}
// Ym
SE=st.GetEntry(ptype,Ym+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(2); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT_ADD(Ym,odd);
}
// Zm
SE=st.GetEntry(ptype,Zm+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(1); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT_ADD(Zm,even);
}
// Tm
SE=st.GetEntry(ptype,Tm+skew,sF);
offset = SE->_offset;
local = SE->_is_local;
perm = SE->_permute;
if ( local ) {
LOAD_CHI(in._odata);
if ( perm) {
PERMUTE_DIR(0); // T==0, Z==1, Y==2, Z==3 expect 1,2,2,2 simd layout etc...
}
} else {
LOAD_CHI(buf);
}
{
MULT_ADD(Tm,odd);
}
vstream(out()()(0),even_0+odd_0);
vstream(out()()(1),even_1+odd_1);
vstream(out()()(2),even_2+odd_2);
}
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
Simd even_0; // 12 regs on knc
Simd even_1;
Simd even_2;
Simd odd_0; // 12 regs on knc
Simd odd_1;
Simd odd_2;
Simd Chi_0; // two spinor; 6 regs
Simd Chi_1;
Simd Chi_2;
Simd U_00; // two rows of U matrix
Simd U_10;
Simd U_20;
Simd U_01;
Simd U_11;
Simd U_21; // 2 reg left.
Simd U_02;
Simd U_12;
Simd U_22;
SiteSpinor result;
int offset,local,perm, ptype;
StencilEntry *SE;
int skew;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
even_0 = zero; even_1 = zero; even_2 = zero;
odd_0 = zero; odd_1 = zero; odd_2 = zero;
skew = 0;
HAND_STENCIL_LEG_INT(U,Xp,3,skew,even);
HAND_STENCIL_LEG_INT(U,Yp,2,skew,odd);
HAND_STENCIL_LEG_INT(U,Zp,1,skew,even);
HAND_STENCIL_LEG_INT(U,Tp,0,skew,odd);
HAND_STENCIL_LEG_INT(U,Xm,3,skew,even);
HAND_STENCIL_LEG_INT(U,Ym,2,skew,odd);
HAND_STENCIL_LEG_INT(U,Zm,1,skew,even);
HAND_STENCIL_LEG_INT(U,Tm,0,skew,odd);
skew = 8;
HAND_STENCIL_LEG_INT(UUU,Xp,3,skew,even);
HAND_STENCIL_LEG_INT(UUU,Yp,2,skew,odd);
HAND_STENCIL_LEG_INT(UUU,Zp,1,skew,even);
HAND_STENCIL_LEG_INT(UUU,Tp,0,skew,odd);
HAND_STENCIL_LEG_INT(UUU,Xm,3,skew,even);
HAND_STENCIL_LEG_INT(UUU,Ym,2,skew,odd);
HAND_STENCIL_LEG_INT(UUU,Zm,1,skew,even);
HAND_STENCIL_LEG_INT(UUU,Tm,0,skew,odd);
// Assume every site must be connected to at least one interior point. No 1^4 subvols.
if ( dag ) {
result()()(0) = - even_0 - odd_0;
result()()(1) = - even_1 - odd_1;
result()()(2) = - even_2 - odd_2;
} else {
result()()(0) = even_0 + odd_0;
result()()(1) = even_1 + odd_1;
result()()(2) = even_2 + odd_2;
}
vstream(out._odata[sF],result);
}
}
template <class Impl>
void StaggeredKernels<Impl>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U, DoubledGaugeField &UUU,
SiteSpinor *buf, int LLs, int sU,
const FermionField &in, FermionField &out,int dag)
{
typedef typename Simd::scalar_type S;
typedef typename Simd::vector_type V;
Simd even_0; // 12 regs on knc
Simd even_1;
Simd even_2;
Simd odd_0; // 12 regs on knc
Simd odd_1;
Simd odd_2;
Simd Chi_0; // two spinor; 6 regs
Simd Chi_1;
Simd Chi_2;
Simd U_00; // two rows of U matrix
Simd U_10;
Simd U_20;
Simd U_01;
Simd U_11;
Simd U_21; // 2 reg left.
Simd U_02;
Simd U_12;
Simd U_22;
SiteSpinor result;
int offset,local,perm, ptype;
StencilEntry *SE;
int skew;
for(int s=0;s<LLs;s++){
int sF=s+LLs*sU;
even_0 = zero; even_1 = zero; even_2 = zero;
odd_0 = zero; odd_1 = zero; odd_2 = zero;
int nmu=0;
skew = 0;
HAND_STENCIL_LEG_EXT(U,Xp,3,skew,even);
HAND_STENCIL_LEG_EXT(U,Yp,2,skew,odd);
HAND_STENCIL_LEG_EXT(U,Zp,1,skew,even);
HAND_STENCIL_LEG_EXT(U,Tp,0,skew,odd);
HAND_STENCIL_LEG_EXT(U,Xm,3,skew,even);
HAND_STENCIL_LEG_EXT(U,Ym,2,skew,odd);
HAND_STENCIL_LEG_EXT(U,Zm,1,skew,even);
HAND_STENCIL_LEG_EXT(U,Tm,0,skew,odd);
skew = 8;
HAND_STENCIL_LEG_EXT(UUU,Xp,3,skew,even);
HAND_STENCIL_LEG_EXT(UUU,Yp,2,skew,odd);
HAND_STENCIL_LEG_EXT(UUU,Zp,1,skew,even);
HAND_STENCIL_LEG_EXT(UUU,Tp,0,skew,odd);
HAND_STENCIL_LEG_EXT(UUU,Xm,3,skew,even);
HAND_STENCIL_LEG_EXT(UUU,Ym,2,skew,odd);
HAND_STENCIL_LEG_EXT(UUU,Zm,1,skew,even);
HAND_STENCIL_LEG_EXT(UUU,Tm,0,skew,odd);
// Add sum of all exterior connected stencil legs
if ( nmu ) {
if ( dag ) {
result()()(0) = - even_0 - odd_0;
result()()(1) = - even_1 - odd_1;
result()()(2) = - even_2 - odd_2;
} else {
result()()(0) = even_0 + odd_0;
result()()(1) = even_1 + odd_1;
result()()(2) = even_2 + odd_2;
}
out._odata[sF] = out._odata[sF] + result;
}
}
}
#define DHOP_SITE_HAND_INSTANTIATE(IMPL) \
template void StaggeredKernels<IMPL>::DhopSiteHand(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeField &U,DoubledGaugeField &UUU, \
SiteSpinor *buf, int LLs, \
int sU, const FermionField &in, FermionField &out, int dag);
SiteSpinor *buf, int LLs, int sU, \
const FermionField &in, FermionField &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandInt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeField &U,DoubledGaugeField &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionField &in, FermionField &out, int dag); \
\
template void StaggeredKernels<IMPL>::DhopSiteHandExt(StencilImpl &st, LebesgueOrder &lo, \
DoubledGaugeField &U,DoubledGaugeField &UUU, \
SiteSpinor *buf, int LLs, int sU, \
const FermionField &in, FermionField &out, int dag); \
#define DHOP_SITE_DEPTH_HAND_INSTANTIATE(IMPL) \
template void StaggeredKernels<IMPL>::DhopSiteDepthHand(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, \
SiteSpinor *buf, int sF, \
int sU, const FermionField &in, SiteSpinor &out,int threeLink) ;
DHOP_SITE_HAND_INSTANTIATE(StaggeredImplD);
DHOP_SITE_HAND_INSTANTIATE(StaggeredImplF);
DHOP_SITE_HAND_INSTANTIATE(StaggeredVec5dImplD);
DHOP_SITE_HAND_INSTANTIATE(StaggeredVec5dImplF);
DHOP_SITE_DEPTH_HAND_INSTANTIATE(StaggeredImplD);
DHOP_SITE_DEPTH_HAND_INSTANTIATE(StaggeredImplF);
DHOP_SITE_DEPTH_HAND_INSTANTIATE(StaggeredVec5dImplD);
DHOP_SITE_DEPTH_HAND_INSTANTIATE(StaggeredVec5dImplF);
}}
}
}

View File

@ -274,41 +274,16 @@ public:
if ( timer4 ) std::cout << GridLogMessage << " timer4 " <<timer4 <<std::endl;
}
std::vector<int> same_node;
std::vector<int> surface_list;
WilsonStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances)
: CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances) ,
same_node(npoints)
: CartesianStencil<vobj,cobj> (grid,npoints,checkerboard,directions,distances)
{
ZeroCountersi();
surface_list.resize(0);
};
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
template < class compressor>
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
@ -369,23 +344,23 @@ public:
int dag = compress.dag;
int face_idx=0;
if ( dag ) {
assert(same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
assert(same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
assert(same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
assert(same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
assert(same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
assert(same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
assert(this->same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
assert(this->same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
assert(this->same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
assert(this->same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
assert(this->same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
assert(this->same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
} else {
assert(same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
assert(same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
assert(same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
assert(same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
assert(same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
assert(same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
assert(same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
assert(same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
assert(this->same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
assert(this->same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
assert(this->same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
assert(this->same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
assert(this->same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
assert(this->same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
}
this->face_table_computed=1;
assert(this->u_comm_offset==this->_unified_buffer_size);

View File

@ -162,7 +162,7 @@ void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
MooeeInv(in,out);
}
template<class Impl>
void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m)
void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m,std::vector<double> twist)
{
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
@ -195,6 +195,7 @@ void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const Fermi
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
wilson = wilson + 2.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
@ -348,15 +349,98 @@ void WilsonFermion<Impl>::DhopDirDisp(const FermionField &in, FermionField &out,
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopDir(Stencil, Umu, Stencil.CommBuf(), sss, sss, in, out, dirdisp, gamma);
}
};
}
/*Change starts*/
template <class Impl>
void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
#ifdef GRID_OMP
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
else
#endif
DhopInternalSerial(st,lo,U,in,out,dag);
}
template <class Impl>
void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
#ifdef GRID_OMP
Compressor compressor;
int len = U._grid->oSites();
const int LLs = 1;
st.Prepare();
st.HaloGather(in,compressor);
st.CommsMergeSHM(compressor);
#pragma omp parallel
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int ncomms = CartesianCommunicator::nCommThreads;
if (ncomms == -1) ncomms = 1;
assert(nthreads > ncomms);
if (tid >= ncomms) {
nthreads -= ncomms;
int ttid = tid - ncomms;
int n = len;
int chunk = n / nthreads;
int rem = n % nthreads;
int myblock, myn;
if (ttid < rem) {
myblock = ttid * chunk + ttid;
myn = chunk+1;
} else {
myblock = ttid*chunk + rem;
myn = chunk;
}
// do the compute
if (dag == DaggerYes) {
for (int sss = myblock; sss < myblock+myn; ++sss) {
Kernels::DhopSiteDag(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in, out);
}
} else {
for (int sss = myblock; sss < myblock+myn; ++sss) {
Kernels::DhopSite(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in, out);
}
} //else
} else {
st.CommunicateThreaded();
}
Compressor compressor(dag);
if (dag == DaggerYes) {
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSiteDag(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in, out);
}
} else {
parallel_for (int sss = 0; sss < in._grid->oSites(); sss++) {
Kernels::DhopSite(st, lo, U, st.CommBuf(), sss, sss, 1, 1, in, out);
}
}
} //pragma
#else
assert(0);
#endif
};
template <class Impl>
void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
DoubledGaugeField &U,
const FermionField &in,
FermionField &out, int dag) {
assert((dag == DaggerNo) || (dag == DaggerYes));
Compressor compressor(dag);
st.HaloExchange(in, compressor);
@ -370,6 +454,7 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
}
}
};
/*Change ends */
/*******************************************************************************
* Conserved current utilities for Wilson fermions, for contracting propagators

View File

@ -96,7 +96,7 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
virtual void MooeeInv(const FermionField &in, FermionField &out);
virtual void MooeeInvDag(const FermionField &in, FermionField &out);
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass) ;
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass,std::vector<double> twist) ;
////////////////////////
// Derivative interface
@ -130,6 +130,12 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
void DhopInternal(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
void DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U,
const FermionField &in, FermionField &out, int dag);
// Constructor
WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
GridRedBlackCartesian &Hgrid, RealD _mass,
@ -145,6 +151,8 @@ class WilsonFermion : public WilsonKernels<Impl>, public WilsonFermionStatic {
// protected:
public:
virtual RealD Mass(void) { return mass; }
virtual int isTrivialEE(void) { return 1; };
RealD mass;
RealD diag_mass;

View File

@ -13,6 +13,7 @@ Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Guido Cossu <guido.cossu@ed.ac.uk>
Author: Andrew Lawson <andrew.lawson1991@gmail.com>
Author: Vera Guelpers <V.M.Guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -445,8 +446,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
}
}
ptime = usecond() - start;
}
{
} else {
double start = usecond();
st.CommunicateThreaded();
ctime = usecond() - start;
@ -563,7 +563,221 @@ void WilsonFermion5D<Impl>::DW(const FermionField &in, FermionField &out,int dag
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const FermionField &in, RealD mass)
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in, RealD mass,std::vector<double> twist)
{
// what type LatticeComplex
GridBase *_grid = _FourDimGrid;
GridBase *_5dgrid = _FiveDimGrid;
conformable(_5dgrid,out._grid);
FermionField PRsource(_5dgrid);
FermionField PLsource(_5dgrid);
FermionField buf1_4d(_grid);
FermionField buf2_4d(_grid);
FermionField GR(_5dgrid);
FermionField GL(_5dgrid);
FermionField bufL_4d(_grid);
FermionField bufR_4d(_grid);
unsigned int Ls = in._grid->_rdimensions[0];
typedef typename FermionField::vector_type vector_type;
typedef typename FermionField::scalar_type ScalComplex;
typedef iSinglet<ScalComplex> Tcomplex;
typedef Lattice<iSinglet<vector_type> > LatComplex;
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
Gamma g5(Gamma::Algebra::Gamma5);
std::vector<int> latt_size = _grid->_fdimensions;
LatComplex sk(_grid); sk = zero;
LatComplex sk2(_grid); sk2= zero;
LatComplex W(_grid); W= zero;
LatComplex a(_grid); a= zero;
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
LatComplex cosha(_grid);
LatComplex kmu(_grid);
LatComplex Wea(_grid);
LatComplex Wema(_grid);
LatComplex sinha(_grid);
LatComplex sinhaLs(_grid);
LatComplex coshaLs(_grid);
LatComplex A(_grid);
LatComplex F(_grid);
LatComplex App(_grid);
LatComplex Amm(_grid);
LatComplex Bpp(_grid);
LatComplex Bmm(_grid);
LatComplex ABpm(_grid); //Apm=Amp=Bpm=Bmp
LatComplex signW(_grid);
ScalComplex ci(0.0,1.0);
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu) *sin(kmu);
}
W = one - M5 + sk2;
////////////////////////////////////////////
// Cosh alpha -> alpha
////////////////////////////////////////////
cosha = (one + W*W + sk) / (abs(W)*2.0);
// FIXME Need a Lattice acosh
for(int idx=0;idx<_grid->lSites();idx++){
std::vector<int> lcoor(Nd);
Tcomplex cc;
RealD sgn;
_grid->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(cc,cosha,lcoor);
assert((double)real(cc)>=1.0);
assert(fabs((double)imag(cc))<=1.0e-15);
cc = ScalComplex(::acosh(real(cc)),0.0);
pokeLocalSite(cc,a,lcoor);
}
Wea = ( exp( a) * abs(W) );
Wema= ( exp(-a) * abs(W) );
sinha = 0.5*(exp( a) - exp(-a));
sinhaLs = 0.5*(exp( a*Ls) - exp(-a*Ls));
coshaLs = 0.5*(exp( a*Ls) + exp(-a*Ls));
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
F = exp( a*Ls) * (one - Wea + (Wema - one) * mass*mass);
F = F + exp(-a*Ls) * (Wema - one + (one - Wea) * mass*mass);
F = F - abs(W) * sinha * 4.0 * mass;
Bpp = (A/F) * (exp(-a*Ls*2.0) - one) * (one - Wema) * (one - mass*mass * one);
Bmm = (A/F) * (one - exp(a*Ls*2.0)) * (one - Wea) * (one - mass*mass * one);
App = (A/F) * (exp(-a*Ls*2.0) - one) * exp(-a) * (exp(-a) - abs(W)) * (one - mass*mass * one);
Amm = (A/F) * (one - exp(a*Ls*2.0)) * exp(a) * (exp(a) - abs(W)) * (one - mass*mass * one);
ABpm = (A/F) * abs(W) * sinha * 2.0 * (one + mass * coshaLs * 2.0 + mass*mass * one);
//P+ source, P- source
PRsource = (in + g5 * in) * 0.5;
PLsource = (in - g5 * in) * 0.5;
//calculate GR, GL
for(unsigned int ss=1;ss<=Ls;ss++)
{
bufR_4d = zero;
bufL_4d = zero;
for(unsigned int tt=1;tt<=Ls;tt++)
{
//possible sign if W<0
if((ss+tt)%2==1) signW = abs(W)/W;
else signW = one;
unsigned int f = (ss > tt) ? ss-tt : tt-ss; //f = abs(ss-tt)
//GR
buf1_4d = zero;
ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
//G(s,t)
bufR_4d = bufR_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf1_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf1_4d;
//A++*exp(a(s+t))
bufR_4d = bufR_4d + App * exp(a*ss) * exp(a*tt) * signW * buf1_4d ;
//A+-*exp(a(s-t))
bufR_4d = bufR_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf1_4d ;
//A-+*exp(a(-s+t))
bufR_4d = bufR_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf1_4d ;
//A--*exp(a(-s-t))
bufR_4d = bufR_4d + Amm * exp(-a*ss) * exp(-a*tt) * signW * buf1_4d ;
//GL
buf2_4d = zero;
ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
//G(s,t)
bufL_4d = bufL_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf2_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf2_4d;
//B++*exp(a(s+t))
bufL_4d = bufL_4d + Bpp * exp(a*ss) * exp(a*tt) * signW * buf2_4d ;
//B+-*exp(a(s-t))
bufL_4d = bufL_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf2_4d ;
//B-+*exp(a(-s+t))
bufL_4d = bufL_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf2_4d ;
//B--*exp(a(-s-t))
bufL_4d = bufL_4d + Bmm * exp(-a*ss) * exp(-a*tt) * signW * buf2_4d ;
}
InsertSlice(bufR_4d, GR, (ss-1), 0);
InsertSlice(bufL_4d, GL, (ss-1), 0);
}
//calculate propagator
for(unsigned int ss=1;ss<=Ls;ss++)
{
bufR_4d = zero;
bufL_4d = zero;
//(i*gamma_mu*sin(p_mu) - W)*(GL*P- source)
buf1_4d = zero;
ExtractSlice(buf1_4d, GL, (ss-1), 0);
buf2_4d = zero;
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu + TwoPiL * one * twist[mu];//twisted boundary
buf2_4d = buf2_4d + sin(kmu)*ci*(Gamma(Gmu[mu])*buf1_4d);
}
bufL_4d = buf2_4d - W * buf1_4d;
//(i*gamma_mu*sin(p_mu) - W)*(GR*P+ source)
buf1_4d = zero;
ExtractSlice(buf1_4d, GR, (ss-1), 0);
buf2_4d = zero;
for(int mu=0;mu<Nd;mu++) {
LatticeCoordinate(kmu,mu);
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu + TwoPiL * one * twist[mu];//twisted boundary
buf2_4d = buf2_4d + sin(kmu)*ci*(Gamma(Gmu[mu])*buf1_4d);
}
bufR_4d = buf2_4d - W * buf1_4d;
//(delta(s-1,u) - m*delta(s,1)*delta(u,Ls))*GL
if(ss==1){
ExtractSlice(buf1_4d, GL, (Ls-1), 0);
bufL_4d = bufL_4d - mass*buf1_4d;
}
else {
ExtractSlice(buf1_4d, GL, (ss-2), 0);
bufL_4d = bufL_4d + buf1_4d;
}
//(delta(s+1,u) - m*delta(s,Ls)*delta(u,1))*GR
if(ss==Ls){
ExtractSlice(buf1_4d, GR, 0, 0);
bufR_4d = bufR_4d - mass*buf1_4d;
}
else {
ExtractSlice(buf1_4d, GR, ss, 0);
bufR_4d = bufR_4d + buf1_4d;
}
buf1_4d = bufL_4d + bufR_4d;
InsertSlice(buf1_4d, out, (ss-1), 0);
}
out = out * (-1.0);
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const FermionField &in, RealD mass,std::vector<double> twist)
{
// what type LatticeComplex
GridBase *_grid = _FourDimGrid;
@ -606,6 +820,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu) *sin(kmu);
@ -619,7 +834,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
////////////////////////////////////////////
// Cosh alpha -> alpha
////////////////////////////////////////////
cosha = (one + W*W + sk) / (W*2.0);
cosha = (one + W*W + sk) / (abs(W)*2.0);
// FIXME Need a Lattice acosh
for(int idx=0;idx<_grid->lSites();idx++){
@ -634,8 +849,8 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
pokeLocalSite(cc,a,lcoor);
}
Wea = ( exp( a) * W );
Wema= ( exp(-a) * W );
Wea = ( exp( a) * abs(W) );
Wema= ( exp(-a) * abs(W) );
num = num + ( one - Wema ) * mass * in;
denom= ( Wea - one ) + mass*mass * (one - Wema);
@ -643,7 +858,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
}
template<class Impl>
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass)
void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist)
{
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
@ -683,6 +898,7 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHw(FermionField &out,const Fe
RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
kmu = TwoPiL * kmu;
kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
sk2 = sk2 + 2.0*sin(kmu*0.5)*sin(kmu*0.5);
sk = sk + sin(kmu)*sin(kmu);

View File

@ -118,8 +118,9 @@ namespace QCD {
virtual void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
virtual void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag);
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass) ;
void MomentumSpacePropagatorHt_5d(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHt(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
void MomentumSpacePropagatorHw(FermionField &out,const FermionField &in,RealD mass,std::vector<double> twist) ;
// Implement hopping term non-hermitian hopping term; half cb or both
// Implement s-diagonal DW

View File

@ -53,7 +53,7 @@ template<class Impl> class WilsonKernels : public FermionOperator<Impl> , public
typedef FermionOperator<Impl> Base;
public:
template <bool EnableBool = true>
typename std::enable_if<Impl::isFundamental==true && Nc == 3 &&EnableBool, void>::type
DhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
@ -70,27 +70,27 @@ public:
break;
#endif
case OptHandUnroll:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if(interior&&exterior) WilsonKernels<Impl>::HandDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::HandDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::HandDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
}
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if(interior&&exterior) WilsonKernels<Impl>::HandDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::HandDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::HandDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
sF++;
}
sU++;
}
break;
case OptGeneric:
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
}
for (int site = 0; site < Ns; site++) {
for (int s = 0; s < Ls; s++) {
if(interior&&exterior) WilsonKernels<Impl>::GenericDhopSite(st,lo,U,buf,sF,sU,in,out);
else if (interior) WilsonKernels<Impl>::GenericDhopSiteInt(st,lo,U,buf,sF,sU,in,out);
else if (exterior) WilsonKernels<Impl>::GenericDhopSiteExt(st,lo,U,buf,sF,sU,in,out);
else assert(0);
sF++;
}
sU++;
}
break;
default:
assert(0);
@ -232,6 +232,7 @@ private:
void GenericDhopSiteDagExt(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, const FermionField &in, FermionField &out);
void AsmDhopSite(StencilImpl &st, LebesgueOrder &lo, DoubledGaugeField &U, SiteHalfSpinor * buf,
int sF, int sU, int Ls, int Ns, const FermionField &in,FermionField &out);

View File

@ -150,7 +150,9 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
std::vector<int> _distances;
std::vector<int> _comm_buf_size;
std::vector<int> _permute_type;
std::vector<int> same_node;
std::vector<int> surface_list;
Vector<StencilEntry> _entries;
std::vector<Packet> Packets;
std::vector<Merge> Mergers;
@ -201,7 +203,7 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
int dimension = _directions[point];
int displacement = _distances[point];
assert( (displacement==1) || (displacement==-1));
int pd = _grid->_processors[dimension];
int fd = _grid->_fdimensions[dimension];
@ -216,9 +218,12 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
if ( ! comm_dim ) return 1;
int nbr_proc;
if (displacement==1) nbr_proc = 1;
else nbr_proc = pd-1;
if (displacement>0) nbr_proc = 1;
else nbr_proc = pd-1;
// FIXME this logic needs to be sorted for three link term
// assert( (displacement==1) || (displacement==-1));
// Present hack only works for >= 4^4 subvol per node
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
void *shm = (void *) _grid->ShmBufferTranslate(recv_from_rank,u_recv_buf_p);
@ -539,6 +544,29 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
}
};
// Move interior/exterior split into the generic stencil
// FIXME Explicit Ls in interface is a pain. Should just use a vol
void BuildSurfaceList(int Ls,int vol4){
// find same node for SHM
// Here we know the distance is 1 for WilsonStencil
for(int point=0;point<this->_npoints;point++){
same_node[point] = this->SameNode(point);
}
for(int site = 0 ;site< vol4;site++){
int local = 1;
for(int point=0;point<this->_npoints;point++){
if( (!this->GetNodeLocal(site*Ls,point)) && (!same_node[point]) ){
local = 0;
}
}
if(local == 0) {
surface_list.push_back(site);
}
}
}
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
@ -549,7 +577,8 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
comm_bytes_thr(npoints),
comm_enter_thr(npoints),
comm_leave_thr(npoints),
comm_time_thr(npoints)
comm_time_thr(npoints),
same_node(npoints)
{
face_table_computed=0;
_npoints = npoints;
@ -557,6 +586,7 @@ class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal
_directions = directions;
_distances = distances;
_unified_buffer_size=0;
surface_list.resize(0);
int osites = _grid->oSites();

View File

@ -368,8 +368,10 @@ void Grid_init(int *argc,char ***argv)
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-overlap") ){
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsAndCompute;
QCD::StaggeredKernelsStatic::Comms = QCD::StaggeredKernelsStatic::CommsAndCompute;
} else {
QCD::WilsonKernelsStatic::Comms = QCD::WilsonKernelsStatic::CommsThenCompute;
QCD::StaggeredKernelsStatic::Comms = QCD::StaggeredKernelsStatic::CommsThenCompute;
}
if( GridCmdOptionExists(*argv,*argv+*argc,"--comms-concurrent") ){
CartesianCommunicator::SetCommunicatorPolicy(CartesianCommunicator::CommunicatorPolicyConcurrent);

View File

@ -309,7 +309,8 @@ int main (int argc, char ** argv)
// Momentum space prop
std::cout << " Solving by FFT and Feynman rules" <<std::endl;
Ddwf.FreePropagator(src,ref,mass) ;
bool fiveD = false; //calculate 4d free propagator
Ddwf.FreePropagator(src,ref,mass,fiveD) ;
Gamma G5(Gamma::Algebra::Gamma5);

View File

@ -141,6 +141,7 @@ int main (int argc, char ** argv)
t1=usecond();
std::cout<<GridLogMessage << "Called Ds ASM"<<std::endl;
std::cout<<GridLogMessage << "norm src "<< norm2(src)<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
@ -160,7 +161,8 @@ int main (int argc, char ** argv)
localConvert(sresult,tmp);
std::cout<<GridLogMessage << "Called sDs unroll"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(sresult)<<std::endl;
std::cout<<GridLogMessage << "norm ssrc "<< norm2(ssrc)<<std::endl;
std::cout<<GridLogMessage << "norm sresult "<< norm2(sresult)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
@ -181,6 +183,7 @@ int main (int argc, char ** argv)
localConvert(sresult,tmp);
std::cout<<GridLogMessage << "Called sDs asm"<<std::endl;
std::cout<<GridLogMessage << "norm ssrc "<< norm2(ssrc)<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(sresult)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)*extra<<std::endl;

View File

@ -0,0 +1,196 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_wilson.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplexF::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
std::cout << GridLogMessage << "Making s innermost grids"<<std::endl;
GridCartesian * sUGrid = SpaceTimeGrid::makeFourDimDWFGrid(GridDefaultLatt(),GridDefaultMpi());
GridRedBlackCartesian * sUrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(sUGrid);
GridCartesian * sFGrid = SpaceTimeGrid::makeFiveDimDWFGrid(Ls,UGrid);
GridRedBlackCartesian * sFrbGrid = SpaceTimeGrid::makeFiveDimDWFRedBlackGrid(Ls,UGrid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG4(UGrid);
GridParallelRNG pRNG5(FGrid);
pRNG4.SeedFixedIntegers(seeds);
pRNG5.SeedFixedIntegers(seeds);
typedef typename ImprovedStaggeredFermion5DF::FermionField FermionField;
typedef typename ImprovedStaggeredFermion5DF::ComplexField ComplexField;
typename ImprovedStaggeredFermion5DF::ImplParams params;
FermionField src (FGrid);
random(pRNG5,src);
/*
std::vector<int> site({0,1,2,0,0});
ColourVector cv = zero;
cv()()(0)=1.0;
src = zero;
pokeSite(cv,src,site);
*/
FermionField result(FGrid); result=zero;
FermionField tmp(FGrid); tmp=zero;
FermionField err(FGrid); tmp=zero;
FermionField phi (FGrid); random(pRNG5,phi);
FermionField chi (FGrid); random(pRNG5,chi);
LatticeGaugeFieldF Umu(UGrid);
SU3::HotConfiguration(pRNG4,Umu);
/*
for(int mu=1;mu<4;mu++){
auto tmp = PeekIndex<LorentzIndex>(Umu,mu);
tmp = zero;
PokeIndex<LorentzIndex>(Umu,tmp,mu);
}
*/
double volume=Ls;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.1;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermion5DF Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,c1,c2,u0,params);
ImprovedStaggeredFermionVec5dF sDs(Umu,Umu,*sFGrid,*sFrbGrid,*sUGrid,*sUrbGrid,mass,c1,c2,u0,params);
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
std::cout<<GridLogMessage<<"= Testing Dhop against cshift implementation "<<std::endl;
std::cout<<GridLogMessage<<"=========================================================="<<std::endl;
int ncall=1000;
int ncall1=1000;
double t0(0),t1(0);
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "Calling staggered operator"<<std::endl;
t0=usecond();
for(int i=0;i<ncall1;i++){
Ds.Dhop(src,result,0);
}
t1=usecond();
std::cout<<GridLogMessage << "Called Ds"<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(result)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
std::cout<<GridLogMessage << "Calling vectorised staggered operator"<<std::endl;
#ifdef AVX512
QCD::StaggeredKernelsStatic::Opt=QCD::StaggeredKernelsStatic::OptInlineAsm;
#else
QCD::StaggeredKernelsStatic::Opt=QCD::StaggeredKernelsStatic::OptGeneric;
#endif
t0=usecond();
for(int i=0;i<ncall1;i++){
Ds.Dhop(src,tmp,0);
}
t1=usecond();
std::cout<<GridLogMessage << "Called Ds ASM"<<std::endl;
std::cout<<GridLogMessage << "norm src "<< norm2(src)<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(tmp)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
err = tmp-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
FermionField ssrc (sFGrid); localConvert(src,ssrc);
FermionField sresult(sFGrid); sresult=zero;
QCD::StaggeredKernelsStatic::Opt=QCD::StaggeredKernelsStatic::OptHandUnroll;
t0=usecond();
for(int i=0;i<ncall1;i++){
sDs.Dhop(ssrc,sresult,0);
}
t1=usecond();
localConvert(sresult,tmp);
std::cout<<GridLogMessage << "Called sDs unroll"<<std::endl;
std::cout<<GridLogMessage << "norm ssrc "<< norm2(ssrc)<<std::endl;
std::cout<<GridLogMessage << "norm sresult "<< norm2(sresult)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)<<std::endl;
#ifdef AVX512
QCD::StaggeredKernelsStatic::Opt=QCD::StaggeredKernelsStatic::OptInlineAsm;
#else
QCD::StaggeredKernelsStatic::Opt=QCD::StaggeredKernelsStatic::OptGeneric;
#endif
err = tmp-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
int extra=1;
t0=usecond();
for(int i=0;i<ncall1*extra;i++){
sDs.Dhop(ssrc,sresult,0);
}
t1=usecond();
localConvert(sresult,tmp);
std::cout<<GridLogMessage << "Called sDs asm"<<std::endl;
std::cout<<GridLogMessage << "norm ssrc "<< norm2(ssrc)<<std::endl;
std::cout<<GridLogMessage << "norm result "<< norm2(sresult)<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t1-t0)*extra<<std::endl;
err = tmp-result;
std::cout<<GridLogMessage << "norm diff "<< norm2(err)<<std::endl;
Grid_finalize();
}

View File

@ -190,7 +190,7 @@ int main(int argc, char *argv[])
mesPar.output = "QED/pt_" + flavour[i] + flavour[j];
mesPar.q1 = "Qpt_" + flavour[i];
mesPar.q2 = "Qpt_" + flavour[j];
mesPar.gammas = "<Gamma5 Gamma5>";
mesPar.gammas = "(Gamma5 Gamma5)";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_pt_"
+ flavour[i] + flavour[j],
@ -204,7 +204,7 @@ int main(int argc, char *argv[])
+ flavour[i] + "__" + flavour[j];
mesPar_seq_T.q1 = "Qpt_" + flavour[i] + "_seq_T" + flavour[i];
mesPar_seq_T.q2 = "Qpt_" + flavour[j];
mesPar_seq_T.gammas = "<Gamma5 Gamma5>";
mesPar_seq_T.gammas = "(Gamma5 Gamma5)";
mesPar_seq_T.sink = "sink";
application.createModule<MContraction::Meson>("meson_tadpole_pt_" +
flavour[i] + "_seq_T"
@ -220,7 +220,7 @@ int main(int argc, char *argv[])
+ flavour[j];
mesPar_seq_E.q1 = "Qpt_" + flavour[i] + "_seq_V_ph_" + flavour[i];
mesPar_seq_E.q2 = "Qpt_" + flavour[j] + "_seq_V_ph_" + flavour[j];
mesPar_seq_E.gammas = "<Gamma5 Gamma5>";
mesPar_seq_E.gammas = "(Gamma5 Gamma5)";
mesPar_seq_E.sink = "sink";
application.createModule<MContraction::Meson>("meson_exchange_pt_"
+ flavour[i] + "_seq_V_ph_" + flavour[i]
@ -237,7 +237,7 @@ int main(int argc, char *argv[])
mesPar_seq_S.q1 = "Qpt_" + flavour[i] + "_seq_V_ph_" + flavour[i]
+ "_seq_V_ph_" + flavour[i];
mesPar_seq_S.q2 = "Qpt_" + flavour[j];
mesPar_seq_S.gammas = "<Gamma5 Gamma5>";
mesPar_seq_S.gammas = "(Gamma5 Gamma5)";
mesPar_seq_S.sink = "sink";
application.createModule<MContraction::Meson>("meson_selfenergy_pt_"
+ flavour[i] + "_seq_V_ph_"

View File

@ -0,0 +1,245 @@
/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/hadrons/Test_free_prop.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <v.m.guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
#include <Grid/Hadrons/Application.hpp>
#include <Grid/Hadrons/Modules.hpp>
using namespace Grid;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
std::vector<std::string> flavour = {"h"}; //{"l", "s", "c1", "c2", "c3"};
std::vector<double> mass = {.2}; //{.01, .04, .2 , .25 , .3 };
std::vector<std::string> lepton_flavour = {"mu"};
std::vector<double> lepton_mass = {.2};
unsigned int nt = GridDefaultLatt()[Tp];
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.seed = "1 2 3 4";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// unit gauge field for lepton
application.createModule<MGauge::Unit>("free_gauge");
// pt source
MSource::Point::Par ptPar;
ptPar.position = "0 0 0 0";
application.createModule<MSource::Point>("pt", ptPar);
// sink
MSink::Point::Par sinkPar;
sinkPar.mom = "0 0 0";
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
//Propagators from FFT and Feynman rules
for (unsigned int i = 0; i < lepton_mass.size(); ++i)
{
//DWF actions
MAction::DWF::Par actionPar_lep;
actionPar_lep.gauge = "free_gauge";
actionPar_lep.Ls = 8;
actionPar_lep.M5 = 1.8;
actionPar_lep.mass = lepton_mass[i];
actionPar_lep.boundary = boundary;
application.createModule<MAction::DWF>("free_DWF_" + lepton_flavour[i], actionPar_lep);
//DWF free propagators
MFermion::FreeProp::Par freePar;
freePar.source = "pt";
freePar.action = "free_DWF_" + lepton_flavour[i];
freePar.twist = "0 0 0 0.5";
freePar.mass = lepton_mass[i];
application.createModule<MFermion::FreeProp>("Lpt_" + lepton_flavour[i],
freePar);
//Wilson actions
MAction::Wilson::Par actionPar_lep_W;
actionPar_lep_W.gauge = "free_gauge";
actionPar_lep_W.mass = lepton_mass[i];
actionPar_lep_W.boundary = boundary;
application.createModule<MAction::Wilson>("free_W_" + lepton_flavour[i], actionPar_lep_W);
//Wilson free propagators
MFermion::FreeProp::Par freePar_W;
freePar_W.source = "pt";
freePar_W.action = "free_W_" + lepton_flavour[i];
freePar_W.twist = "0 0 0 0.5";
freePar_W.mass = lepton_mass[i];
application.createModule<MFermion::FreeProp>("W_Lpt_" + lepton_flavour[i],
freePar_W);
}
//Propagators from inversion
for (unsigned int i = 0; i < flavour.size(); ++i)
{
//DWF actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 8;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
//DWF propagators
MFermion::GaugeProp::Par quarkPar;
quarkPar.solver = "CG_" + flavour[i];
quarkPar.source = "pt";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i],
quarkPar);
//Wilson actions
MAction::Wilson::Par actionPar_W;
actionPar_W.gauge = "gauge";
actionPar_W.mass = mass[i];
actionPar_W.boundary = boundary;
application.createModule<MAction::Wilson>("W_" + flavour[i], actionPar_W);
// solvers
MSolver::RBPrecCG::Par solverPar_W;
solverPar_W.action = "W_" + flavour[i];
solverPar_W.residual = 1.0e-8;
solverPar_W.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("W_CG_" + flavour[i],
solverPar_W);
//Wilson propagators
MFermion::GaugeProp::Par quarkPar_W;
quarkPar_W.solver = "W_CG_" + flavour[i];
quarkPar_W.source = "pt";
application.createModule<MFermion::GaugeProp>("W_Qpt_" + flavour[i],
quarkPar_W);
}
//2pt contraction for Propagators from FFT and Feynman rules
for (unsigned int i = 0; i < lepton_flavour.size(); ++i)
for (unsigned int j = i; j < lepton_flavour.size(); ++j)
{
//2pt function contraction DWF
MContraction::Meson::Par freemesPar;
freemesPar.output = "2pt_free/DWF_L_pt_" + lepton_flavour[i] + lepton_flavour[j];
freemesPar.q1 = "Lpt_" + lepton_flavour[i];
freemesPar.q2 = "Lpt_" + lepton_flavour[j];
freemesPar.gammas = "(Gamma5 Gamma5)";
freemesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_L_pt_"
+ lepton_flavour[i] + lepton_flavour[j],
freemesPar);
//2pt function contraction Wilson
MContraction::Meson::Par freemesPar_W;
freemesPar_W.output = "2pt_free/W_L_pt_" + lepton_flavour[i] + lepton_flavour[j];
freemesPar_W.q1 = "W_Lpt_" + lepton_flavour[i];
freemesPar_W.q2 = "W_Lpt_" + lepton_flavour[j];
freemesPar_W.gammas = "(Gamma5 Gamma5)";
freemesPar_W.sink = "sink";
application.createModule<MContraction::Meson>("W_meson_L_pt_"
+ lepton_flavour[i] + lepton_flavour[j],
freemesPar_W);
}
//2pt contraction for Propagators from inverion
for (unsigned int i = 0; i < flavour.size(); ++i)
for (unsigned int j = i; j < flavour.size(); ++j)
{
//2pt function contraction DWF
MContraction::Meson::Par mesPar;
mesPar.output = "2pt_free/DWF_pt_" + flavour[i] + flavour[j];
mesPar.q1 = "Qpt_" + flavour[i];
mesPar.q2 = "Qpt_" + flavour[j];
mesPar.gammas = "(Gamma5 Gamma5)";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_pt_"
+ flavour[i] + flavour[j],
mesPar);
//2pt function contraction Wilson
MContraction::Meson::Par mesPar_W;
mesPar_W.output = "2pt_free/W_pt_" + flavour[i] + flavour[j];
mesPar_W.q1 = "W_Qpt_" + flavour[i];
mesPar_W.q2 = "W_Qpt_" + flavour[j];
mesPar_W.gammas = "(Gamma5 Gamma5)";
mesPar_W.sink = "sink";
application.createModule<MContraction::Meson>("W_meson_pt_"
+ flavour[i] + flavour[j],
mesPar_W);
}
// execution
application.saveParameterFile("free_prop.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}

View File

@ -74,8 +74,16 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
RealD mass=0.003;
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass);
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,c1,c2,u0);
SchurStaggeredOperator<ImprovedStaggeredFermion5DR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
@ -87,14 +95,26 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling 4d CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass);
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass,c1,c2,u0);
SchurStaggeredOperator<ImprovedStaggeredFermionR,FermionField> HermOp4d(Ds4d);
FermionField src4d(UGrid); random(pRNG,src4d);
FermionField src4d_o(UrbGrid); pickCheckerboard(Odd,src4d_o,src4d);
FermionField result4d_o(UrbGrid);
double deodoe_flops=(16*(3*(6+8+8)) + 15*3*2)*volume; // == 66*16 + == 1146
result4d_o=zero;
CG(HermOp4d,src4d_o,result4d_o);
{
double t1=usecond();
CG(HermOp4d,src4d_o,result4d_o);
double t2=usecond();
double ncall=CG.IterationsToComplete;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
HermOp4d.Report();
}
Ds4d.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
@ -103,7 +123,17 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters();
result_o=zero;
CG(HermOp,src_o,result_o);
{
double t1=usecond();
CG(HermOp,src_o,result_o);
double t2=usecond();
double ncall=CG.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
HermOp.Report();
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
@ -112,7 +142,18 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters();
result_o=zero;
mCG(HermOp,src_o,result_o);
{
double t1=usecond();
mCG(HermOp,src_o,result_o);
double t2=usecond();
double ncall=mCG.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
HermOp.Report();
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
@ -121,7 +162,17 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
Ds.ZeroCounters();
result_o=zero;
BCGrQ(HermOp,src_o,result_o);
{
double t1=usecond();
BCGrQ(HermOp,src_o,result_o);
double t2=usecond();
double ncall=BCGrQ.IterationsToComplete*Ls;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
HermOp.Report();
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;

View File

@ -74,7 +74,16 @@ int main (int argc, char ** argv)
LatticeGaugeField Umu(UGrid); SU3::HotConfiguration(pRNG,Umu);
RealD mass=0.003;
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass);
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
ImprovedStaggeredFermion5DR Ds(Umu,Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermion5DR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
@ -86,11 +95,23 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
std::cout << GridLogMessage << " Calling 4d CG "<<std::endl;
std::cout << GridLogMessage << "****************************************************************** "<<std::endl;
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass);
ImprovedStaggeredFermionR Ds4d(Umu,Umu,*UGrid,*UrbGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp4d(Ds4d);
FermionField src4d(UGrid); random(pRNG,src4d);
FermionField result4d(UGrid); result4d=zero;
CG(HermOp4d,src4d,result4d);
double deodoe_flops=(16*(3*(6+8+8)) + 15*3*2)*volume; // == 66*16 + == 1146
{
double t1=usecond();
CG(HermOp4d,src4d,result4d);
double t2=usecond();
double ncall=CG.IterationsToComplete;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
}
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
@ -98,9 +119,18 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << " Calling 5d CG for "<<Ls <<" right hand sides" <<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
{
Ds.ZeroCounters();
double t1=usecond();
CG(HermOp,src,result);
double t2=usecond();
double ncall=CG.IterationsToComplete;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
Ds.Report();
}
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
@ -108,7 +138,16 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
Ds.ZeroCounters();
{
double t1=usecond();
mCG(HermOp,src,result);
double t2=usecond();
double ncall=CG.IterationsToComplete;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
@ -117,7 +156,16 @@ int main (int argc, char ** argv)
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;
result=zero;
Ds.ZeroCounters();
{
double t1=usecond();
BCGrQ(HermOp,src,result);
double t2=usecond();
double ncall=CG.IterationsToComplete;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
}
Ds.Report();
std::cout << GridLogMessage << "************************************************************************ "<<std::endl;

View File

@ -71,7 +71,10 @@ int main (int argc, char ** argv)
}
RealD mass=0.003;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
FermionField res_o(&RBGrid);
FermionField src_o(&RBGrid);
@ -80,7 +83,19 @@ int main (int argc, char ** argv)
SchurStaggeredOperator<ImprovedStaggeredFermionR,FermionField> HermOpEO(Ds);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
double t1=usecond();
CG(HermOpEO,src_o,res_o);
double t2=usecond();
// Schur solver: uses DeoDoe => volume * 1146
double ncall=CG.IterationsToComplete;
double flops=(16*(3*(6+8+8)) + 15*3*2)*volume*ncall; // == 66*16 + == 1146
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
FermionField tmp(&RBGrid);

View File

@ -65,7 +65,10 @@ int main (int argc, char ** argv)
FermionField resid(&Grid);
RealD mass=0.1;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
ConjugateGradient<FermionField> CG(1.0e-8,10000);
SchurRedBlackStaggeredSolve<FermionField> SchurSolver(CG);

View File

@ -73,7 +73,10 @@ int main (int argc, char ** argv)
}
RealD mass=0.1;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass);
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
MdagMLinearOperator<ImprovedStaggeredFermionR,FermionField> HermOp(Ds);
ConjugateGradient<FermionField> CG(1.0e-6,10000);

View File

@ -0,0 +1,121 @@
/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_wilson_cg_unprec.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
template<class d>
struct scal {
d internal;
};
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT
};
int main (int argc, char ** argv)
{
typedef typename ImprovedStaggeredFermionR::FermionField FermionField;
typename ImprovedStaggeredFermionR::ImplParams params;
Grid_init(&argc,&argv);
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(seeds);
LatticeGaugeField Umu(&Grid); SU3::HotConfiguration(pRNG,Umu);
double volume=1;
for(int mu=0;mu<Nd;mu++){
volume=volume*latt_size[mu];
}
////////////////////////////////////////
// sqrt
////////////////////////////////////////
double lo=0.001;
double hi=1.0;
int precision=64;
int degree=10;
AlgRemez remez(lo,hi,precision);
remez.generateApprox(degree,1,2);
MultiShiftFunction Sqrt(remez,1.0e-6,false);
std::cout<<GridLogMessage << "Generating degree "<<degree<<" for x^(1/2)"<<std::endl;
////////////////////////////////////////////
// Setup staggered
////////////////////////////////////////////
RealD mass=0.003;
RealD c1=9.0/8.0;
RealD c2=-1.0/24.0;
RealD u0=1.0;
ImprovedStaggeredFermionR Ds(Umu,Umu,Grid,RBGrid,mass,c1,c2,u0);
SchurStaggeredOperator<ImprovedStaggeredFermionR,FermionField> HermOpEO(Ds);
FermionField src(&Grid); random(pRNG,src);
FermionField src_o(&RBGrid);
pickCheckerboard(Odd,src_o,src);
/////////////////////////////////
//Multishift CG
/////////////////////////////////
std::vector<FermionField> result(degree,&RBGrid);
ConjugateGradientMultiShift<FermionField> MSCG(10000,Sqrt);
double deodoe_flops=(1205+15*degree)*volume; // == 66*16 + == 1146
double t1=usecond();
MSCG(HermOpEO,src_o,result);
double t2=usecond();
double ncall=MSCG.IterationsToComplete;
double flops = deodoe_flops * ncall;
std::cout<<GridLogMessage << "usec = "<< (t2-t1)<<std::endl;
std::cout<<GridLogMessage << "flops = "<< flops<<std::endl;
std::cout<<GridLogMessage << "mflop/s = "<< flops/(t2-t1)<<std::endl;
// HermOpEO.Report();
Grid_finalize();
}