mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-09 23:45:36 +00:00
Merge branch 'feature/dirichlet' into develop
This commit is contained in:
commit
10e6d7c6ce
@ -44,9 +44,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/GridStd.h>
|
#include <Grid/GridStd.h>
|
||||||
#include <Grid/threads/Pragmas.h>
|
#include <Grid/threads/Pragmas.h>
|
||||||
#include <Grid/perfmon/Timer.h>
|
#include <Grid/perfmon/Timer.h>
|
||||||
#include <Grid/perfmon/PerfCount.h>
|
//#include <Grid/perfmon/PerfCount.h>
|
||||||
#include <Grid/util/Util.h>
|
#include <Grid/util/Util.h>
|
||||||
#include <Grid/log/Log.h>
|
#include <Grid/log/Log.h>
|
||||||
|
#include <Grid/perfmon/Tracing.h>
|
||||||
#include <Grid/allocator/Allocator.h>
|
#include <Grid/allocator/Allocator.h>
|
||||||
#include <Grid/simd/Simd.h>
|
#include <Grid/simd/Simd.h>
|
||||||
#include <Grid/threads/ThreadReduction.h>
|
#include <Grid/threads/ThreadReduction.h>
|
||||||
|
@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#include <Grid/qcd/QCD.h>
|
#include <Grid/qcd/QCD.h>
|
||||||
#include <Grid/qcd/spin/Spin.h>
|
#include <Grid/qcd/spin/Spin.h>
|
||||||
|
#include <Grid/qcd/gparity/Gparity.h>
|
||||||
#include <Grid/qcd/utils/Utils.h>
|
#include <Grid/qcd/utils/Utils.h>
|
||||||
#include <Grid/qcd/representations/Representations.h>
|
#include <Grid/qcd/representations/Representations.h>
|
||||||
NAMESPACE_CHECK(GridQCDCore);
|
NAMESPACE_CHECK(GridQCDCore);
|
||||||
|
@ -54,6 +54,7 @@ NAMESPACE_CHECK(BiCGSTAB);
|
|||||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||||
|
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
|
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
|
||||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||||
|
@ -324,9 +324,9 @@ public:
|
|||||||
GridBase* _cbgrid;
|
GridBase* _cbgrid;
|
||||||
int hermitian;
|
int hermitian;
|
||||||
|
|
||||||
CartesianStencil<siteVector,siteVector,int> Stencil;
|
CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;
|
||||||
CartesianStencil<siteVector,siteVector,int> StencilEven;
|
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
|
||||||
CartesianStencil<siteVector,siteVector,int> StencilOdd;
|
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
|
||||||
|
|
||||||
std::vector<CoarseMatrix> A;
|
std::vector<CoarseMatrix> A;
|
||||||
std::vector<CoarseMatrix> Aeven;
|
std::vector<CoarseMatrix> Aeven;
|
||||||
@ -631,7 +631,7 @@ public:
|
|||||||
assert(Aself != nullptr);
|
assert(Aself != nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
void DselfInternal(CartesianStencil<siteVector,siteVector,int> &st, CoarseMatrix &a,
|
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
|
||||||
const CoarseVector &in, CoarseVector &out, int dag) {
|
const CoarseVector &in, CoarseVector &out, int dag) {
|
||||||
int point = geom.npoint-1;
|
int point = geom.npoint-1;
|
||||||
autoView( out_v, out, AcceleratorWrite);
|
autoView( out_v, out, AcceleratorWrite);
|
||||||
@ -694,7 +694,7 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void DhopInternal(CartesianStencil<siteVector,siteVector,int> &st, std::vector<CoarseMatrix> &a,
|
void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
|
||||||
const CoarseVector &in, CoarseVector &out, int dag) {
|
const CoarseVector &in, CoarseVector &out, int dag) {
|
||||||
SimpleCompressor<siteVector> compressor;
|
SimpleCompressor<siteVector> compressor;
|
||||||
|
|
||||||
@ -784,9 +784,9 @@ public:
|
|||||||
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
|
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
|
||||||
geom(CoarseGrid._ndimension),
|
geom(CoarseGrid._ndimension),
|
||||||
hermitian(hermitian_),
|
hermitian(hermitian_),
|
||||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||||
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||||
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
|
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
|
||||||
A(geom.npoint,&CoarseGrid),
|
A(geom.npoint,&CoarseGrid),
|
||||||
Aeven(geom.npoint,_cbgrid),
|
Aeven(geom.npoint,_cbgrid),
|
||||||
Aodd(geom.npoint,_cbgrid),
|
Aodd(geom.npoint,_cbgrid),
|
||||||
@ -804,9 +804,9 @@ public:
|
|||||||
_cbgrid(&CoarseRBGrid),
|
_cbgrid(&CoarseRBGrid),
|
||||||
geom(CoarseGrid._ndimension),
|
geom(CoarseGrid._ndimension),
|
||||||
hermitian(hermitian_),
|
hermitian(hermitian_),
|
||||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||||
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||||
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements,0),
|
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
|
||||||
A(geom.npoint,&CoarseGrid),
|
A(geom.npoint,&CoarseGrid),
|
||||||
Aeven(geom.npoint,&CoarseRBGrid),
|
Aeven(geom.npoint,&CoarseRBGrid),
|
||||||
Aodd(geom.npoint,&CoarseRBGrid),
|
Aodd(geom.npoint,&CoarseRBGrid),
|
||||||
|
@ -526,6 +526,7 @@ public:
|
|||||||
(*this)(Linop,in[k],out[k]);
|
(*this)(Linop,in[k],out[k]);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
virtual ~OperatorFunction(){};
|
||||||
};
|
};
|
||||||
|
|
||||||
template<class Field> class LinearFunction {
|
template<class Field> class LinearFunction {
|
||||||
|
@ -258,26 +258,12 @@ public:
|
|||||||
for(int n=2;n<order;n++){
|
for(int n=2;n<order;n++){
|
||||||
|
|
||||||
Linop.HermOp(*Tn,y);
|
Linop.HermOp(*Tn,y);
|
||||||
#if 0
|
|
||||||
auto y_v = y.View();
|
|
||||||
auto Tn_v = Tn->View();
|
|
||||||
auto Tnp_v = Tnp->View();
|
|
||||||
auto Tnm_v = Tnm->View();
|
|
||||||
constexpr int Nsimd = vector_type::Nsimd();
|
|
||||||
accelerator_for(ss, in.Grid()->oSites(), Nsimd, {
|
|
||||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
|
||||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
|
||||||
});
|
|
||||||
if ( Coeffs[n] != 0.0) {
|
|
||||||
axpy(out,Coeffs[n],*Tnp,out);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
axpby(y,xscale,mscale,y,(*Tn));
|
axpby(y,xscale,mscale,y,(*Tn));
|
||||||
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
|
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
|
||||||
if ( Coeffs[n] != 0.0) {
|
if ( Coeffs[n] != 0.0) {
|
||||||
axpy(out,Coeffs[n],*Tnp,out);
|
axpy(out,Coeffs[n],*Tnp,out);
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
// Cycle pointers to avoid copies
|
// Cycle pointers to avoid copies
|
||||||
Field *swizzle = Tnm;
|
Field *swizzle = Tnm;
|
||||||
Tnm =Tn;
|
Tnm =Tn;
|
||||||
|
@ -58,6 +58,7 @@ public:
|
|||||||
|
|
||||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||||
|
|
||||||
|
GRID_TRACE("ConjugateGradient");
|
||||||
psi.Checkerboard() = src.Checkerboard();
|
psi.Checkerboard() = src.Checkerboard();
|
||||||
|
|
||||||
conformable(psi, src);
|
conformable(psi, src);
|
||||||
@ -117,9 +118,13 @@ public:
|
|||||||
GridStopWatch MatrixTimer;
|
GridStopWatch MatrixTimer;
|
||||||
GridStopWatch SolverTimer;
|
GridStopWatch SolverTimer;
|
||||||
|
|
||||||
|
RealD usecs = -usecond();
|
||||||
SolverTimer.Start();
|
SolverTimer.Start();
|
||||||
int k;
|
int k;
|
||||||
for (k = 1; k <= MaxIterations; k++) {
|
for (k = 1; k <= MaxIterations; k++) {
|
||||||
|
|
||||||
|
GridStopWatch IterationTimer;
|
||||||
|
IterationTimer.Start();
|
||||||
c = cp;
|
c = cp;
|
||||||
|
|
||||||
MatrixTimer.Start();
|
MatrixTimer.Start();
|
||||||
@ -152,31 +157,41 @@ public:
|
|||||||
LinearCombTimer.Stop();
|
LinearCombTimer.Stop();
|
||||||
LinalgTimer.Stop();
|
LinalgTimer.Stop();
|
||||||
|
|
||||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
IterationTimer.Stop();
|
||||||
|
if ( (k % 500) == 0 ) {
|
||||||
|
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
|
||||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||||
|
} else {
|
||||||
|
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||||
|
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
// Stopping condition
|
// Stopping condition
|
||||||
if (cp <= rsq) {
|
if (cp <= rsq) {
|
||||||
|
usecs +=usecond();
|
||||||
SolverTimer.Stop();
|
SolverTimer.Stop();
|
||||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||||
p = mmp - src;
|
p = mmp - src;
|
||||||
|
GridBase *grid = src.Grid();
|
||||||
|
RealD DwfFlops = (1452. )*grid->gSites()*4*k
|
||||||
|
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
|
||||||
RealD srcnorm = std::sqrt(norm2(src));
|
RealD srcnorm = std::sqrt(norm2(src));
|
||||||
RealD resnorm = std::sqrt(norm2(p));
|
RealD resnorm = std::sqrt(norm2(p));
|
||||||
RealD true_residual = resnorm / srcnorm;
|
RealD true_residual = resnorm / srcnorm;
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
||||||
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
||||||
<< "\tTrue residual " << true_residual
|
<< "\tTrue residual " << true_residual
|
||||||
<< "\tTarget " << Tolerance << std::endl;
|
<< "\tTarget " << Tolerance << std::endl;
|
||||||
|
|
||||||
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
|
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||||
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||||
|
|
||||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||||
|
|
||||||
|
@ -49,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||||
Integer TotalOuterIterations; //Number of restarts
|
Integer TotalOuterIterations; //Number of restarts
|
||||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||||
|
RealD TrueResidual;
|
||||||
|
|
||||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||||
LinearFunction<FieldF> *guesser;
|
LinearFunction<FieldF> *guesser;
|
||||||
@ -68,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
}
|
}
|
||||||
|
|
||||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||||
|
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
||||||
TotalInnerIterations = 0;
|
TotalInnerIterations = 0;
|
||||||
|
|
||||||
GridStopWatch TotalTimer;
|
GridStopWatch TotalTimer;
|
||||||
@ -97,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
FieldF sol_f(SinglePrecGrid);
|
FieldF sol_f(SinglePrecGrid);
|
||||||
sol_f.Checkerboard() = cb;
|
sol_f.Checkerboard() = cb;
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
||||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||||
CG_f.ErrorOnNoConverge = false;
|
CG_f.ErrorOnNoConverge = false;
|
||||||
|
|
||||||
@ -105,7 +108,10 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
GridStopWatch PrecChangeTimer;
|
GridStopWatch PrecChangeTimer;
|
||||||
|
|
||||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||||
|
|
||||||
|
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
|
||||||
|
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
|
||||||
|
|
||||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||||
//Compute double precision rsd and also new RHS vector.
|
//Compute double precision rsd and also new RHS vector.
|
||||||
Linop_d.HermOp(sol_d, tmp_d);
|
Linop_d.HermOp(sol_d, tmp_d);
|
||||||
@ -120,7 +126,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||||
|
|
||||||
PrecChangeTimer.Start();
|
PrecChangeTimer.Start();
|
||||||
precisionChange(src_f, src_d);
|
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
|
||||||
PrecChangeTimer.Stop();
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
sol_f = Zero();
|
sol_f = Zero();
|
||||||
@ -130,6 +136,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
(*guesser)(src_f, sol_f);
|
(*guesser)(src_f, sol_f);
|
||||||
|
|
||||||
//Inner CG
|
//Inner CG
|
||||||
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
||||||
CG_f.Tolerance = inner_tol;
|
CG_f.Tolerance = inner_tol;
|
||||||
InnerCGtimer.Start();
|
InnerCGtimer.Start();
|
||||||
CG_f(Linop_f, src_f, sol_f);
|
CG_f(Linop_f, src_f, sol_f);
|
||||||
@ -138,7 +145,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
//Convert sol back to double and add to double prec solution
|
//Convert sol back to double and add to double prec solution
|
||||||
PrecChangeTimer.Start();
|
PrecChangeTimer.Start();
|
||||||
precisionChange(tmp_d, sol_f);
|
precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
|
||||||
PrecChangeTimer.Stop();
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||||
@ -150,6 +157,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||||
CG_d(Linop_d, src_d_in, sol_d);
|
CG_d(Linop_d, src_d_in, sol_d);
|
||||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||||
|
TrueResidual = CG_d.TrueResidual;
|
||||||
|
|
||||||
TotalTimer.Stop();
|
TotalTimer.Stop();
|
||||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||||
|
@ -44,7 +44,7 @@ public:
|
|||||||
|
|
||||||
using OperatorFunction<Field>::operator();
|
using OperatorFunction<Field>::operator();
|
||||||
|
|
||||||
RealD Tolerance;
|
// RealD Tolerance;
|
||||||
Integer MaxIterations;
|
Integer MaxIterations;
|
||||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||||
@ -52,7 +52,7 @@ public:
|
|||||||
MultiShiftFunction shifts;
|
MultiShiftFunction shifts;
|
||||||
std::vector<RealD> TrueResidualShift;
|
std::vector<RealD> TrueResidualShift;
|
||||||
|
|
||||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
||||||
MaxIterations(maxit),
|
MaxIterations(maxit),
|
||||||
shifts(_shifts)
|
shifts(_shifts)
|
||||||
{
|
{
|
||||||
@ -84,6 +84,7 @@ public:
|
|||||||
|
|
||||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
|
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("ConjugateGradientMultiShift");
|
||||||
|
|
||||||
GridBase *grid = src.Grid();
|
GridBase *grid = src.Grid();
|
||||||
|
|
||||||
@ -182,6 +183,9 @@ public:
|
|||||||
for(int s=0;s<nshift;s++) {
|
for(int s=0;s<nshift;s++) {
|
||||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////
|
///////////////////////////////////////
|
||||||
// Timers
|
// Timers
|
||||||
@ -321,8 +325,8 @@ public:
|
|||||||
|
|
||||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
|
373
Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
Normal file
373
Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
Normal file
@ -0,0 +1,373 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||||
|
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||||
|
//Every update_freq iterations the residual is corrected in double precision.
|
||||||
|
//For safety the a final regular CG is applied to clean up if necessary
|
||||||
|
|
||||||
|
//PB Pure single, then double fixup
|
||||||
|
|
||||||
|
template<class FieldD, class FieldF,
|
||||||
|
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||||
|
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||||
|
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
|
||||||
|
public OperatorFunction<FieldD>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
using OperatorFunction<FieldD>::operator();
|
||||||
|
|
||||||
|
RealD Tolerance;
|
||||||
|
Integer MaxIterationsMshift;
|
||||||
|
Integer MaxIterations;
|
||||||
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||||
|
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||||
|
int verbose;
|
||||||
|
MultiShiftFunction shifts;
|
||||||
|
std::vector<RealD> TrueResidualShift;
|
||||||
|
|
||||||
|
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||||
|
|
||||||
|
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||||
|
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||||
|
|
||||||
|
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
|
||||||
|
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||||
|
int _ReliableUpdateFreq) :
|
||||||
|
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||||
|
MaxIterations(20000)
|
||||||
|
{
|
||||||
|
verbose=1;
|
||||||
|
IterationsToCompleteShift.resize(_shifts.order);
|
||||||
|
TrueResidualShift.resize(_shifts.order);
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||||
|
{
|
||||||
|
GridBase *grid = src.Grid();
|
||||||
|
int nshift = shifts.order;
|
||||||
|
std::vector<FieldD> results(nshift,grid);
|
||||||
|
(*this)(Linop,src,results,psi);
|
||||||
|
}
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||||
|
{
|
||||||
|
int nshift = shifts.order;
|
||||||
|
|
||||||
|
(*this)(Linop,src,results);
|
||||||
|
|
||||||
|
psi = shifts.norm*src;
|
||||||
|
for(int i=0;i<nshift;i++){
|
||||||
|
psi = psi + shifts.residues[i]*results[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||||
|
{
|
||||||
|
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
|
||||||
|
GridBase *DoublePrecGrid = src_d.Grid();
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// Convenience references to the info stored in "MultiShiftFunction"
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
int nshift = shifts.order;
|
||||||
|
|
||||||
|
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||||
|
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||||
|
std::vector<RealD> alpha(nshift,1.0);
|
||||||
|
|
||||||
|
//Double precision search directions
|
||||||
|
FieldD p_d(DoublePrecGrid);
|
||||||
|
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
|
||||||
|
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
|
||||||
|
|
||||||
|
FieldD tmp_d(DoublePrecGrid);
|
||||||
|
FieldD r_d(DoublePrecGrid);
|
||||||
|
FieldF r_f(SinglePrecGrid);
|
||||||
|
FieldD mmp_d(DoublePrecGrid);
|
||||||
|
|
||||||
|
assert(psi_d.size()==nshift);
|
||||||
|
assert(mass.size()==nshift);
|
||||||
|
assert(mresidual.size()==nshift);
|
||||||
|
|
||||||
|
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||||
|
RealD bs[nshift];
|
||||||
|
RealD rsq[nshift];
|
||||||
|
RealD rsqf[nshift];
|
||||||
|
RealD z[nshift][2];
|
||||||
|
int converged[nshift];
|
||||||
|
|
||||||
|
const int primary =0;
|
||||||
|
|
||||||
|
//Primary shift fields CG iteration
|
||||||
|
RealD a,b,c,d;
|
||||||
|
RealD cp,bp,qq; //prev
|
||||||
|
|
||||||
|
// Matrix mult fields
|
||||||
|
FieldF p_f(SinglePrecGrid);
|
||||||
|
FieldF mmp_f(SinglePrecGrid);
|
||||||
|
|
||||||
|
// Check lightest mass
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
assert( mass[s]>= mass[primary] );
|
||||||
|
converged[s]=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wire guess to zero
|
||||||
|
// Residuals "r" are src
|
||||||
|
// First search direction "p" is also src
|
||||||
|
cp = norm2(src_d);
|
||||||
|
|
||||||
|
// Handle trivial case of zero src.
|
||||||
|
if( cp == 0. ){
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
psi_d[s] = Zero();
|
||||||
|
psi_f[s] = Zero();
|
||||||
|
IterationsToCompleteShift[s] = 1;
|
||||||
|
TrueResidualShift[s] = 0.;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||||
|
rsqf[s] =rsq[s];
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||||
|
// ps_d[s] = src_d;
|
||||||
|
precisionChangeFast(ps_f[s],src_d);
|
||||||
|
}
|
||||||
|
// r and p for primary
|
||||||
|
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||||
|
r_d = p_d;
|
||||||
|
|
||||||
|
//MdagM+m[0]
|
||||||
|
precisionChangeFast(p_f,p_d);
|
||||||
|
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||||
|
precisionChangeFast(tmp_d,mmp_f);
|
||||||
|
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||||
|
tmp_d = tmp_d - mmp_d;
|
||||||
|
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||||
|
// assert(norm2(tmp_d)< 1.0e-4);
|
||||||
|
|
||||||
|
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||||
|
RealD rn = norm2(p_d);
|
||||||
|
d += rn*mass[0];
|
||||||
|
|
||||||
|
b = -cp /d;
|
||||||
|
|
||||||
|
// Set up the various shift variables
|
||||||
|
int iz=0;
|
||||||
|
z[0][1-iz] = 1.0;
|
||||||
|
z[0][iz] = 1.0;
|
||||||
|
bs[0] = b;
|
||||||
|
for(int s=1;s<nshift;s++){
|
||||||
|
z[s][1-iz] = 1.0;
|
||||||
|
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||||
|
bs[s] = b*z[s][iz];
|
||||||
|
}
|
||||||
|
|
||||||
|
// r += b[0] A.p[0]
|
||||||
|
// c= norm(r)
|
||||||
|
c=axpy_norm(r_d,b,mmp_d,r_d);
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++) {
|
||||||
|
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||||
|
precisionChangeFast(psi_f[s],psi_d[s]);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Timers
|
||||||
|
///////////////////////////////////////
|
||||||
|
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||||
|
|
||||||
|
SolverTimer.Start();
|
||||||
|
|
||||||
|
// Iteration loop
|
||||||
|
int k;
|
||||||
|
|
||||||
|
for (k=1;k<=MaxIterationsMshift;k++){
|
||||||
|
|
||||||
|
a = c /cp;
|
||||||
|
AXPYTimer.Start();
|
||||||
|
axpy(p_d,a,p_d,r_d);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChangeFast(r_f, r_d);
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
|
AXPYTimer.Start();
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
if ( ! converged[s] ) {
|
||||||
|
if (s==0){
|
||||||
|
axpy(ps_f[s],a,ps_f[s],r_f);
|
||||||
|
} else{
|
||||||
|
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||||
|
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
cp=c;
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChangeFast(p_f, p_d); //get back single prec search direction for linop
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
MatrixTimer.Start();
|
||||||
|
Linop_f.HermOp(p_f,mmp_f);
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChangeFast(mmp_d, mmp_f); // From Float to Double
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
|
d=real(innerProduct(p_d,mmp_d));
|
||||||
|
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||||
|
RealD rn = norm2(p_d);
|
||||||
|
d += rn*mass[0];
|
||||||
|
|
||||||
|
bp=b;
|
||||||
|
b=-cp/d;
|
||||||
|
|
||||||
|
// Toggle the recurrence history
|
||||||
|
bs[0] = b;
|
||||||
|
iz = 1-iz;
|
||||||
|
ShiftTimer.Start();
|
||||||
|
for(int s=1;s<nshift;s++){
|
||||||
|
if((!converged[s])){
|
||||||
|
RealD z0 = z[s][1-iz];
|
||||||
|
RealD z1 = z[s][iz];
|
||||||
|
z[s][iz] = z0*z1*bp
|
||||||
|
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||||
|
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ShiftTimer.Stop();
|
||||||
|
|
||||||
|
//Update single precision solutions
|
||||||
|
AXPYTimer.Start();
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
int ss = s;
|
||||||
|
if( (!converged[s]) ) {
|
||||||
|
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
c = axpy_norm(r_d,b,mmp_d,r_d);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
// Convergence checks
|
||||||
|
int all_converged = 1;
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
|
||||||
|
if ( (!converged[s]) ){
|
||||||
|
IterationsToCompleteShift[s] = k;
|
||||||
|
|
||||||
|
RealD css = c * z[s][iz]* z[s][iz];
|
||||||
|
|
||||||
|
if(css<rsqf[s]){
|
||||||
|
if ( ! converged[s] )
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||||
|
converged[s]=1;
|
||||||
|
} else {
|
||||||
|
all_converged=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if ( all_converged || k == MaxIterationsMshift-1){
|
||||||
|
|
||||||
|
SolverTimer.Stop();
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
precisionChangeFast(psi_d[s],psi_f[s]);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if ( all_converged ){
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
|
||||||
|
} else {
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check answers
|
||||||
|
for(int s=0; s < nshift; s++) {
|
||||||
|
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||||
|
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||||
|
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||||
|
RealD rn = norm2(r_d);
|
||||||
|
RealD cn = norm2(src_d);
|
||||||
|
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||||
|
|
||||||
|
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||||
|
if(rn >= rsq[s]){
|
||||||
|
CleanupTimer.Start();
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
|
||||||
|
|
||||||
|
//Setup linear operators for final cleanup
|
||||||
|
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||||
|
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||||
|
|
||||||
|
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||||
|
cg(src_d, psi_d[s]);
|
||||||
|
|
||||||
|
TrueResidualShift[s] = cg.TrueResidual;
|
||||||
|
CleanupTimer.Stop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||||
|
|
||||||
|
IterationsToComplete = k;
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||||
|
assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
416
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
416
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
@ -0,0 +1,416 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||||
|
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||||
|
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||||
|
//Every update_freq iterations the residual is corrected in double precision.
|
||||||
|
|
||||||
|
//For safety the a final regular CG is applied to clean up if necessary
|
||||||
|
|
||||||
|
//Linop to add shift to input linop, used in cleanup CG
|
||||||
|
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
||||||
|
template<typename Field>
|
||||||
|
class ShiftedLinop: public LinearOperatorBase<Field>{
|
||||||
|
public:
|
||||||
|
LinearOperatorBase<Field> &linop_base;
|
||||||
|
RealD shift;
|
||||||
|
|
||||||
|
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||||
|
|
||||||
|
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||||
|
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||||
|
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||||
|
|
||||||
|
void Op (const Field &in, Field &out){ assert(0); }
|
||||||
|
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||||
|
|
||||||
|
void HermOp(const Field &in, Field &out){
|
||||||
|
linop_base.HermOp(in, out);
|
||||||
|
axpy(out, shift, in, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||||
|
HermOp(in,out);
|
||||||
|
ComplexD dot = innerProduct(in,out);
|
||||||
|
n1=real(dot);
|
||||||
|
n2=norm2(out);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class FieldD, class FieldF,
|
||||||
|
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||||
|
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||||
|
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
||||||
|
public OperatorFunction<FieldD>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
|
||||||
|
using OperatorFunction<FieldD>::operator();
|
||||||
|
|
||||||
|
RealD Tolerance;
|
||||||
|
Integer MaxIterationsMshift;
|
||||||
|
Integer MaxIterations;
|
||||||
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||||
|
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||||
|
int verbose;
|
||||||
|
MultiShiftFunction shifts;
|
||||||
|
std::vector<RealD> TrueResidualShift;
|
||||||
|
|
||||||
|
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||||
|
|
||||||
|
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||||
|
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||||
|
|
||||||
|
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||||
|
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||||
|
int _ReliableUpdateFreq) :
|
||||||
|
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||||
|
MaxIterations(20000)
|
||||||
|
{
|
||||||
|
verbose=1;
|
||||||
|
IterationsToCompleteShift.resize(_shifts.order);
|
||||||
|
TrueResidualShift.resize(_shifts.order);
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||||
|
{
|
||||||
|
GridBase *grid = src.Grid();
|
||||||
|
int nshift = shifts.order;
|
||||||
|
std::vector<FieldD> results(nshift,grid);
|
||||||
|
(*this)(Linop,src,results,psi);
|
||||||
|
}
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||||
|
{
|
||||||
|
int nshift = shifts.order;
|
||||||
|
|
||||||
|
(*this)(Linop,src,results);
|
||||||
|
|
||||||
|
psi = shifts.norm*src;
|
||||||
|
for(int i=0;i<nshift;i++){
|
||||||
|
psi = psi + shifts.residues[i]*results[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||||
|
{
|
||||||
|
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
|
||||||
|
GridBase *DoublePrecGrid = src_d.Grid();
|
||||||
|
|
||||||
|
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
|
||||||
|
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// Convenience references to the info stored in "MultiShiftFunction"
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
int nshift = shifts.order;
|
||||||
|
|
||||||
|
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||||
|
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||||
|
std::vector<RealD> alpha(nshift,1.0);
|
||||||
|
|
||||||
|
//Double precision search directions
|
||||||
|
FieldD p_d(DoublePrecGrid);
|
||||||
|
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
||||||
|
|
||||||
|
FieldD tmp_d(DoublePrecGrid);
|
||||||
|
FieldD r_d(DoublePrecGrid);
|
||||||
|
FieldD mmp_d(DoublePrecGrid);
|
||||||
|
|
||||||
|
assert(psi_d.size()==nshift);
|
||||||
|
assert(mass.size()==nshift);
|
||||||
|
assert(mresidual.size()==nshift);
|
||||||
|
|
||||||
|
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||||
|
RealD bs[nshift];
|
||||||
|
RealD rsq[nshift];
|
||||||
|
RealD rsqf[nshift];
|
||||||
|
RealD z[nshift][2];
|
||||||
|
int converged[nshift];
|
||||||
|
|
||||||
|
const int primary =0;
|
||||||
|
|
||||||
|
//Primary shift fields CG iteration
|
||||||
|
RealD a,b,c,d;
|
||||||
|
RealD cp,bp,qq; //prev
|
||||||
|
|
||||||
|
// Matrix mult fields
|
||||||
|
FieldF p_f(SinglePrecGrid);
|
||||||
|
FieldF mmp_f(SinglePrecGrid);
|
||||||
|
|
||||||
|
// Check lightest mass
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
assert( mass[s]>= mass[primary] );
|
||||||
|
converged[s]=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wire guess to zero
|
||||||
|
// Residuals "r" are src
|
||||||
|
// First search direction "p" is also src
|
||||||
|
cp = norm2(src_d);
|
||||||
|
|
||||||
|
// Handle trivial case of zero src.
|
||||||
|
if( cp == 0. ){
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
psi_d[s] = Zero();
|
||||||
|
IterationsToCompleteShift[s] = 1;
|
||||||
|
TrueResidualShift[s] = 0.;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||||
|
rsqf[s] =rsq[s];
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||||
|
ps_d[s] = src_d;
|
||||||
|
}
|
||||||
|
// r and p for primary
|
||||||
|
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||||
|
r_d = p_d;
|
||||||
|
|
||||||
|
//MdagM+m[0]
|
||||||
|
precisionChange(p_f, p_d, pc_wk_d_to_s);
|
||||||
|
|
||||||
|
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||||
|
precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
|
||||||
|
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||||
|
tmp_d = tmp_d - mmp_d;
|
||||||
|
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||||
|
// assert(norm2(tmp_d)< 1.0e-4);
|
||||||
|
|
||||||
|
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||||
|
RealD rn = norm2(p_d);
|
||||||
|
d += rn*mass[0];
|
||||||
|
|
||||||
|
b = -cp /d;
|
||||||
|
|
||||||
|
// Set up the various shift variables
|
||||||
|
int iz=0;
|
||||||
|
z[0][1-iz] = 1.0;
|
||||||
|
z[0][iz] = 1.0;
|
||||||
|
bs[0] = b;
|
||||||
|
for(int s=1;s<nshift;s++){
|
||||||
|
z[s][1-iz] = 1.0;
|
||||||
|
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||||
|
bs[s] = b*z[s][iz];
|
||||||
|
}
|
||||||
|
|
||||||
|
// r += b[0] A.p[0]
|
||||||
|
// c= norm(r)
|
||||||
|
c=axpy_norm(r_d,b,mmp_d,r_d);
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++) {
|
||||||
|
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Timers
|
||||||
|
///////////////////////////////////////
|
||||||
|
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||||
|
|
||||||
|
SolverTimer.Start();
|
||||||
|
|
||||||
|
// Iteration loop
|
||||||
|
int k;
|
||||||
|
|
||||||
|
for (k=1;k<=MaxIterationsMshift;k++){
|
||||||
|
|
||||||
|
a = c /cp;
|
||||||
|
AXPYTimer.Start();
|
||||||
|
axpy(p_d,a,p_d,r_d);
|
||||||
|
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
if ( ! converged[s] ) {
|
||||||
|
if (s==0){
|
||||||
|
axpy(ps_d[s],a,ps_d[s],r_d);
|
||||||
|
} else{
|
||||||
|
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||||
|
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
|
cp=c;
|
||||||
|
MatrixTimer.Start();
|
||||||
|
Linop_f.HermOp(p_f,mmp_f);
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
|
||||||
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
|
|
||||||
|
AXPYTimer.Start();
|
||||||
|
d=real(innerProduct(p_d,mmp_d));
|
||||||
|
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
RealD rn = norm2(p_d);
|
||||||
|
d += rn*mass[0];
|
||||||
|
|
||||||
|
bp=b;
|
||||||
|
b=-cp/d;
|
||||||
|
|
||||||
|
// Toggle the recurrence history
|
||||||
|
bs[0] = b;
|
||||||
|
iz = 1-iz;
|
||||||
|
ShiftTimer.Start();
|
||||||
|
for(int s=1;s<nshift;s++){
|
||||||
|
if((!converged[s])){
|
||||||
|
RealD z0 = z[s][1-iz];
|
||||||
|
RealD z1 = z[s][iz];
|
||||||
|
z[s][iz] = z0*z1*bp
|
||||||
|
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||||
|
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ShiftTimer.Stop();
|
||||||
|
|
||||||
|
//Update double precision solutions
|
||||||
|
AXPYTimer.Start();
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
int ss = s;
|
||||||
|
if( (!converged[s]) ) {
|
||||||
|
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
||||||
|
c = axpy_norm(r_d,b,mmp_d,r_d);
|
||||||
|
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
if(k % ReliableUpdateFreq == 0){
|
||||||
|
RealD c_old = c;
|
||||||
|
//Replace r with true residual
|
||||||
|
MatrixTimer.Start();
|
||||||
|
Linop_d.HermOp(psi_d[0],mmp_d);
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
|
||||||
|
AXPYTimer.Start();
|
||||||
|
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
||||||
|
|
||||||
|
c = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
||||||
|
AXPYTimer.Stop();
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convergence checks
|
||||||
|
int all_converged = 1;
|
||||||
|
for(int s=0;s<nshift;s++){
|
||||||
|
|
||||||
|
if ( (!converged[s]) ){
|
||||||
|
IterationsToCompleteShift[s] = k;
|
||||||
|
|
||||||
|
RealD css = c * z[s][iz]* z[s][iz];
|
||||||
|
|
||||||
|
if(css<rsqf[s]){
|
||||||
|
if ( ! converged[s] )
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||||
|
converged[s]=1;
|
||||||
|
} else {
|
||||||
|
all_converged=0;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if ( all_converged || k == MaxIterationsMshift-1){
|
||||||
|
|
||||||
|
SolverTimer.Stop();
|
||||||
|
|
||||||
|
if ( all_converged ){
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||||
|
} else {
|
||||||
|
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check answers
|
||||||
|
for(int s=0; s < nshift; s++) {
|
||||||
|
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||||
|
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||||
|
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||||
|
RealD rn = norm2(r_d);
|
||||||
|
RealD cn = norm2(src_d);
|
||||||
|
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||||
|
|
||||||
|
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||||
|
if(rn >= rsq[s]){
|
||||||
|
CleanupTimer.Start();
|
||||||
|
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
||||||
|
|
||||||
|
//Setup linear operators for final cleanup
|
||||||
|
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||||
|
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||||
|
|
||||||
|
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||||
|
cg(src_d, psi_d[s]);
|
||||||
|
|
||||||
|
TrueResidualShift[s] = cg.TrueResidual;
|
||||||
|
CleanupTimer.Stop();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||||
|
|
||||||
|
IterationsToComplete = k;
|
||||||
|
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||||
|
assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
#endif
|
@ -48,7 +48,7 @@ public:
|
|||||||
LinearOperatorBase<FieldF> &Linop_f;
|
LinearOperatorBase<FieldF> &Linop_f;
|
||||||
LinearOperatorBase<FieldD> &Linop_d;
|
LinearOperatorBase<FieldD> &Linop_d;
|
||||||
GridBase* SinglePrecGrid;
|
GridBase* SinglePrecGrid;
|
||||||
RealD Delta; //reliable update parameter
|
RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
|
||||||
|
|
||||||
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
||||||
LinearOperatorBase<FieldF> *Linop_fallback;
|
LinearOperatorBase<FieldF> *Linop_fallback;
|
||||||
@ -65,7 +65,9 @@ public:
|
|||||||
ErrorOnNoConverge(err_on_no_conv),
|
ErrorOnNoConverge(err_on_no_conv),
|
||||||
DoFinalCleanup(true),
|
DoFinalCleanup(true),
|
||||||
Linop_fallback(NULL)
|
Linop_fallback(NULL)
|
||||||
{};
|
{
|
||||||
|
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
|
||||||
|
};
|
||||||
|
|
||||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||||
Linop_fallback = &_Linop_fallback;
|
Linop_fallback = &_Linop_fallback;
|
||||||
@ -73,6 +75,7 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
void operator()(const FieldD &src, FieldD &psi) {
|
void operator()(const FieldD &src, FieldD &psi) {
|
||||||
|
GRID_TRACE("ConjugateGradientReliableUpdate");
|
||||||
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
||||||
bool using_fallback = false;
|
bool using_fallback = false;
|
||||||
|
|
||||||
@ -115,9 +118,12 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
//Single prec initialization
|
//Single prec initialization
|
||||||
|
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
|
||||||
|
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
|
||||||
|
|
||||||
FieldF r_f(SinglePrecGrid);
|
FieldF r_f(SinglePrecGrid);
|
||||||
r_f.Checkerboard() = r.Checkerboard();
|
r_f.Checkerboard() = r.Checkerboard();
|
||||||
precisionChange(r_f, r);
|
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
||||||
|
|
||||||
FieldF psi_f(r_f);
|
FieldF psi_f(r_f);
|
||||||
psi_f = Zero();
|
psi_f = Zero();
|
||||||
@ -133,7 +139,8 @@ public:
|
|||||||
GridStopWatch LinalgTimer;
|
GridStopWatch LinalgTimer;
|
||||||
GridStopWatch MatrixTimer;
|
GridStopWatch MatrixTimer;
|
||||||
GridStopWatch SolverTimer;
|
GridStopWatch SolverTimer;
|
||||||
|
GridStopWatch PrecChangeTimer;
|
||||||
|
|
||||||
SolverTimer.Start();
|
SolverTimer.Start();
|
||||||
int k = 0;
|
int k = 0;
|
||||||
int l = 0;
|
int l = 0;
|
||||||
@ -172,7 +179,9 @@ public:
|
|||||||
// Stopping condition
|
// Stopping condition
|
||||||
if (cp <= rsq) {
|
if (cp <= rsq) {
|
||||||
//Although not written in the paper, I assume that I have to add on the final solution
|
//Although not written in the paper, I assume that I have to add on the final solution
|
||||||
precisionChange(mmp, psi_f);
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
psi = psi + mmp;
|
psi = psi + mmp;
|
||||||
|
|
||||||
|
|
||||||
@ -193,7 +202,10 @@ public:
|
|||||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||||
|
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
|
||||||
|
|
||||||
|
|
||||||
IterationsToComplete = k;
|
IterationsToComplete = k;
|
||||||
ReliableUpdatesPerformed = l;
|
ReliableUpdatesPerformed = l;
|
||||||
|
|
||||||
@ -213,14 +225,21 @@ public:
|
|||||||
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
||||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
||||||
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
||||||
precisionChange(mmp, psi_f);
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
psi = psi + mmp;
|
psi = psi + mmp;
|
||||||
|
|
||||||
|
MatrixTimer.Start();
|
||||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||||
|
MatrixTimer.Stop();
|
||||||
|
|
||||||
r = src - mmp;
|
r = src - mmp;
|
||||||
|
|
||||||
psi_f = Zero();
|
psi_f = Zero();
|
||||||
precisionChange(r_f, r);
|
PrecChangeTimer.Start();
|
||||||
|
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
||||||
|
PrecChangeTimer.Stop();
|
||||||
cp = norm2(r);
|
cp = norm2(r);
|
||||||
MaxResidSinceLastRelUp = cp;
|
MaxResidSinceLastRelUp = cp;
|
||||||
|
|
||||||
|
1412
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
1412
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -44,6 +44,7 @@ public:
|
|||||||
int, MinRes); // Must restart
|
int, MinRes); // Must restart
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//This class is the input parameter class for some testing programs
|
||||||
struct LocalCoherenceLanczosParams : Serializable {
|
struct LocalCoherenceLanczosParams : Serializable {
|
||||||
public:
|
public:
|
||||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||||
@ -145,16 +146,24 @@ public:
|
|||||||
LinearOperatorBase<FineField> &_Linop;
|
LinearOperatorBase<FineField> &_Linop;
|
||||||
RealD _coarse_relax_tol;
|
RealD _coarse_relax_tol;
|
||||||
std::vector<FineField> &_subspace;
|
std::vector<FineField> &_subspace;
|
||||||
|
|
||||||
|
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
|
||||||
|
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
|
||||||
|
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
|
||||||
|
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
|
||||||
|
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
|
||||||
|
|
||||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||||
OperatorFunction<FineField> &smoother,
|
OperatorFunction<FineField> &smoother,
|
||||||
LinearOperatorBase<FineField> &Linop,
|
LinearOperatorBase<FineField> &Linop,
|
||||||
std::vector<FineField> &subspace,
|
std::vector<FineField> &subspace,
|
||||||
RealD coarse_relax_tol=5.0e3)
|
RealD coarse_relax_tol=5.0e3,
|
||||||
|
int largestEvalIdxForReport=-1)
|
||||||
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
||||||
_coarse_relax_tol(coarse_relax_tol)
|
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
|
||||||
{ };
|
{ };
|
||||||
|
|
||||||
|
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||||
{
|
{
|
||||||
CoarseField v(B);
|
CoarseField v(B);
|
||||||
@ -177,12 +186,26 @@ public:
|
|||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
|
|
||||||
|
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
|
||||||
|
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
|
||||||
|
RealD tmp_eval;
|
||||||
|
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
|
||||||
|
}
|
||||||
|
|
||||||
int conv=0;
|
int conv=0;
|
||||||
if( (vv<eresid*eresid) ) conv = 1;
|
if( (vv<eresid*eresid) ) conv = 1;
|
||||||
return conv;
|
return conv;
|
||||||
}
|
}
|
||||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
|
||||||
|
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
||||||
|
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
||||||
|
|
||||||
|
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
||||||
|
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
||||||
|
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
||||||
|
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||||
{
|
{
|
||||||
|
evalMaxApprox = 1.0; //cf above
|
||||||
GridBase *FineGrid = _subspace[0].Grid();
|
GridBase *FineGrid = _subspace[0].Grid();
|
||||||
int checkerboard = _subspace[0].Checkerboard();
|
int checkerboard = _subspace[0].Checkerboard();
|
||||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||||
@ -201,13 +224,13 @@ public:
|
|||||||
eval = vnum/vden;
|
eval = vnum/vden;
|
||||||
fv -= eval*fB;
|
fv -= eval*fB;
|
||||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||||
|
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||||
|
|
||||||
std::cout.precision(13);
|
std::cout.precision(13);
|
||||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
||||||
<<std::endl;
|
<<std::endl;
|
||||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
|
||||||
if( (vv<eresid*eresid) ) return 1;
|
if( (vv<eresid*eresid) ) return 1;
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
@ -285,6 +308,10 @@ public:
|
|||||||
evals_coarse.resize(0);
|
evals_coarse.resize(0);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
||||||
|
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
||||||
|
//vectors under the block inner product. This step must be performed after computing the fine grid
|
||||||
|
//eigenvectors and before computing the coarse grid eigenvectors.
|
||||||
void Orthogonalise(void ) {
|
void Orthogonalise(void ) {
|
||||||
CoarseScalar InnerProd(_CoarseGrid);
|
CoarseScalar InnerProd(_CoarseGrid);
|
||||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||||
@ -328,6 +355,8 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
||||||
|
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||||
{
|
{
|
||||||
assert(evals_fine.size() == nbasis);
|
assert(evals_fine.size() == nbasis);
|
||||||
@ -376,25 +405,31 @@ public:
|
|||||||
evals_fine.resize(nbasis);
|
evals_fine.resize(nbasis);
|
||||||
subspace.resize(nbasis,_FineGrid);
|
subspace.resize(nbasis,_FineGrid);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
||||||
|
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
||||||
|
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
||||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||||
int Nstop, int Nk, int Nm,RealD resid,
|
int Nstop, int Nk, int Nm,RealD resid,
|
||||||
RealD MaxIt, RealD betastp, int MinRes)
|
RealD MaxIt, RealD betastp, int MinRes)
|
||||||
{
|
{
|
||||||
Chebyshev<FineField> Cheby(cheby_op);
|
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
||||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
||||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
|
||||||
|
|
||||||
evals_coarse.resize(Nm);
|
evals_coarse.resize(Nm);
|
||||||
evec_coarse.resize(Nm,_CoarseGrid);
|
evec_coarse.resize(Nm,_CoarseGrid);
|
||||||
|
|
||||||
CoarseField src(_CoarseGrid); src=1.0;
|
CoarseField src(_CoarseGrid); src=1.0;
|
||||||
|
|
||||||
|
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
||||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||||
int Nconv=0;
|
int Nconv=0;
|
||||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||||
@ -405,6 +440,14 @@ public:
|
|||||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Get the fine eigenvector 'i' by reconstruction
|
||||||
|
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
||||||
|
blockPromote(evec_coarse[i],evec,subspace);
|
||||||
|
eval = evals_coarse[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
@ -29,6 +29,8 @@ template<class Field> class PowerMethod
|
|||||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||||
RealD vden = norm2(src_n);
|
RealD vden = norm2(src_n);
|
||||||
RealD na = vnum/vden;
|
RealD na = vnum/vden;
|
||||||
|
|
||||||
|
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||||
|
|
||||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||||
evalMaxApprox = na;
|
evalMaxApprox = na;
|
||||||
|
@ -144,8 +144,8 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
|||||||
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
|
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
|
||||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||||
assert(AccCache.accLock==0); // Cannot evict so logic bomb
|
if (AccCache.accLock!=0) return;
|
||||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
if (AccCache.cpuLock!=0) return;
|
||||||
if(AccCache.state==AccDirty) {
|
if(AccCache.state==AccDirty) {
|
||||||
Flush(AccCache);
|
Flush(AccCache);
|
||||||
}
|
}
|
||||||
@ -532,6 +532,7 @@ void MemoryManager::Audit(std::string s)
|
|||||||
assert(AccCache.LRU_entry==it);
|
assert(AccCache.LRU_entry==it);
|
||||||
}
|
}
|
||||||
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
|
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
|
||||||
|
|
||||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
||||||
auto &AccCache = it->second;
|
auto &AccCache = it->second;
|
||||||
|
|
||||||
@ -548,6 +549,7 @@ void MemoryManager::Audit(std::string s)
|
|||||||
|
|
||||||
if ( AccCache.cpuLock || AccCache.accLock ) {
|
if ( AccCache.cpuLock || AccCache.accLock ) {
|
||||||
assert(AccCache.LRU_valid==0);
|
assert(AccCache.LRU_valid==0);
|
||||||
|
|
||||||
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||||
<< "\t cpuLock " << AccCache.cpuLock
|
<< "\t cpuLock " << AccCache.cpuLock
|
||||||
@ -566,6 +568,7 @@ void MemoryManager::Audit(std::string s)
|
|||||||
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
|
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
|
||||||
assert(LruCnt == LRU.size());
|
assert(LruCnt == LRU.size());
|
||||||
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
|
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void MemoryManager::PrintState(void* _CpuPtr)
|
void MemoryManager::PrintState(void* _CpuPtr)
|
||||||
|
@ -53,10 +53,11 @@ public:
|
|||||||
// Communicator should know nothing of the physics grid, only processor grid.
|
// Communicator should know nothing of the physics grid, only processor grid.
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
int _Nprocessors; // How many in all
|
int _Nprocessors; // How many in all
|
||||||
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
|
|
||||||
int _processor; // linear processor rank
|
int _processor; // linear processor rank
|
||||||
Coordinate _processor_coor; // linear processor coordinate
|
|
||||||
unsigned long _ndimension;
|
unsigned long _ndimension;
|
||||||
|
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
|
||||||
|
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
|
||||||
|
Coordinate _processor_coor; // linear processor coordinate
|
||||||
static Grid_MPI_Comm communicator_world;
|
static Grid_MPI_Comm communicator_world;
|
||||||
Grid_MPI_Comm communicator;
|
Grid_MPI_Comm communicator;
|
||||||
std::vector<Grid_MPI_Comm> communicator_halo;
|
std::vector<Grid_MPI_Comm> communicator_halo;
|
||||||
@ -97,14 +98,16 @@ public:
|
|||||||
int BossRank(void) ;
|
int BossRank(void) ;
|
||||||
int ThisRank(void) ;
|
int ThisRank(void) ;
|
||||||
const Coordinate & ThisProcessorCoor(void) ;
|
const Coordinate & ThisProcessorCoor(void) ;
|
||||||
|
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
|
||||||
const Coordinate & ProcessorGrid(void) ;
|
const Coordinate & ProcessorGrid(void) ;
|
||||||
int ProcessorCount(void) ;
|
int ProcessorCount(void) ;
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
static int RankWorld(void) ;
|
static int RankWorld(void) ;
|
||||||
static void BroadcastWorld(int root,void* data, int bytes);
|
static void BroadcastWorld(int root,void* data, int bytes);
|
||||||
|
static void BarrierWorld(void);
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////
|
||||||
// Reduction
|
// Reduction
|
||||||
@ -128,7 +131,7 @@ public:
|
|||||||
template<class obj> void GlobalSum(obj &o){
|
template<class obj> void GlobalSum(obj &o){
|
||||||
typedef typename obj::scalar_type scalar_type;
|
typedef typename obj::scalar_type scalar_type;
|
||||||
int words = sizeof(obj)/sizeof(scalar_type);
|
int words = sizeof(obj)/sizeof(scalar_type);
|
||||||
scalar_type * ptr = (scalar_type *)& o;
|
scalar_type * ptr = (scalar_type *)& o; // Safe alias
|
||||||
GlobalSumVector(ptr,words);
|
GlobalSumVector(ptr,words);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -142,17 +145,17 @@ public:
|
|||||||
int bytes);
|
int bytes);
|
||||||
|
|
||||||
double StencilSendToRecvFrom(void *xmit,
|
double StencilSendToRecvFrom(void *xmit,
|
||||||
int xmit_to_rank,
|
int xmit_to_rank,int do_xmit,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,
|
int recv_from_rank,int do_recv,
|
||||||
int bytes,int dir);
|
int bytes,int dir);
|
||||||
|
|
||||||
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||||
void *xmit,
|
void *xmit,
|
||||||
int xmit_to_rank,
|
int xmit_to_rank,int do_xmit,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,
|
int recv_from_rank,int do_recv,
|
||||||
int bytes,int dir);
|
int xbytes,int rbytes,int dir);
|
||||||
|
|
||||||
|
|
||||||
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
|
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
|
||||||
|
@ -106,7 +106,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
|||||||
// Remap using the shared memory optimising routine
|
// Remap using the shared memory optimising routine
|
||||||
// The remap creates a comm which must be freed
|
// The remap creates a comm which must be freed
|
||||||
////////////////////////////////////////////////////
|
////////////////////////////////////////////////////
|
||||||
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
|
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors);
|
||||||
InitFromMPICommunicator(processors,optimal_comm);
|
InitFromMPICommunicator(processors,optimal_comm);
|
||||||
SetCommunicator(optimal_comm);
|
SetCommunicator(optimal_comm);
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
@ -124,12 +124,13 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
|||||||
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||||
Coordinate parent_processor_coor(_ndimension,0);
|
Coordinate parent_processor_coor(_ndimension,0);
|
||||||
Coordinate parent_processors (_ndimension,1);
|
Coordinate parent_processors (_ndimension,1);
|
||||||
|
Coordinate shm_processors (_ndimension,1);
|
||||||
// Can make 5d grid from 4d etc...
|
// Can make 5d grid from 4d etc...
|
||||||
int pad = _ndimension-parent_ndimension;
|
int pad = _ndimension-parent_ndimension;
|
||||||
for(int d=0;d<parent_ndimension;d++){
|
for(int d=0;d<parent_ndimension;d++){
|
||||||
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
||||||
parent_processors [pad+d]=parent._processors[d];
|
parent_processors [pad+d]=parent._processors[d];
|
||||||
|
shm_processors [pad+d]=parent._shm_processors[d];
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
@ -154,6 +155,7 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
|||||||
ccoor[d] = parent_processor_coor[d] % processors[d];
|
ccoor[d] = parent_processor_coor[d] % processors[d];
|
||||||
scoor[d] = parent_processor_coor[d] / processors[d];
|
scoor[d] = parent_processor_coor[d] / processors[d];
|
||||||
ssize[d] = parent_processors[d] / processors[d];
|
ssize[d] = parent_processors[d] / processors[d];
|
||||||
|
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
|
||||||
}
|
}
|
||||||
|
|
||||||
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
||||||
@ -335,23 +337,23 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
|||||||
}
|
}
|
||||||
// Basic Halo comms primitive
|
// Basic Halo comms primitive
|
||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||||
int dest,
|
int dest, int dox,
|
||||||
void *recv,
|
void *recv,
|
||||||
int from,
|
int from, int dor,
|
||||||
int bytes,int dir)
|
int bytes,int dir)
|
||||||
{
|
{
|
||||||
std::vector<CommsRequest_t> list;
|
std::vector<CommsRequest_t> list;
|
||||||
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
|
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||||
StencilSendToRecvFromComplete(list,dir);
|
StencilSendToRecvFromComplete(list,dir);
|
||||||
return offbytes;
|
return offbytes;
|
||||||
}
|
}
|
||||||
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||||
void *xmit,
|
void *xmit,
|
||||||
int dest,
|
int dest,int dox,
|
||||||
void *recv,
|
void *recv,
|
||||||
int from,
|
int from,int dor,
|
||||||
int bytes,int dir)
|
int xbytes,int rbytes,int dir)
|
||||||
{
|
{
|
||||||
int ncomm =communicator_halo.size();
|
int ncomm =communicator_halo.size();
|
||||||
int commdir=dir%ncomm;
|
int commdir=dir%ncomm;
|
||||||
@ -370,37 +372,34 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
|||||||
double off_node_bytes=0.0;
|
double off_node_bytes=0.0;
|
||||||
int tag;
|
int tag;
|
||||||
|
|
||||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
if ( dor ) {
|
||||||
tag= dir+from*32;
|
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
tag= dir+from*32;
|
||||||
assert(ierr==0);
|
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||||
list.push_back(rrq);
|
assert(ierr==0);
|
||||||
off_node_bytes+=bytes;
|
list.push_back(rrq);
|
||||||
|
off_node_bytes+=rbytes;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
if (dox) {
|
||||||
tag= dir+_processor*32;
|
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
tag= dir+_processor*32;
|
||||||
assert(ierr==0);
|
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||||
list.push_back(xrq);
|
assert(ierr==0);
|
||||||
off_node_bytes+=bytes;
|
list.push_back(xrq);
|
||||||
} else {
|
off_node_bytes+=xbytes;
|
||||||
// TODO : make a OMP loop on CPU, call threaded bcopy
|
} else {
|
||||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||||
assert(shm!=NULL);
|
assert(shm!=NULL);
|
||||||
// std::cout <<"acceleratorCopyDeviceToDeviceAsynch"<< std::endl;
|
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,bytes);
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
|
|
||||||
// this->StencilSendToRecvFromComplete(list,dir);
|
|
||||||
// }
|
|
||||||
|
|
||||||
return off_node_bytes;
|
return off_node_bytes;
|
||||||
}
|
}
|
||||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||||
{
|
{
|
||||||
// std::cout << "Copy Synchronised\n"<<std::endl;
|
|
||||||
int nreq=list.size();
|
int nreq=list.size();
|
||||||
|
|
||||||
if (nreq==0) return;
|
if (nreq==0) return;
|
||||||
@ -436,6 +435,10 @@ int CartesianCommunicator::RankWorld(void){
|
|||||||
MPI_Comm_rank(communicator_world,&r);
|
MPI_Comm_rank(communicator_world,&r);
|
||||||
return r;
|
return r;
|
||||||
}
|
}
|
||||||
|
void CartesianCommunicator::BarrierWorld(void){
|
||||||
|
int ierr = MPI_Barrier(communicator_world);
|
||||||
|
assert(ierr==0);
|
||||||
|
}
|
||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||||
{
|
{
|
||||||
int ierr= MPI_Bcast(data,
|
int ierr= MPI_Bcast(data,
|
||||||
|
@ -45,12 +45,14 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
|
|||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||||
: CartesianCommunicator(processors)
|
: CartesianCommunicator(processors)
|
||||||
{
|
{
|
||||||
|
_shm_processors = Coordinate(processors.size(),1);
|
||||||
srank=0;
|
srank=0;
|
||||||
SetCommunicator(communicator_world);
|
SetCommunicator(communicator_world);
|
||||||
}
|
}
|
||||||
|
|
||||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||||
{
|
{
|
||||||
|
_shm_processors = Coordinate(processors.size(),1);
|
||||||
_processors = processors;
|
_processors = processors;
|
||||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||||
_processor_coor.resize(_ndimension);
|
_processor_coor.resize(_ndimension);
|
||||||
@ -102,6 +104,7 @@ int CartesianCommunicator::RankWorld(void){return 0;}
|
|||||||
void CartesianCommunicator::Barrier(void){}
|
void CartesianCommunicator::Barrier(void){}
|
||||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
|
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
|
||||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
|
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
|
||||||
|
void CartesianCommunicator::BarrierWorld(void) { }
|
||||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
|
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
|
||||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
|
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
|
||||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||||
@ -111,19 +114,19 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
|
|||||||
}
|
}
|
||||||
|
|
||||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||||
int xmit_to_rank,
|
int xmit_to_rank,int dox,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,
|
int recv_from_rank,int dor,
|
||||||
int bytes, int dir)
|
int bytes, int dir)
|
||||||
{
|
{
|
||||||
return 2.0*bytes;
|
return 2.0*bytes;
|
||||||
}
|
}
|
||||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||||
void *xmit,
|
void *xmit,
|
||||||
int xmit_to_rank,
|
int xmit_to_rank,int dox,
|
||||||
void *recv,
|
void *recv,
|
||||||
int recv_from_rank,
|
int recv_from_rank,int dor,
|
||||||
int bytes, int dir)
|
int xbytes,int rbytes, int dir)
|
||||||
{
|
{
|
||||||
return 2.0*bytes;
|
return 2.0*bytes;
|
||||||
}
|
}
|
||||||
|
@ -93,9 +93,10 @@ public:
|
|||||||
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
||||||
//////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////
|
||||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||||
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
// Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||||
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
||||||
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
||||||
|
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
||||||
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
|
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
|
||||||
///////////////////////////////////////////////////
|
///////////////////////////////////////////////////
|
||||||
// Provide shared memory facilities off comm world
|
// Provide shared memory facilities off comm world
|
||||||
|
@ -29,6 +29,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
|||||||
|
|
||||||
#include <Grid/GridCore.h>
|
#include <Grid/GridCore.h>
|
||||||
#include <pwd.h>
|
#include <pwd.h>
|
||||||
|
#include <syscall.h>
|
||||||
|
|
||||||
#ifdef GRID_CUDA
|
#ifdef GRID_CUDA
|
||||||
#include <cuda_runtime_api.h>
|
#include <cuda_runtime_api.h>
|
||||||
@ -153,7 +154,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
|
|||||||
}
|
}
|
||||||
return log2size;
|
return log2size;
|
||||||
}
|
}
|
||||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||||
{
|
{
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
||||||
@ -166,8 +167,8 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
|
|||||||
gethostname(name,namelen);
|
gethostname(name,namelen);
|
||||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||||
|
|
||||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
|
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
|
||||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
|
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
|
||||||
}
|
}
|
||||||
static inline int divides(int a,int b)
|
static inline int divides(int a,int b)
|
||||||
{
|
{
|
||||||
@ -222,7 +223,7 @@ void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmD
|
|||||||
dim=(dim+1) %ndimension;
|
dim=(dim+1) %ndimension;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||||
{
|
{
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Assert power of two shm_size.
|
// Assert power of two shm_size.
|
||||||
@ -295,7 +296,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
Coordinate HyperCoor(ndimension);
|
Coordinate HyperCoor(ndimension);
|
||||||
|
|
||||||
GetShmDims(WorldDims,ShmDims);
|
GetShmDims(WorldDims,ShmDims);
|
||||||
|
SHM = ShmDims;
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Establish torus of processes and nodes with sub-blockings
|
// Establish torus of processes and nodes with sub-blockings
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
@ -342,7 +344,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
|||||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||||
assert(ierr==0);
|
assert(ierr==0);
|
||||||
}
|
}
|
||||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||||
{
|
{
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Identify subblock of ranks on node spreading across dims
|
// Identify subblock of ranks on node spreading across dims
|
||||||
@ -354,6 +356,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
|||||||
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
|
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
|
||||||
|
|
||||||
GetShmDims(WorldDims,ShmDims);
|
GetShmDims(WorldDims,ShmDims);
|
||||||
|
SHM=ShmDims;
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Establish torus of processes and nodes with sub-blockings
|
// Establish torus of processes and nodes with sub-blockings
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
@ -521,7 +525,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
|||||||
}
|
}
|
||||||
if ( WorldRank == 0 ){
|
if ( WorldRank == 0 ){
|
||||||
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||||
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
|
||||||
}
|
}
|
||||||
SharedMemoryZero(ShmCommBuf,bytes);
|
SharedMemoryZero(ShmCommBuf,bytes);
|
||||||
std::cout<< "Setting up IPC"<<std::endl;
|
std::cout<< "Setting up IPC"<<std::endl;
|
||||||
|
@ -48,9 +48,10 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
|||||||
_ShmSetup=1;
|
_ShmSetup=1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||||
{
|
{
|
||||||
optimal_comm = WorldComm;
|
optimal_comm = WorldComm;
|
||||||
|
SHM = Coordinate(processors.size(),1);
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
@ -63,7 +63,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate,
|
|||||||
typename std::remove_const<vobj>::type ret;
|
typename std::remove_const<vobj>::type ret;
|
||||||
|
|
||||||
typedef typename vobj::scalar_object scalar_object;
|
typedef typename vobj::scalar_object scalar_object;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
// typedef typename vobj::scalar_type scalar_type;
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
const int Nsimd = vobj::vector_type::Nsimd();
|
const int Nsimd = vobj::vector_type::Nsimd();
|
||||||
|
@ -36,6 +36,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("mult");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
autoView( lhs_v , lhs, AcceleratorRead);
|
autoView( lhs_v , lhs, AcceleratorRead);
|
||||||
@ -53,6 +54,7 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("mac");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
conformable(lhs,rhs);
|
conformable(lhs,rhs);
|
||||||
@ -70,6 +72,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("sub");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
conformable(lhs,rhs);
|
conformable(lhs,rhs);
|
||||||
@ -86,6 +89,7 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
}
|
}
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("add");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
conformable(lhs,rhs);
|
conformable(lhs,rhs);
|
||||||
@ -106,6 +110,7 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
|
GRID_TRACE("mult");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(lhs,ret);
|
conformable(lhs,ret);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -119,6 +124,7 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
|
GRID_TRACE("mac");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,lhs);
|
conformable(ret,lhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -133,6 +139,7 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
|
GRID_TRACE("sub");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(ret,lhs);
|
conformable(ret,lhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -146,6 +153,7 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
}
|
}
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||||
|
GRID_TRACE("add");
|
||||||
ret.Checkerboard() = lhs.Checkerboard();
|
ret.Checkerboard() = lhs.Checkerboard();
|
||||||
conformable(lhs,ret);
|
conformable(lhs,ret);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -163,6 +171,7 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
|||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("mult");
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -177,6 +186,7 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("mac");
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -191,6 +201,7 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("sub");
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -204,6 +215,7 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
}
|
}
|
||||||
template<class obj1,class obj2,class obj3> inline
|
template<class obj1,class obj2,class obj3> inline
|
||||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||||
|
GRID_TRACE("add");
|
||||||
ret.Checkerboard() = rhs.Checkerboard();
|
ret.Checkerboard() = rhs.Checkerboard();
|
||||||
conformable(ret,rhs);
|
conformable(ret,rhs);
|
||||||
autoView( ret_v , ret, AcceleratorWrite);
|
autoView( ret_v , ret, AcceleratorWrite);
|
||||||
@ -218,6 +230,7 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
|||||||
|
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||||
|
GRID_TRACE("axpy");
|
||||||
ret.Checkerboard() = x.Checkerboard();
|
ret.Checkerboard() = x.Checkerboard();
|
||||||
conformable(ret,x);
|
conformable(ret,x);
|
||||||
conformable(x,y);
|
conformable(x,y);
|
||||||
@ -231,6 +244,7 @@ void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &
|
|||||||
}
|
}
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||||
|
GRID_TRACE("axpby");
|
||||||
ret.Checkerboard() = x.Checkerboard();
|
ret.Checkerboard() = x.Checkerboard();
|
||||||
conformable(ret,x);
|
conformable(ret,x);
|
||||||
conformable(x,y);
|
conformable(x,y);
|
||||||
@ -246,11 +260,13 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
|
|||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("axpy_norm");
|
||||||
return axpy_norm_fast(ret,a,x,y);
|
return axpy_norm_fast(ret,a,x,y);
|
||||||
}
|
}
|
||||||
template<class sobj,class vobj> inline
|
template<class sobj,class vobj> inline
|
||||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("axpby_norm");
|
||||||
return axpby_norm_fast(ret,a,b,x,y);
|
return axpby_norm_fast(ret,a,b,x,y);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -117,6 +117,7 @@ public:
|
|||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
|
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("ExpressionTemplateEval");
|
||||||
GridBase *egrid(nullptr);
|
GridBase *egrid(nullptr);
|
||||||
GridFromExpression(egrid,expr);
|
GridFromExpression(egrid,expr);
|
||||||
assert(egrid!=nullptr);
|
assert(egrid!=nullptr);
|
||||||
@ -140,6 +141,7 @@ public:
|
|||||||
}
|
}
|
||||||
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("ExpressionTemplateEval");
|
||||||
GridBase *egrid(nullptr);
|
GridBase *egrid(nullptr);
|
||||||
GridFromExpression(egrid,expr);
|
GridFromExpression(egrid,expr);
|
||||||
assert(egrid!=nullptr);
|
assert(egrid!=nullptr);
|
||||||
@ -163,6 +165,7 @@ public:
|
|||||||
}
|
}
|
||||||
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
|
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("ExpressionTemplateEval");
|
||||||
GridBase *egrid(nullptr);
|
GridBase *egrid(nullptr);
|
||||||
GridFromExpression(egrid,expr);
|
GridFromExpression(egrid,expr);
|
||||||
assert(egrid!=nullptr);
|
assert(egrid!=nullptr);
|
||||||
|
@ -32,7 +32,6 @@ template<class vobj>
|
|||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||||
@ -82,7 +81,6 @@ template<class vobj>
|
|||||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||||
@ -130,7 +128,6 @@ template<class vobj>
|
|||||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
GridBase *FullGrid = lhs.Grid();
|
GridBase *FullGrid = lhs.Grid();
|
||||||
|
@ -96,9 +96,6 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
|||||||
|
|
||||||
GridBase *grid=l.Grid();
|
GridBase *grid=l.Grid();
|
||||||
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
int Nsimd = grid->Nsimd();
|
int Nsimd = grid->Nsimd();
|
||||||
|
|
||||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||||
@ -125,14 +122,17 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
|||||||
//////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////
|
||||||
// Peek a scalar object from the SIMD array
|
// Peek a scalar object from the SIMD array
|
||||||
//////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////
|
||||||
|
template<class vobj>
|
||||||
|
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
|
||||||
|
typename vobj::scalar_object s;
|
||||||
|
peekSite(s,l,site);
|
||||||
|
return s;
|
||||||
|
}
|
||||||
template<class vobj,class sobj>
|
template<class vobj,class sobj>
|
||||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||||
|
|
||||||
GridBase *grid=l.Grid();
|
GridBase *grid=l.Grid();
|
||||||
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
|
||||||
|
|
||||||
int Nsimd = grid->Nsimd();
|
int Nsimd = grid->Nsimd();
|
||||||
|
|
||||||
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
|
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
|
||||||
@ -173,11 +173,11 @@ inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
|
|||||||
idx= grid->iIndex(site);
|
idx= grid->iIndex(site);
|
||||||
odx= grid->oIndex(site);
|
odx= grid->oIndex(site);
|
||||||
|
|
||||||
scalar_type * vp = (scalar_type *)&l[odx];
|
const vector_type *vp = (const vector_type *) &l[odx];
|
||||||
scalar_type * pt = (scalar_type *)&s;
|
scalar_type * pt = (scalar_type *)&s;
|
||||||
|
|
||||||
for(int w=0;w<words;w++){
|
for(int w=0;w<words;w++){
|
||||||
pt[w] = vp[idx+w*Nsimd];
|
pt[w] = getlane(vp[w],idx);
|
||||||
}
|
}
|
||||||
|
|
||||||
return;
|
return;
|
||||||
@ -210,10 +210,10 @@ inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
|
|||||||
idx= grid->iIndex(site);
|
idx= grid->iIndex(site);
|
||||||
odx= grid->oIndex(site);
|
odx= grid->oIndex(site);
|
||||||
|
|
||||||
scalar_type * vp = (scalar_type *)&l[odx];
|
vector_type * vp = (vector_type *)&l[odx];
|
||||||
scalar_type * pt = (scalar_type *)&s;
|
scalar_type * pt = (scalar_type *)&s;
|
||||||
for(int w=0;w<words;w++){
|
for(int w=0;w<words;w++){
|
||||||
vp[idx+w*Nsimd] = pt[w];
|
putlane(vp[w],pt[w],idx);
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
};
|
};
|
||||||
|
@ -94,10 +94,7 @@ inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
|
|||||||
for(int i=0;i<nthread;i++){
|
for(int i=0;i<nthread;i++){
|
||||||
ssum = ssum+sumarray[i];
|
ssum = ssum+sumarray[i];
|
||||||
}
|
}
|
||||||
|
return ssum;
|
||||||
typedef typename vobj::scalar_object ssobj;
|
|
||||||
ssobj ret = ssum;
|
|
||||||
return ret;
|
|
||||||
}
|
}
|
||||||
/*
|
/*
|
||||||
Threaded max, don't use for now
|
Threaded max, don't use for now
|
||||||
@ -236,7 +233,6 @@ template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
|
|||||||
template<class vobj>
|
template<class vobj>
|
||||||
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
|
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_typeD vector_type;
|
typedef typename vobj::vector_typeD vector_type;
|
||||||
ComplexD nrm;
|
ComplexD nrm;
|
||||||
|
|
||||||
@ -246,6 +242,7 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
|||||||
const uint64_t sites = grid->oSites();
|
const uint64_t sites = grid->oSites();
|
||||||
|
|
||||||
// Might make all code paths go this way.
|
// Might make all code paths go this way.
|
||||||
|
#if 0
|
||||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||||
Vector<inner_t> inner_tmp(sites);
|
Vector<inner_t> inner_tmp(sites);
|
||||||
auto inner_tmp_v = &inner_tmp[0];
|
auto inner_tmp_v = &inner_tmp[0];
|
||||||
@ -254,15 +251,31 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
|||||||
autoView( right_v,right, AcceleratorRead);
|
autoView( right_v,right, AcceleratorRead);
|
||||||
// This code could read coalesce
|
// This code could read coalesce
|
||||||
// GPU - SIMT lane compliance...
|
// GPU - SIMT lane compliance...
|
||||||
accelerator_for( ss, sites, 1,{
|
accelerator_for( ss, sites, nsimd,{
|
||||||
auto x_l = left_v[ss];
|
auto x_l = left_v(ss);
|
||||||
auto y_l = right_v[ss];
|
auto y_l = right_v(ss);
|
||||||
inner_tmp_v[ss]=innerProductD(x_l,y_l);
|
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
#else
|
||||||
|
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
|
||||||
|
Vector<inner_t> inner_tmp(sites);
|
||||||
|
auto inner_tmp_v = &inner_tmp[0];
|
||||||
|
|
||||||
|
{
|
||||||
|
autoView( left_v , left, AcceleratorRead);
|
||||||
|
autoView( right_v,right, AcceleratorRead);
|
||||||
|
|
||||||
|
// GPU - SIMT lane compliance...
|
||||||
|
accelerator_for( ss, sites, nsimd,{
|
||||||
|
auto x_l = left_v(ss);
|
||||||
|
auto y_l = right_v(ss);
|
||||||
|
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||||
|
});
|
||||||
|
}
|
||||||
|
#endif
|
||||||
// This is in single precision and fails some tests
|
// This is in single precision and fails some tests
|
||||||
auto anrm = sum(inner_tmp_v,sites);
|
auto anrm = sumD(inner_tmp_v,sites);
|
||||||
nrm = anrm;
|
nrm = anrm;
|
||||||
return nrm;
|
return nrm;
|
||||||
}
|
}
|
||||||
@ -295,8 +308,7 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
|||||||
conformable(z,x);
|
conformable(z,x);
|
||||||
conformable(x,y);
|
conformable(x,y);
|
||||||
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
// typedef typename vobj::vector_typeD vector_type;
|
||||||
typedef typename vobj::vector_typeD vector_type;
|
|
||||||
RealD nrm;
|
RealD nrm;
|
||||||
|
|
||||||
GridBase *grid = x.Grid();
|
GridBase *grid = x.Grid();
|
||||||
@ -308,17 +320,29 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
|||||||
autoView( x_v, x, AcceleratorRead);
|
autoView( x_v, x, AcceleratorRead);
|
||||||
autoView( y_v, y, AcceleratorRead);
|
autoView( y_v, y, AcceleratorRead);
|
||||||
autoView( z_v, z, AcceleratorWrite);
|
autoView( z_v, z, AcceleratorWrite);
|
||||||
|
#if 0
|
||||||
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
|
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
|
||||||
Vector<inner_t> inner_tmp(sites);
|
Vector<inner_t> inner_tmp(sites);
|
||||||
auto inner_tmp_v = &inner_tmp[0];
|
auto inner_tmp_v = &inner_tmp[0];
|
||||||
|
|
||||||
accelerator_for( ss, sites, 1,{
|
accelerator_for( ss, sites, nsimd,{
|
||||||
auto tmp = a*x_v[ss]+b*y_v[ss];
|
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||||
inner_tmp_v[ss]=innerProductD(tmp,tmp);
|
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
|
||||||
z_v[ss]=tmp;
|
coalescedWrite(z_v[ss],tmp);
|
||||||
});
|
});
|
||||||
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
||||||
|
#else
|
||||||
|
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
|
||||||
|
Vector<inner_t> inner_tmp(sites);
|
||||||
|
auto inner_tmp_v = &inner_tmp[0];
|
||||||
|
|
||||||
|
accelerator_for( ss, sites, nsimd,{
|
||||||
|
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||||
|
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
|
||||||
|
coalescedWrite(z_v[ss],tmp);
|
||||||
|
});
|
||||||
|
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
|
||||||
|
#endif
|
||||||
grid->GlobalSum(nrm);
|
grid->GlobalSum(nrm);
|
||||||
return nrm;
|
return nrm;
|
||||||
}
|
}
|
||||||
@ -328,7 +352,6 @@ innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Latti
|
|||||||
{
|
{
|
||||||
conformable(left,right);
|
conformable(left,right);
|
||||||
|
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_typeD vector_type;
|
typedef typename vobj::vector_typeD vector_type;
|
||||||
Vector<ComplexD> tmp(2);
|
Vector<ComplexD> tmp(2);
|
||||||
|
|
||||||
@ -472,6 +495,14 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
|||||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||||
grid->GlobalSumVector(ptr, words);
|
grid->GlobalSumVector(ptr, words);
|
||||||
}
|
}
|
||||||
|
template<class vobj> inline
|
||||||
|
std::vector<typename vobj::scalar_object>
|
||||||
|
sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||||
|
{
|
||||||
|
std::vector<typename vobj::scalar_object> result;
|
||||||
|
sliceSum(Data,result,orthogdim);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||||
@ -576,7 +607,8 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho
|
|||||||
template<class vobj>
|
template<class vobj>
|
||||||
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
|
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
|
||||||
int orthogdim,RealD scale=1.0)
|
int orthogdim,RealD scale=1.0)
|
||||||
{
|
{
|
||||||
|
// perhaps easier to just promote A to a field and use regular madd
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
typedef typename vobj::scalar_type scalar_type;
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
@ -607,8 +639,7 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
|
|||||||
for(int l=0;l<Nsimd;l++){
|
for(int l=0;l<Nsimd;l++){
|
||||||
grid->iCoorFromIindex(icoor,l);
|
grid->iCoorFromIindex(icoor,l);
|
||||||
int ldx =r+icoor[orthogdim]*rd;
|
int ldx =r+icoor[orthogdim]*rd;
|
||||||
scalar_type *as =(scalar_type *)&av;
|
av.putlane(scalar_type(a[ldx])*zscale,l);
|
||||||
as[l] = scalar_type(a[ldx])*zscale;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor_reduced at; at=av;
|
tensor_reduced at; at=av;
|
||||||
@ -648,7 +679,6 @@ template<class vobj>
|
|||||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||||
@ -702,7 +732,6 @@ template<class vobj>
|
|||||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||||
@ -756,7 +785,6 @@ template<class vobj>
|
|||||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
typedef typename vobj::scalar_type scalar_type;
|
|
||||||
typedef typename vobj::vector_type vector_type;
|
typedef typename vobj::vector_type vector_type;
|
||||||
|
|
||||||
GridBase *FullGrid = lhs.Grid();
|
GridBase *FullGrid = lhs.Grid();
|
||||||
|
@ -211,13 +211,25 @@ inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osi
|
|||||||
assert(ok);
|
assert(ok);
|
||||||
|
|
||||||
Integer smemSize = numThreads * sizeof(sobj);
|
Integer smemSize = numThreads * sizeof(sobj);
|
||||||
|
// Move out of UVM
|
||||||
|
// Turns out I had messed up the synchronise after move to compute stream
|
||||||
|
// as running this on the default stream fools the synchronise
|
||||||
|
#undef UVM_BLOCK_BUFFER
|
||||||
|
#ifndef UVM_BLOCK_BUFFER
|
||||||
|
commVector<sobj> buffer(numBlocks);
|
||||||
|
sobj *buffer_v = &buffer[0];
|
||||||
|
sobj result;
|
||||||
|
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||||
|
accelerator_barrier();
|
||||||
|
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
|
||||||
|
#else
|
||||||
Vector<sobj> buffer(numBlocks);
|
Vector<sobj> buffer(numBlocks);
|
||||||
sobj *buffer_v = &buffer[0];
|
sobj *buffer_v = &buffer[0];
|
||||||
|
sobj result;
|
||||||
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
|
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||||
accelerator_barrier();
|
accelerator_barrier();
|
||||||
auto result = buffer_v[0];
|
result = *buffer_v;
|
||||||
|
#endif
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -250,8 +262,6 @@ inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osi
|
|||||||
template <class vobj>
|
template <class vobj>
|
||||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||||
{
|
{
|
||||||
typedef typename vobj::vector_type vector;
|
|
||||||
typedef typename vobj::scalar_typeD scalarD;
|
|
||||||
typedef typename vobj::scalar_objectD sobj;
|
typedef typename vobj::scalar_objectD sobj;
|
||||||
sobj ret;
|
sobj ret;
|
||||||
|
|
||||||
|
@ -424,9 +424,33 @@ public:
|
|||||||
// MT implementation does not implement fast discard even though
|
// MT implementation does not implement fast discard even though
|
||||||
// in principle this is possible
|
// in principle this is possible
|
||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
|
#if 1
|
||||||
|
thread_for( lidx, _grid->lSites(), {
|
||||||
|
|
||||||
|
int gidx;
|
||||||
|
int o_idx;
|
||||||
|
int i_idx;
|
||||||
|
int rank;
|
||||||
|
Coordinate pcoor;
|
||||||
|
Coordinate lcoor;
|
||||||
|
Coordinate gcoor;
|
||||||
|
_grid->LocalIndexToLocalCoor(lidx,lcoor);
|
||||||
|
pcoor=_grid->ThisProcessorCoor();
|
||||||
|
_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
|
||||||
|
_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
|
||||||
|
|
||||||
|
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||||
|
|
||||||
|
assert(rank == _grid->ThisRank() );
|
||||||
|
|
||||||
|
int l_idx=generator_idx(o_idx,i_idx);
|
||||||
|
_generators[l_idx] = master_engine;
|
||||||
|
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||||
|
});
|
||||||
|
#else
|
||||||
// Everybody loops over global volume.
|
// Everybody loops over global volume.
|
||||||
thread_for( gidx, _grid->_gsites, {
|
thread_for( gidx, _grid->_gsites, {
|
||||||
|
|
||||||
// Where is it?
|
// Where is it?
|
||||||
int rank;
|
int rank;
|
||||||
int o_idx;
|
int o_idx;
|
||||||
@ -443,6 +467,7 @@ public:
|
|||||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
#endif
|
||||||
#else
|
#else
|
||||||
////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////
|
||||||
// Machine and thread decomposition dependent seeding is efficient
|
// Machine and thread decomposition dependent seeding is efficient
|
||||||
|
@ -194,11 +194,11 @@ accelerator_inline void convertType(vComplexD2 & out, const ComplexD & in) {
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
|
accelerator_inline void convertType(vComplexF & out, const vComplexD2 & in) {
|
||||||
out.v = Optimization::PrecisionChange::DtoS(in._internal[0].v,in._internal[1].v);
|
precisionChange(out,in);
|
||||||
}
|
}
|
||||||
|
|
||||||
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
|
accelerator_inline void convertType(vComplexD2 & out, const vComplexF & in) {
|
||||||
Optimization::PrecisionChange::StoD(in.v,out._internal[0].v,out._internal[1].v);
|
precisionChange(out,in);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename T1,typename T2>
|
template<typename T1,typename T2>
|
||||||
@ -726,10 +726,10 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
|||||||
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
|
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
|
||||||
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
|
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
|
||||||
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
|
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
|
||||||
scalar_type * fp = (scalar_type *)&f_v[odx_f];
|
vector_type * fp = (vector_type *)&f_v[odx_f];
|
||||||
scalar_type * tp = (scalar_type *)&t_v[odx_t];
|
vector_type * tp = (vector_type *)&t_v[odx_t];
|
||||||
for(int w=0;w<words;w++){
|
for(int w=0;w<words;w++){
|
||||||
tp[idx_t+w*Nsimd] = fp[idx_f+w*Nsimd]; // FIXME IF RRII layout, type pun no worke
|
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
@ -904,7 +904,7 @@ void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int
|
|||||||
|
|
||||||
|
|
||||||
template<class vobj>
|
template<class vobj>
|
||||||
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||||
{
|
{
|
||||||
typedef typename vobj::scalar_object sobj;
|
typedef typename vobj::scalar_object sobj;
|
||||||
|
|
||||||
@ -1129,9 +1129,27 @@ vectorizeFromRevLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
//Convert a Lattice from one precision to another
|
//Very fast precision change. Requires in/out objects to reside on same Grid (e.g. by using double2 for the double-precision field)
|
||||||
template<class VobjOut, class VobjIn>
|
template<class VobjOut, class VobjIn>
|
||||||
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
void precisionChangeFast(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||||
|
{
|
||||||
|
typedef typename VobjOut::vector_type Vout;
|
||||||
|
typedef typename VobjIn::vector_type Vin;
|
||||||
|
const int N = sizeof(VobjOut)/sizeof(Vout);
|
||||||
|
conformable(out.Grid(),in.Grid());
|
||||||
|
out.Checkerboard() = in.Checkerboard();
|
||||||
|
int nsimd = out.Grid()->Nsimd();
|
||||||
|
autoView( out_v , out, AcceleratorWrite);
|
||||||
|
autoView( in_v , in, AcceleratorRead);
|
||||||
|
accelerator_for(idx,out.Grid()->oSites(),1,{
|
||||||
|
Vout *vout = (Vout *)&out_v[idx];
|
||||||
|
Vin *vin = (Vin *)&in_v[idx];
|
||||||
|
precisionChange(vout,vin,N);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
//Convert a Lattice from one precision to another (original, slow implementation)
|
||||||
|
template<class VobjOut, class VobjIn>
|
||||||
|
void precisionChangeOrig(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
||||||
{
|
{
|
||||||
assert(out.Grid()->Nd() == in.Grid()->Nd());
|
assert(out.Grid()->Nd() == in.Grid()->Nd());
|
||||||
for(int d=0;d<out.Grid()->Nd();d++){
|
for(int d=0;d<out.Grid()->Nd();d++){
|
||||||
@ -1146,7 +1164,7 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
|||||||
|
|
||||||
int ndim = out.Grid()->Nd();
|
int ndim = out.Grid()->Nd();
|
||||||
int out_nsimd = out_grid->Nsimd();
|
int out_nsimd = out_grid->Nsimd();
|
||||||
|
int in_nsimd = in_grid->Nsimd();
|
||||||
std::vector<Coordinate > out_icoor(out_nsimd);
|
std::vector<Coordinate > out_icoor(out_nsimd);
|
||||||
|
|
||||||
for(int lane=0; lane < out_nsimd; lane++){
|
for(int lane=0; lane < out_nsimd; lane++){
|
||||||
@ -1177,6 +1195,128 @@ void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in)
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//The workspace for a precision change operation allowing for the reuse of the mapping to save time on subsequent calls
|
||||||
|
class precisionChangeWorkspace{
|
||||||
|
std::pair<Integer,Integer>* fmap_device; //device pointer
|
||||||
|
//maintain grids for checking
|
||||||
|
GridBase* _out_grid;
|
||||||
|
GridBase* _in_grid;
|
||||||
|
public:
|
||||||
|
precisionChangeWorkspace(GridBase *out_grid, GridBase *in_grid): _out_grid(out_grid), _in_grid(in_grid){
|
||||||
|
//Build a map between the sites and lanes of the output field and the input field as we cannot use the Grids on the device
|
||||||
|
assert(out_grid->Nd() == in_grid->Nd());
|
||||||
|
for(int d=0;d<out_grid->Nd();d++){
|
||||||
|
assert(out_grid->FullDimensions()[d] == in_grid->FullDimensions()[d]);
|
||||||
|
}
|
||||||
|
int Nsimd_out = out_grid->Nsimd();
|
||||||
|
|
||||||
|
std::vector<Coordinate> out_icorrs(out_grid->Nsimd()); //reuse these
|
||||||
|
for(int lane=0; lane < out_grid->Nsimd(); lane++)
|
||||||
|
out_grid->iCoorFromIindex(out_icorrs[lane], lane);
|
||||||
|
|
||||||
|
std::vector<std::pair<Integer,Integer> > fmap_host(out_grid->lSites()); //lsites = osites*Nsimd
|
||||||
|
thread_for(out_oidx,out_grid->oSites(),{
|
||||||
|
Coordinate out_ocorr;
|
||||||
|
out_grid->oCoorFromOindex(out_ocorr, out_oidx);
|
||||||
|
|
||||||
|
Coordinate lcorr; //the local coordinate (common to both in and out as full coordinate)
|
||||||
|
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||||
|
out_grid->InOutCoorToLocalCoor(out_ocorr, out_icorrs[out_lane], lcorr);
|
||||||
|
|
||||||
|
//int in_oidx = in_grid->oIndex(lcorr), in_lane = in_grid->iIndex(lcorr);
|
||||||
|
//Note oIndex and OcorrFromOindex (and same for iIndex) are not inverse for checkerboarded lattice, the former coordinates being defined on the full lattice and the latter on the reduced lattice
|
||||||
|
//Until this is fixed we need to circumvent the problem locally. Here I will use the coordinates defined on the reduced lattice for simplicity
|
||||||
|
int in_oidx = 0, in_lane = 0;
|
||||||
|
for(int d=0;d<in_grid->_ndimension;d++){
|
||||||
|
in_oidx += in_grid->_ostride[d] * ( lcorr[d] % in_grid->_rdimensions[d] );
|
||||||
|
in_lane += in_grid->_istride[d] * ( lcorr[d] / in_grid->_rdimensions[d] );
|
||||||
|
}
|
||||||
|
fmap_host[out_lane + Nsimd_out*out_oidx] = std::pair<Integer,Integer>( in_oidx, in_lane );
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
//Copy the map to the device (if we had a way to tell if an accelerator is in use we could avoid this copy for CPU-only machines)
|
||||||
|
size_t fmap_bytes = out_grid->lSites() * sizeof(std::pair<Integer,Integer>);
|
||||||
|
fmap_device = (std::pair<Integer,Integer>*)acceleratorAllocDevice(fmap_bytes);
|
||||||
|
acceleratorCopyToDevice(fmap_host.data(), fmap_device, fmap_bytes);
|
||||||
|
}
|
||||||
|
|
||||||
|
//Prevent moving or copying
|
||||||
|
precisionChangeWorkspace(const precisionChangeWorkspace &r) = delete;
|
||||||
|
precisionChangeWorkspace(precisionChangeWorkspace &&r) = delete;
|
||||||
|
precisionChangeWorkspace &operator=(const precisionChangeWorkspace &r) = delete;
|
||||||
|
precisionChangeWorkspace &operator=(precisionChangeWorkspace &&r) = delete;
|
||||||
|
|
||||||
|
std::pair<Integer,Integer> const* getMap() const{ return fmap_device; }
|
||||||
|
|
||||||
|
void checkGrids(GridBase* out, GridBase* in) const{
|
||||||
|
conformable(out, _out_grid);
|
||||||
|
conformable(in, _in_grid);
|
||||||
|
}
|
||||||
|
|
||||||
|
~precisionChangeWorkspace(){
|
||||||
|
acceleratorFreeDevice(fmap_device);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
//We would like to use precisionChangeFast when possible. However usage of this requires the Grids to be the same (runtime check)
|
||||||
|
//*and* the precisionChange(VobjOut::vector_type, VobjIn, int) function to be defined for the types; this requires an extra compile-time check which we do using some SFINAE trickery
|
||||||
|
template<class VobjOut, class VobjIn>
|
||||||
|
auto _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, int dummy)->decltype( precisionChange( ((typename VobjOut::vector_type*)0), ((typename VobjIn::vector_type*)0), 1), int()){
|
||||||
|
if(out.Grid() == in.Grid()){
|
||||||
|
precisionChangeFast(out,in);
|
||||||
|
return 1;
|
||||||
|
}else{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
template<class VobjOut, class VobjIn>
|
||||||
|
int _precisionChangeFastWrap(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, long dummy){ //note long here is intentional; it means the above is preferred if available
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//Convert a lattice of one precision to another. Much faster than original implementation but requires a pregenerated workspace
|
||||||
|
//which contains the mapping data.
|
||||||
|
template<class VobjOut, class VobjIn>
|
||||||
|
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in, const precisionChangeWorkspace &workspace){
|
||||||
|
if(_precisionChangeFastWrap(out,in,0)) return;
|
||||||
|
|
||||||
|
static_assert( std::is_same<typename VobjOut::scalar_typeD, typename VobjIn::scalar_typeD>::value == 1, "precisionChange: tensor types must be the same" ); //if tensor types are same the DoublePrecision type must be the same
|
||||||
|
|
||||||
|
out.Checkerboard() = in.Checkerboard();
|
||||||
|
constexpr int Nsimd_out = VobjOut::Nsimd();
|
||||||
|
|
||||||
|
workspace.checkGrids(out.Grid(),in.Grid());
|
||||||
|
std::pair<Integer,Integer> const* fmap_device = workspace.getMap();
|
||||||
|
|
||||||
|
//Do the copy/precision change
|
||||||
|
autoView( out_v , out, AcceleratorWrite);
|
||||||
|
autoView( in_v , in, AcceleratorRead);
|
||||||
|
|
||||||
|
accelerator_for(out_oidx, out.Grid()->oSites(), 1,{
|
||||||
|
std::pair<Integer,Integer> const* fmap_osite = fmap_device + out_oidx*Nsimd_out;
|
||||||
|
for(int out_lane=0; out_lane < Nsimd_out; out_lane++){
|
||||||
|
int in_oidx = fmap_osite[out_lane].first;
|
||||||
|
int in_lane = fmap_osite[out_lane].second;
|
||||||
|
copyLane(out_v[out_oidx], out_lane, in_v[in_oidx], in_lane);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
//Convert a Lattice from one precision to another. Much faster than original implementation but slower than precisionChangeFast
|
||||||
|
//or precisionChange called with pregenerated workspace, as it needs to internally generate the workspace on the host and copy to device
|
||||||
|
template<class VobjOut, class VobjIn>
|
||||||
|
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
|
||||||
|
if(_precisionChangeFastWrap(out,in,0)) return;
|
||||||
|
precisionChangeWorkspace workspace(out.Grid(), in.Grid());
|
||||||
|
precisionChange(out, in, workspace);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// Communicate between grids
|
// Communicate between grids
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
|
@ -42,9 +42,11 @@ using namespace Grid;
|
|||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
class NerscIO : public BinaryIO {
|
class NerscIO : public BinaryIO {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
typedef Lattice<vLorentzColourMatrixD> GaugeField;
|
||||||
|
|
||||||
|
// Enable/disable exiting if the plaquette in the header does not match the value computed (default true)
|
||||||
|
static bool & exitOnReadPlaquetteMismatch(){ static bool v=true; return v; }
|
||||||
|
|
||||||
static inline void truncate(std::string file){
|
static inline void truncate(std::string file){
|
||||||
std::ofstream fout(file,std::ios::out);
|
std::ofstream fout(file,std::ios::out);
|
||||||
}
|
}
|
||||||
@ -203,7 +205,7 @@ public:
|
|||||||
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
|
||||||
exit(0);
|
exit(0);
|
||||||
}
|
}
|
||||||
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
if(exitOnReadPlaquetteMismatch()) assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
|
||||||
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
|
||||||
assert(nersc_csum == header.checksum );
|
assert(nersc_csum == header.checksum );
|
||||||
|
|
||||||
|
102
Grid/qcd/QCD.h
102
Grid/qcd/QCD.h
@ -63,6 +63,7 @@ static constexpr int Ngp=2; // gparity index range
|
|||||||
#define ColourIndex (2)
|
#define ColourIndex (2)
|
||||||
#define SpinIndex (1)
|
#define SpinIndex (1)
|
||||||
#define LorentzIndex (0)
|
#define LorentzIndex (0)
|
||||||
|
#define GparityFlavourIndex (0)
|
||||||
|
|
||||||
// Also should make these a named enum type
|
// Also should make these a named enum type
|
||||||
static constexpr int DaggerNo=0;
|
static constexpr int DaggerNo=0;
|
||||||
@ -87,6 +88,8 @@ template<typename T> struct isCoarsened {
|
|||||||
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
template <typename T> using IfCoarsened = Invoke<std::enable_if< isCoarsened<T>::value,int> > ;
|
||||||
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
template <typename T> using IfNotCoarsened = Invoke<std::enable_if<!isCoarsened<T>::value,int> > ;
|
||||||
|
|
||||||
|
const int GparityFlavourTensorIndex = 3; //TensorLevel counts from the bottom!
|
||||||
|
|
||||||
// ChrisK very keen to add extra space for Gparity doubling.
|
// ChrisK very keen to add extra space for Gparity doubling.
|
||||||
//
|
//
|
||||||
// Also add domain wall index, in a way where Wilson operator
|
// Also add domain wall index, in a way where Wilson operator
|
||||||
@ -110,8 +113,10 @@ template<typename vtype> using iHalfSpinColourVector = iScalar<iVector<iVec
|
|||||||
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
template<typename vtype> using iSpinColourSpinColourMatrix = iScalar<iMatrix<iMatrix<iMatrix<iMatrix<vtype, Nc>, Ns>, Nc>, Ns> >;
|
||||||
|
|
||||||
|
|
||||||
|
template<typename vtype> using iGparityFlavourVector = iVector<iScalar<iScalar<vtype> >, Ngp>;
|
||||||
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
template<typename vtype> using iGparitySpinColourVector = iVector<iVector<iVector<vtype, Nc>, Ns>, Ngp >;
|
||||||
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
template<typename vtype> using iGparityHalfSpinColourVector = iVector<iVector<iVector<vtype, Nc>, Nhs>, Ngp >;
|
||||||
|
template<typename vtype> using iGparityFlavourMatrix = iMatrix<iScalar<iScalar<vtype> >, Ngp>;
|
||||||
|
|
||||||
// Spin matrix
|
// Spin matrix
|
||||||
typedef iSpinMatrix<Complex > SpinMatrix;
|
typedef iSpinMatrix<Complex > SpinMatrix;
|
||||||
@ -121,6 +126,7 @@ typedef iSpinMatrix<ComplexD > SpinMatrixD;
|
|||||||
typedef iSpinMatrix<vComplex > vSpinMatrix;
|
typedef iSpinMatrix<vComplex > vSpinMatrix;
|
||||||
typedef iSpinMatrix<vComplexF> vSpinMatrixF;
|
typedef iSpinMatrix<vComplexF> vSpinMatrixF;
|
||||||
typedef iSpinMatrix<vComplexD> vSpinMatrixD;
|
typedef iSpinMatrix<vComplexD> vSpinMatrixD;
|
||||||
|
typedef iSpinMatrix<vComplexD2> vSpinMatrixD2;
|
||||||
|
|
||||||
// Colour Matrix
|
// Colour Matrix
|
||||||
typedef iColourMatrix<Complex > ColourMatrix;
|
typedef iColourMatrix<Complex > ColourMatrix;
|
||||||
@ -130,6 +136,7 @@ typedef iColourMatrix<ComplexD > ColourMatrixD;
|
|||||||
typedef iColourMatrix<vComplex > vColourMatrix;
|
typedef iColourMatrix<vComplex > vColourMatrix;
|
||||||
typedef iColourMatrix<vComplexF> vColourMatrixF;
|
typedef iColourMatrix<vComplexF> vColourMatrixF;
|
||||||
typedef iColourMatrix<vComplexD> vColourMatrixD;
|
typedef iColourMatrix<vComplexD> vColourMatrixD;
|
||||||
|
typedef iColourMatrix<vComplexD2> vColourMatrixD2;
|
||||||
|
|
||||||
// SpinColour matrix
|
// SpinColour matrix
|
||||||
typedef iSpinColourMatrix<Complex > SpinColourMatrix;
|
typedef iSpinColourMatrix<Complex > SpinColourMatrix;
|
||||||
@ -139,6 +146,7 @@ typedef iSpinColourMatrix<ComplexD > SpinColourMatrixD;
|
|||||||
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
|
typedef iSpinColourMatrix<vComplex > vSpinColourMatrix;
|
||||||
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
|
typedef iSpinColourMatrix<vComplexF> vSpinColourMatrixF;
|
||||||
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
|
typedef iSpinColourMatrix<vComplexD> vSpinColourMatrixD;
|
||||||
|
typedef iSpinColourMatrix<vComplexD2> vSpinColourMatrixD2;
|
||||||
|
|
||||||
// SpinColourSpinColour matrix
|
// SpinColourSpinColour matrix
|
||||||
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
|
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
|
||||||
@ -148,6 +156,7 @@ typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
|
|||||||
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
|
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
|
||||||
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
|
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
|
||||||
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
|
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
|
||||||
|
typedef iSpinColourSpinColourMatrix<vComplexD2> vSpinColourSpinColourMatrixD2;
|
||||||
|
|
||||||
// SpinColourSpinColour matrix
|
// SpinColourSpinColour matrix
|
||||||
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
|
typedef iSpinColourSpinColourMatrix<Complex > SpinColourSpinColourMatrix;
|
||||||
@ -157,24 +166,38 @@ typedef iSpinColourSpinColourMatrix<ComplexD > SpinColourSpinColourMatrixD;
|
|||||||
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
|
typedef iSpinColourSpinColourMatrix<vComplex > vSpinColourSpinColourMatrix;
|
||||||
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
|
typedef iSpinColourSpinColourMatrix<vComplexF> vSpinColourSpinColourMatrixF;
|
||||||
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
|
typedef iSpinColourSpinColourMatrix<vComplexD> vSpinColourSpinColourMatrixD;
|
||||||
|
typedef iSpinColourSpinColourMatrix<vComplexD2> vSpinColourSpinColourMatrixD2;
|
||||||
|
|
||||||
// LorentzColour
|
// LorentzColour
|
||||||
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
|
typedef iLorentzColourMatrix<Complex > LorentzColourMatrix;
|
||||||
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
|
typedef iLorentzColourMatrix<ComplexF > LorentzColourMatrixF;
|
||||||
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
|
typedef iLorentzColourMatrix<ComplexD > LorentzColourMatrixD;
|
||||||
|
|
||||||
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
|
typedef iLorentzColourMatrix<vComplex > vLorentzColourMatrix;
|
||||||
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
|
typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
|
||||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
|
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
|
||||||
|
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
|
||||||
|
|
||||||
// DoubleStored gauge field
|
// DoubleStored gauge field
|
||||||
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
|
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
|
||||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
|
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
|
||||||
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
|
typedef iDoubleStoredColourMatrix<ComplexD > DoubleStoredColourMatrixD;
|
||||||
|
|
||||||
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
typedef iDoubleStoredColourMatrix<vComplex > vDoubleStoredColourMatrix;
|
||||||
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
typedef iDoubleStoredColourMatrix<vComplexF> vDoubleStoredColourMatrixF;
|
||||||
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
typedef iDoubleStoredColourMatrix<vComplexD> vDoubleStoredColourMatrixD;
|
||||||
|
typedef iDoubleStoredColourMatrix<vComplexD2> vDoubleStoredColourMatrixD2;
|
||||||
|
|
||||||
|
//G-parity flavour matrix
|
||||||
|
typedef iGparityFlavourMatrix<Complex> GparityFlavourMatrix;
|
||||||
|
typedef iGparityFlavourMatrix<ComplexF> GparityFlavourMatrixF;
|
||||||
|
typedef iGparityFlavourMatrix<ComplexD> GparityFlavourMatrixD;
|
||||||
|
|
||||||
|
typedef iGparityFlavourMatrix<vComplex> vGparityFlavourMatrix;
|
||||||
|
typedef iGparityFlavourMatrix<vComplexF> vGparityFlavourMatrixF;
|
||||||
|
typedef iGparityFlavourMatrix<vComplexD> vGparityFlavourMatrixD;
|
||||||
|
typedef iGparityFlavourMatrix<vComplexD2> vGparityFlavourMatrixD2;
|
||||||
|
|
||||||
|
|
||||||
// Spin vector
|
// Spin vector
|
||||||
typedef iSpinVector<Complex > SpinVector;
|
typedef iSpinVector<Complex > SpinVector;
|
||||||
@ -184,6 +207,7 @@ typedef iSpinVector<ComplexD> SpinVectorD;
|
|||||||
typedef iSpinVector<vComplex > vSpinVector;
|
typedef iSpinVector<vComplex > vSpinVector;
|
||||||
typedef iSpinVector<vComplexF> vSpinVectorF;
|
typedef iSpinVector<vComplexF> vSpinVectorF;
|
||||||
typedef iSpinVector<vComplexD> vSpinVectorD;
|
typedef iSpinVector<vComplexD> vSpinVectorD;
|
||||||
|
typedef iSpinVector<vComplexD2> vSpinVectorD2;
|
||||||
|
|
||||||
// Colour vector
|
// Colour vector
|
||||||
typedef iColourVector<Complex > ColourVector;
|
typedef iColourVector<Complex > ColourVector;
|
||||||
@ -193,6 +217,7 @@ typedef iColourVector<ComplexD> ColourVectorD;
|
|||||||
typedef iColourVector<vComplex > vColourVector;
|
typedef iColourVector<vComplex > vColourVector;
|
||||||
typedef iColourVector<vComplexF> vColourVectorF;
|
typedef iColourVector<vComplexF> vColourVectorF;
|
||||||
typedef iColourVector<vComplexD> vColourVectorD;
|
typedef iColourVector<vComplexD> vColourVectorD;
|
||||||
|
typedef iColourVector<vComplexD2> vColourVectorD2;
|
||||||
|
|
||||||
// SpinColourVector
|
// SpinColourVector
|
||||||
typedef iSpinColourVector<Complex > SpinColourVector;
|
typedef iSpinColourVector<Complex > SpinColourVector;
|
||||||
@ -202,6 +227,7 @@ typedef iSpinColourVector<ComplexD> SpinColourVectorD;
|
|||||||
typedef iSpinColourVector<vComplex > vSpinColourVector;
|
typedef iSpinColourVector<vComplex > vSpinColourVector;
|
||||||
typedef iSpinColourVector<vComplexF> vSpinColourVectorF;
|
typedef iSpinColourVector<vComplexF> vSpinColourVectorF;
|
||||||
typedef iSpinColourVector<vComplexD> vSpinColourVectorD;
|
typedef iSpinColourVector<vComplexD> vSpinColourVectorD;
|
||||||
|
typedef iSpinColourVector<vComplexD2> vSpinColourVectorD2;
|
||||||
|
|
||||||
// HalfSpin vector
|
// HalfSpin vector
|
||||||
typedef iHalfSpinVector<Complex > HalfSpinVector;
|
typedef iHalfSpinVector<Complex > HalfSpinVector;
|
||||||
@ -211,15 +237,27 @@ typedef iHalfSpinVector<ComplexD> HalfSpinVectorD;
|
|||||||
typedef iHalfSpinVector<vComplex > vHalfSpinVector;
|
typedef iHalfSpinVector<vComplex > vHalfSpinVector;
|
||||||
typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF;
|
typedef iHalfSpinVector<vComplexF> vHalfSpinVectorF;
|
||||||
typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD;
|
typedef iHalfSpinVector<vComplexD> vHalfSpinVectorD;
|
||||||
|
typedef iHalfSpinVector<vComplexD2> vHalfSpinVectorD2;
|
||||||
|
|
||||||
// HalfSpinColour vector
|
// HalfSpinColour vector
|
||||||
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
|
typedef iHalfSpinColourVector<Complex > HalfSpinColourVector;
|
||||||
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
|
typedef iHalfSpinColourVector<ComplexF> HalfSpinColourVectorF;
|
||||||
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
|
typedef iHalfSpinColourVector<ComplexD> HalfSpinColourVectorD;
|
||||||
|
|
||||||
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
typedef iHalfSpinColourVector<vComplex > vHalfSpinColourVector;
|
||||||
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
typedef iHalfSpinColourVector<vComplexF> vHalfSpinColourVectorF;
|
||||||
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
typedef iHalfSpinColourVector<vComplexD> vHalfSpinColourVectorD;
|
||||||
|
typedef iHalfSpinColourVector<vComplexD2> vHalfSpinColourVectorD2;
|
||||||
|
|
||||||
|
//G-parity flavour vector
|
||||||
|
typedef iGparityFlavourVector<Complex > GparityFlavourVector;
|
||||||
|
typedef iGparityFlavourVector<ComplexF> GparityFlavourVectorF;
|
||||||
|
typedef iGparityFlavourVector<ComplexD> GparityFlavourVectorD;
|
||||||
|
|
||||||
|
typedef iGparityFlavourVector<vComplex > vGparityFlavourVector;
|
||||||
|
typedef iGparityFlavourVector<vComplexF> vGparityFlavourVectorF;
|
||||||
|
typedef iGparityFlavourVector<vComplexD> vGparityFlavourVectorD;
|
||||||
|
typedef iGparityFlavourVector<vComplexD2> vGparityFlavourVectorD2;
|
||||||
|
|
||||||
// singlets
|
// singlets
|
||||||
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
typedef iSinglet<Complex > TComplex; // FIXME This is painful. Tensor singlet complex type.
|
||||||
@ -229,6 +267,7 @@ typedef iSinglet<ComplexD> TComplexD; // FIXME This is painful. Tenso
|
|||||||
typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure
|
typedef iSinglet<vComplex > vTComplex ; // what if we don't know the tensor structure
|
||||||
typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure
|
typedef iSinglet<vComplexF> vTComplexF; // what if we don't know the tensor structure
|
||||||
typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure
|
typedef iSinglet<vComplexD> vTComplexD; // what if we don't know the tensor structure
|
||||||
|
typedef iSinglet<vComplexD2> vTComplexD2; // what if we don't know the tensor structure
|
||||||
|
|
||||||
typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without?
|
typedef iSinglet<Real > TReal; // Shouldn't need these; can I make it work without?
|
||||||
typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without?
|
typedef iSinglet<RealF> TRealF; // Shouldn't need these; can I make it work without?
|
||||||
@ -246,47 +285,58 @@ typedef iSinglet<Integer > TInteger;
|
|||||||
typedef Lattice<vColourMatrix> LatticeColourMatrix;
|
typedef Lattice<vColourMatrix> LatticeColourMatrix;
|
||||||
typedef Lattice<vColourMatrixF> LatticeColourMatrixF;
|
typedef Lattice<vColourMatrixF> LatticeColourMatrixF;
|
||||||
typedef Lattice<vColourMatrixD> LatticeColourMatrixD;
|
typedef Lattice<vColourMatrixD> LatticeColourMatrixD;
|
||||||
|
typedef Lattice<vColourMatrixD2> LatticeColourMatrixD2;
|
||||||
|
|
||||||
typedef Lattice<vSpinMatrix> LatticeSpinMatrix;
|
typedef Lattice<vSpinMatrix> LatticeSpinMatrix;
|
||||||
typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF;
|
typedef Lattice<vSpinMatrixF> LatticeSpinMatrixF;
|
||||||
typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD;
|
typedef Lattice<vSpinMatrixD> LatticeSpinMatrixD;
|
||||||
|
typedef Lattice<vSpinMatrixD2> LatticeSpinMatrixD2;
|
||||||
|
|
||||||
typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix;
|
typedef Lattice<vSpinColourMatrix> LatticeSpinColourMatrix;
|
||||||
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
|
typedef Lattice<vSpinColourMatrixF> LatticeSpinColourMatrixF;
|
||||||
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
|
typedef Lattice<vSpinColourMatrixD> LatticeSpinColourMatrixD;
|
||||||
|
typedef Lattice<vSpinColourMatrixD2> LatticeSpinColourMatrixD2;
|
||||||
|
|
||||||
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
|
typedef Lattice<vSpinColourSpinColourMatrix> LatticeSpinColourSpinColourMatrix;
|
||||||
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
|
typedef Lattice<vSpinColourSpinColourMatrixF> LatticeSpinColourSpinColourMatrixF;
|
||||||
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
|
typedef Lattice<vSpinColourSpinColourMatrixD> LatticeSpinColourSpinColourMatrixD;
|
||||||
|
typedef Lattice<vSpinColourSpinColourMatrixD2> LatticeSpinColourSpinColourMatrixD2;
|
||||||
|
|
||||||
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
|
typedef Lattice<vLorentzColourMatrix> LatticeLorentzColourMatrix;
|
||||||
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
|
typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
|
||||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
|
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
|
||||||
|
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
|
||||||
|
|
||||||
// DoubleStored gauge field
|
// DoubleStored gauge field
|
||||||
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
|
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
|
||||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
|
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
|
||||||
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
|
typedef Lattice<vDoubleStoredColourMatrixD> LatticeDoubleStoredColourMatrixD;
|
||||||
|
typedef Lattice<vDoubleStoredColourMatrixD2> LatticeDoubleStoredColourMatrixD2;
|
||||||
|
|
||||||
typedef Lattice<vSpinVector> LatticeSpinVector;
|
typedef Lattice<vSpinVector> LatticeSpinVector;
|
||||||
typedef Lattice<vSpinVectorF> LatticeSpinVectorF;
|
typedef Lattice<vSpinVectorF> LatticeSpinVectorF;
|
||||||
typedef Lattice<vSpinVectorD> LatticeSpinVectorD;
|
typedef Lattice<vSpinVectorD> LatticeSpinVectorD;
|
||||||
|
typedef Lattice<vSpinVectorD2> LatticeSpinVectorD2;
|
||||||
|
|
||||||
typedef Lattice<vColourVector> LatticeColourVector;
|
typedef Lattice<vColourVector> LatticeColourVector;
|
||||||
typedef Lattice<vColourVectorF> LatticeColourVectorF;
|
typedef Lattice<vColourVectorF> LatticeColourVectorF;
|
||||||
typedef Lattice<vColourVectorD> LatticeColourVectorD;
|
typedef Lattice<vColourVectorD> LatticeColourVectorD;
|
||||||
|
typedef Lattice<vColourVectorD2> LatticeColourVectorD2;
|
||||||
|
|
||||||
typedef Lattice<vSpinColourVector> LatticeSpinColourVector;
|
typedef Lattice<vSpinColourVector> LatticeSpinColourVector;
|
||||||
typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF;
|
typedef Lattice<vSpinColourVectorF> LatticeSpinColourVectorF;
|
||||||
typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD;
|
typedef Lattice<vSpinColourVectorD> LatticeSpinColourVectorD;
|
||||||
|
typedef Lattice<vSpinColourVectorD2> LatticeSpinColourVectorD2;
|
||||||
|
|
||||||
typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector;
|
typedef Lattice<vHalfSpinVector> LatticeHalfSpinVector;
|
||||||
typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF;
|
typedef Lattice<vHalfSpinVectorF> LatticeHalfSpinVectorF;
|
||||||
typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD;
|
typedef Lattice<vHalfSpinVectorD> LatticeHalfSpinVectorD;
|
||||||
|
typedef Lattice<vHalfSpinVectorD2> LatticeHalfSpinVectorD2;
|
||||||
|
|
||||||
typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector;
|
typedef Lattice<vHalfSpinColourVector> LatticeHalfSpinColourVector;
|
||||||
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
|
typedef Lattice<vHalfSpinColourVectorF> LatticeHalfSpinColourVectorF;
|
||||||
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
|
typedef Lattice<vHalfSpinColourVectorD> LatticeHalfSpinColourVectorD;
|
||||||
|
typedef Lattice<vHalfSpinColourVectorD2> LatticeHalfSpinColourVectorD2;
|
||||||
|
|
||||||
typedef Lattice<vTReal> LatticeReal;
|
typedef Lattice<vTReal> LatticeReal;
|
||||||
typedef Lattice<vTRealF> LatticeRealF;
|
typedef Lattice<vTRealF> LatticeRealF;
|
||||||
@ -295,6 +345,7 @@ typedef Lattice<vTRealD> LatticeRealD;
|
|||||||
typedef Lattice<vTComplex> LatticeComplex;
|
typedef Lattice<vTComplex> LatticeComplex;
|
||||||
typedef Lattice<vTComplexF> LatticeComplexF;
|
typedef Lattice<vTComplexF> LatticeComplexF;
|
||||||
typedef Lattice<vTComplexD> LatticeComplexD;
|
typedef Lattice<vTComplexD> LatticeComplexD;
|
||||||
|
typedef Lattice<vTComplexD2> LatticeComplexD2;
|
||||||
|
|
||||||
typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
|
typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
|
||||||
|
|
||||||
@ -302,37 +353,42 @@ typedef Lattice<vTInteger> LatticeInteger; // Predicates for "where"
|
|||||||
///////////////////////////////////////////
|
///////////////////////////////////////////
|
||||||
// Physical names for things
|
// Physical names for things
|
||||||
///////////////////////////////////////////
|
///////////////////////////////////////////
|
||||||
typedef LatticeHalfSpinColourVector LatticeHalfFermion;
|
typedef LatticeHalfSpinColourVector LatticeHalfFermion;
|
||||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
|
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionF;
|
||||||
typedef LatticeHalfSpinColourVectorF LatticeHalfFermionD;
|
typedef LatticeHalfSpinColourVectorD LatticeHalfFermionD;
|
||||||
|
typedef LatticeHalfSpinColourVectorD2 LatticeHalfFermionD2;
|
||||||
|
|
||||||
typedef LatticeSpinColourVector LatticeFermion;
|
typedef LatticeSpinColourVector LatticeFermion;
|
||||||
typedef LatticeSpinColourVectorF LatticeFermionF;
|
typedef LatticeSpinColourVectorF LatticeFermionF;
|
||||||
typedef LatticeSpinColourVectorD LatticeFermionD;
|
typedef LatticeSpinColourVectorD LatticeFermionD;
|
||||||
|
typedef LatticeSpinColourVectorD2 LatticeFermionD2;
|
||||||
|
|
||||||
typedef LatticeSpinColourMatrix LatticePropagator;
|
typedef LatticeSpinColourMatrix LatticePropagator;
|
||||||
typedef LatticeSpinColourMatrixF LatticePropagatorF;
|
typedef LatticeSpinColourMatrixF LatticePropagatorF;
|
||||||
typedef LatticeSpinColourMatrixD LatticePropagatorD;
|
typedef LatticeSpinColourMatrixD LatticePropagatorD;
|
||||||
|
typedef LatticeSpinColourMatrixD2 LatticePropagatorD2;
|
||||||
|
|
||||||
typedef LatticeLorentzColourMatrix LatticeGaugeField;
|
typedef LatticeLorentzColourMatrix LatticeGaugeField;
|
||||||
typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF;
|
typedef LatticeLorentzColourMatrixF LatticeGaugeFieldF;
|
||||||
typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD;
|
typedef LatticeLorentzColourMatrixD LatticeGaugeFieldD;
|
||||||
|
typedef LatticeLorentzColourMatrixD2 LatticeGaugeFieldD2;
|
||||||
|
|
||||||
typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField;
|
typedef LatticeDoubleStoredColourMatrix LatticeDoubledGaugeField;
|
||||||
typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF;
|
typedef LatticeDoubleStoredColourMatrixF LatticeDoubledGaugeFieldF;
|
||||||
typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD;
|
typedef LatticeDoubleStoredColourMatrixD LatticeDoubledGaugeFieldD;
|
||||||
|
typedef LatticeDoubleStoredColourMatrixD2 LatticeDoubledGaugeFieldD2;
|
||||||
|
|
||||||
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
|
template<class GF> using LorentzScalar = Lattice<iScalar<typename GF::vector_object::element> >;
|
||||||
|
|
||||||
// Uhgg... typing this hurt ;)
|
|
||||||
// (my keyboard got burning hot when I typed this, must be the anti-Fermion)
|
|
||||||
typedef Lattice<vColourVector> LatticeStaggeredFermion;
|
typedef Lattice<vColourVector> LatticeStaggeredFermion;
|
||||||
typedef Lattice<vColourVectorF> LatticeStaggeredFermionF;
|
typedef Lattice<vColourVectorF> LatticeStaggeredFermionF;
|
||||||
typedef Lattice<vColourVectorD> LatticeStaggeredFermionD;
|
typedef Lattice<vColourVectorD> LatticeStaggeredFermionD;
|
||||||
|
typedef Lattice<vColourVectorD2> LatticeStaggeredFermionD2;
|
||||||
|
|
||||||
typedef Lattice<vColourMatrix> LatticeStaggeredPropagator;
|
typedef Lattice<vColourMatrix> LatticeStaggeredPropagator;
|
||||||
typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF;
|
typedef Lattice<vColourMatrixF> LatticeStaggeredPropagatorF;
|
||||||
typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD;
|
typedef Lattice<vColourMatrixD> LatticeStaggeredPropagatorD;
|
||||||
|
typedef Lattice<vColourMatrixD2> LatticeStaggeredPropagatorD2;
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////
|
||||||
// Peek and Poke named after physics attributes
|
// Peek and Poke named after physics attributes
|
||||||
|
@ -40,9 +40,47 @@ class Action
|
|||||||
|
|
||||||
public:
|
public:
|
||||||
bool is_smeared = false;
|
bool is_smeared = false;
|
||||||
|
RealD deriv_norm_sum;
|
||||||
|
RealD deriv_max_sum;
|
||||||
|
RealD Fdt_norm_sum;
|
||||||
|
RealD Fdt_max_sum;
|
||||||
|
int deriv_num;
|
||||||
|
RealD deriv_us;
|
||||||
|
RealD S_us;
|
||||||
|
RealD refresh_us;
|
||||||
|
void reset_timer(void) {
|
||||||
|
deriv_us = S_us = refresh_us = 0.0;
|
||||||
|
deriv_norm_sum = deriv_max_sum=0.0;
|
||||||
|
Fdt_max_sum = Fdt_norm_sum = 0.0;
|
||||||
|
deriv_num=0;
|
||||||
|
}
|
||||||
|
void deriv_log(RealD nrm, RealD max,RealD Fdt_nrm,RealD Fdt_max) {
|
||||||
|
if ( max > deriv_max_sum ) {
|
||||||
|
deriv_max_sum=max;
|
||||||
|
}
|
||||||
|
deriv_norm_sum+=nrm;
|
||||||
|
if ( Fdt_max > Fdt_max_sum ) {
|
||||||
|
Fdt_max_sum=Fdt_max;
|
||||||
|
}
|
||||||
|
Fdt_norm_sum+=Fdt_nrm; deriv_num++;
|
||||||
|
}
|
||||||
|
RealD deriv_max_average(void) { return deriv_max_sum; };
|
||||||
|
RealD deriv_norm_average(void) { return deriv_norm_sum/deriv_num; };
|
||||||
|
RealD Fdt_max_average(void) { return Fdt_max_sum; };
|
||||||
|
RealD Fdt_norm_average(void) { return Fdt_norm_sum/deriv_num; };
|
||||||
|
RealD deriv_timer(void) { return deriv_us; };
|
||||||
|
RealD S_timer(void) { return S_us; };
|
||||||
|
RealD refresh_timer(void) { return refresh_us; };
|
||||||
|
void deriv_timer_start(void) { deriv_us-=usecond(); }
|
||||||
|
void deriv_timer_stop(void) { deriv_us+=usecond(); }
|
||||||
|
void refresh_timer_start(void) { refresh_us-=usecond(); }
|
||||||
|
void refresh_timer_stop(void) { refresh_us+=usecond(); }
|
||||||
|
void S_timer_start(void) { S_us-=usecond(); }
|
||||||
|
void S_timer_stop(void) { S_us+=usecond(); }
|
||||||
// Heatbath?
|
// Heatbath?
|
||||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
|
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
|
||||||
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
|
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
|
||||||
|
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
|
||||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
|
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
|
||||||
virtual std::string action_name() = 0; // return the action name
|
virtual std::string action_name() = 0; // return the action name
|
||||||
virtual std::string LogParameters() = 0; // prints action parameters
|
virtual std::string LogParameters() = 0; // prints action parameters
|
||||||
|
@ -37,6 +37,10 @@ NAMESPACE_CHECK(ActionSet);
|
|||||||
#include <Grid/qcd/action/ActionParams.h>
|
#include <Grid/qcd/action/ActionParams.h>
|
||||||
NAMESPACE_CHECK(ActionParams);
|
NAMESPACE_CHECK(ActionParams);
|
||||||
|
|
||||||
|
#include <Grid/qcd/action/filters/MomentumFilter.h>
|
||||||
|
#include <Grid/qcd/action/filters/DirichletFilter.h>
|
||||||
|
#include <Grid/qcd/action/filters/DDHMCFilter.h>
|
||||||
|
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
// Gauge Actions
|
// Gauge Actions
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
|
@ -34,27 +34,45 @@ directory
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
// These can move into a params header and be given MacroMagic serialisation
|
|
||||||
struct GparityWilsonImplParams {
|
struct GparityWilsonImplParams {
|
||||||
Coordinate twists;
|
Coordinate twists;
|
||||||
GparityWilsonImplParams() : twists(Nd, 0) {};
|
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||||
|
Coordinate dirichlet; // Blocksize of dirichlet BCs
|
||||||
|
int partialDirichlet;
|
||||||
|
GparityWilsonImplParams() : twists(Nd, 0) {
|
||||||
|
dirichlet.resize(0);
|
||||||
|
partialDirichlet=0;
|
||||||
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
struct WilsonImplParams {
|
struct WilsonImplParams {
|
||||||
bool overlapCommsCompute;
|
bool overlapCommsCompute;
|
||||||
|
Coordinate dirichlet; // Blocksize of dirichlet BCs
|
||||||
|
int partialDirichlet;
|
||||||
AcceleratorVector<Real,Nd> twist_n_2pi_L;
|
AcceleratorVector<Real,Nd> twist_n_2pi_L;
|
||||||
AcceleratorVector<Complex,Nd> boundary_phases;
|
AcceleratorVector<Complex,Nd> boundary_phases;
|
||||||
WilsonImplParams() {
|
WilsonImplParams() {
|
||||||
|
dirichlet.resize(0);
|
||||||
|
partialDirichlet=0;
|
||||||
boundary_phases.resize(Nd, 1.0);
|
boundary_phases.resize(Nd, 1.0);
|
||||||
twist_n_2pi_L.resize(Nd, 0.0);
|
twist_n_2pi_L.resize(Nd, 0.0);
|
||||||
};
|
};
|
||||||
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
|
WilsonImplParams(const AcceleratorVector<Complex,Nd> phi) : boundary_phases(phi), overlapCommsCompute(false) {
|
||||||
twist_n_2pi_L.resize(Nd, 0.0);
|
twist_n_2pi_L.resize(Nd, 0.0);
|
||||||
|
partialDirichlet=0;
|
||||||
|
dirichlet.resize(0);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct StaggeredImplParams {
|
struct StaggeredImplParams {
|
||||||
StaggeredImplParams() {};
|
Coordinate dirichlet; // Blocksize of dirichlet BCs
|
||||||
|
int partialDirichlet;
|
||||||
|
StaggeredImplParams()
|
||||||
|
{
|
||||||
|
partialDirichlet=0;
|
||||||
|
dirichlet.resize(0);
|
||||||
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
struct OneFlavourRationalParams : Serializable {
|
struct OneFlavourRationalParams : Serializable {
|
||||||
@ -63,9 +81,11 @@ struct StaggeredImplParams {
|
|||||||
RealD, hi,
|
RealD, hi,
|
||||||
int, MaxIter,
|
int, MaxIter,
|
||||||
RealD, tolerance,
|
RealD, tolerance,
|
||||||
|
RealD, mdtolerance,
|
||||||
int, degree,
|
int, degree,
|
||||||
int, precision,
|
int, precision,
|
||||||
int, BoundsCheckFreq);
|
int, BoundsCheckFreq,
|
||||||
|
RealD, BoundsCheckTol);
|
||||||
|
|
||||||
// MaxIter and tolerance, vectors??
|
// MaxIter and tolerance, vectors??
|
||||||
|
|
||||||
@ -76,16 +96,62 @@ struct StaggeredImplParams {
|
|||||||
RealD tol = 1.0e-8,
|
RealD tol = 1.0e-8,
|
||||||
int _degree = 10,
|
int _degree = 10,
|
||||||
int _precision = 64,
|
int _precision = 64,
|
||||||
int _BoundsCheckFreq=20)
|
int _BoundsCheckFreq=20,
|
||||||
|
RealD mdtol = 1.0e-6,
|
||||||
|
double _BoundsCheckTol=1e-6)
|
||||||
: lo(_lo),
|
: lo(_lo),
|
||||||
hi(_hi),
|
hi(_hi),
|
||||||
MaxIter(_maxit),
|
MaxIter(_maxit),
|
||||||
tolerance(tol),
|
tolerance(tol),
|
||||||
|
mdtolerance(mdtol),
|
||||||
degree(_degree),
|
degree(_degree),
|
||||||
precision(_precision),
|
precision(_precision),
|
||||||
BoundsCheckFreq(_BoundsCheckFreq){};
|
BoundsCheckFreq(_BoundsCheckFreq),
|
||||||
|
BoundsCheckTol(_BoundsCheckTol){};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/*Action parameters for the generalized rational action
|
||||||
|
The approximation is for (M^dag M)^{1/inv_pow}
|
||||||
|
where inv_pow is the denominator of the fractional power.
|
||||||
|
Default inv_pow=2 for square root, making this equivalent to
|
||||||
|
the OneFlavourRational action
|
||||||
|
*/
|
||||||
|
struct RationalActionParams : Serializable {
|
||||||
|
GRID_SERIALIZABLE_CLASS_MEMBERS(RationalActionParams,
|
||||||
|
int, inv_pow,
|
||||||
|
RealD, lo, //low eigenvalue bound of rational approx
|
||||||
|
RealD, hi, //high eigenvalue bound of rational approx
|
||||||
|
int, MaxIter, //maximum iterations in msCG
|
||||||
|
RealD, action_tolerance, //msCG tolerance in action evaluation
|
||||||
|
int, action_degree, //rational approx tolerance in action evaluation
|
||||||
|
RealD, md_tolerance, //msCG tolerance in MD integration
|
||||||
|
int, md_degree, //rational approx tolerance in MD integration
|
||||||
|
int, precision, //precision of floating point arithmetic
|
||||||
|
int, BoundsCheckFreq); //frequency the approximation is tested (with Metropolis degree/tolerance); 0 disables the check
|
||||||
|
// constructor
|
||||||
|
RationalActionParams(int _inv_pow = 2,
|
||||||
|
RealD _lo = 0.0,
|
||||||
|
RealD _hi = 1.0,
|
||||||
|
int _maxit = 1000,
|
||||||
|
RealD _action_tolerance = 1.0e-8,
|
||||||
|
int _action_degree = 10,
|
||||||
|
RealD _md_tolerance = 1.0e-8,
|
||||||
|
int _md_degree = 10,
|
||||||
|
int _precision = 64,
|
||||||
|
int _BoundsCheckFreq=20)
|
||||||
|
: inv_pow(_inv_pow),
|
||||||
|
lo(_lo),
|
||||||
|
hi(_hi),
|
||||||
|
MaxIter(_maxit),
|
||||||
|
action_tolerance(_action_tolerance),
|
||||||
|
action_degree(_action_degree),
|
||||||
|
md_tolerance(_md_tolerance),
|
||||||
|
md_degree(_md_degree),
|
||||||
|
precision(_precision),
|
||||||
|
BoundsCheckFreq(_BoundsCheckFreq){};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -71,6 +71,7 @@ public:
|
|||||||
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; };
|
RealD Mass(void) { return (mass_plus + mass_minus) / 2.0; };
|
||||||
RealD MassPlus(void) { return mass_plus; };
|
RealD MassPlus(void) { return mass_plus; };
|
||||||
RealD MassMinus(void) { return mass_minus; };
|
RealD MassMinus(void) { return mass_minus; };
|
||||||
|
|
||||||
void SetMass(RealD _mass) {
|
void SetMass(RealD _mass) {
|
||||||
mass_plus=mass_minus=_mass;
|
mass_plus=mass_minus=_mass;
|
||||||
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
|
SetCoefficientsInternal(_zolo_hi,_gamma,_b,_c); // Reset coeffs
|
||||||
@ -182,16 +183,6 @@ public:
|
|||||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||||
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
|
RealD _mass,RealD _M5,const ImplParams &p= ImplParams());
|
||||||
|
|
||||||
void CayleyReport(void);
|
|
||||||
void CayleyZeroCounters(void);
|
|
||||||
|
|
||||||
double M5Dflops;
|
|
||||||
double M5Dcalls;
|
|
||||||
double M5Dtime;
|
|
||||||
|
|
||||||
double MooeeInvFlops;
|
|
||||||
double MooeeInvCalls;
|
|
||||||
double MooeeInvTime;
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
|
virtual void SetCoefficientsZolotarev(RealD zolohi,Approx::zolotarev_data *zdata,RealD b,RealD c);
|
||||||
|
@ -140,6 +140,7 @@ public:
|
|||||||
return NMAX;
|
return NMAX;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static int getNMAX(Lattice<iImplClover<vComplexD2>> &t, RealD R) {return getNMAX(1e-12,R);}
|
||||||
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
|
static int getNMAX(Lattice<iImplClover<vComplexD>> &t, RealD R) {return getNMAX(1e-12,R);}
|
||||||
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
|
static int getNMAX(Lattice<iImplClover<vComplexF>> &t, RealD R) {return getNMAX(1e-6,R);}
|
||||||
|
|
||||||
|
291
Grid/qcd/action/fermion/DWFSlow.h
Normal file
291
Grid/qcd/action/fermion/DWFSlow.h
Normal file
@ -0,0 +1,291 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/fermion/DWFSlow.h
|
||||||
|
|
||||||
|
Copyright (C) 2022
|
||||||
|
|
||||||
|
Author: Peter Boyle <pboyle@bnl.gov>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution
|
||||||
|
directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
template <class Impl>
|
||||||
|
class DWFSlowFermion : public FermionOperator<Impl>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
INHERIT_IMPL_TYPES(Impl);
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
// Implement the abstract base
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
GridBase *GaugeGrid(void) { return _grid4; }
|
||||||
|
GridBase *GaugeRedBlackGrid(void) { return _cbgrid4; }
|
||||||
|
GridBase *FermionGrid(void) { return _grid; }
|
||||||
|
GridBase *FermionRedBlackGrid(void) { return _cbgrid; }
|
||||||
|
|
||||||
|
FermionField _tmp;
|
||||||
|
FermionField &tmp(void) { return _tmp; }
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////
|
||||||
|
// override multiply; cut number routines if pass dagger argument
|
||||||
|
// and also make interface more uniformly consistent
|
||||||
|
//////////////////////////////////////////////////////////////////
|
||||||
|
virtual void M(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
FermionField tmp(_grid);
|
||||||
|
out = (5.0 - M5) * in;
|
||||||
|
Dhop(in,tmp,DaggerNo);
|
||||||
|
out = out + tmp;
|
||||||
|
}
|
||||||
|
virtual void Mdag(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
FermionField tmp(_grid);
|
||||||
|
out = (5.0 - M5) * in;
|
||||||
|
Dhop(in,tmp,DaggerYes);
|
||||||
|
out = out + tmp;
|
||||||
|
};
|
||||||
|
|
||||||
|
/////////////////////////////////////////////////////////
|
||||||
|
// half checkerboard operations 5D redblack so just site identiy
|
||||||
|
/////////////////////////////////////////////////////////
|
||||||
|
void Meooe(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
if ( in.Checkerboard() == Odd ) {
|
||||||
|
this->DhopEO(in,out,DaggerNo);
|
||||||
|
} else {
|
||||||
|
this->DhopOE(in,out,DaggerNo);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void MeooeDag(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
if ( in.Checkerboard() == Odd ) {
|
||||||
|
this->DhopEO(in,out,DaggerYes);
|
||||||
|
} else {
|
||||||
|
this->DhopOE(in,out,DaggerYes);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// allow override for twisted mass and clover
|
||||||
|
virtual void Mooee(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
out = (5.0 - M5) * in;
|
||||||
|
}
|
||||||
|
virtual void MooeeDag(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
out = (5.0 - M5) * in;
|
||||||
|
}
|
||||||
|
virtual void MooeeInv(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
out = (1.0/(5.0 - M5)) * in;
|
||||||
|
};
|
||||||
|
virtual void MooeeInvDag(const FermionField &in, FermionField &out)
|
||||||
|
{
|
||||||
|
out = (1.0/(5.0 - M5)) * in;
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual void MomentumSpacePropagator(FermionField &out,const FermionField &in,RealD _mass,std::vector<double> twist) {} ;
|
||||||
|
|
||||||
|
////////////////////////
|
||||||
|
// Derivative interface
|
||||||
|
////////////////////////
|
||||||
|
// Interface calls an internal routine
|
||||||
|
void DhopDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag) { assert(0);};
|
||||||
|
void DhopDerivOE(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
|
||||||
|
void DhopDerivEO(GaugeField &mat,const FermionField &U,const FermionField &V,int dag){ assert(0);};
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
// non-hermitian hopping term; half cb or both
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
void Dhop(const FermionField &in, FermionField &out, int dag)
|
||||||
|
{
|
||||||
|
FermionField tmp(in.Grid());
|
||||||
|
Dhop5(in,out,MassField,MassField,dag );
|
||||||
|
for(int mu=0;mu<4;mu++){
|
||||||
|
DhopDirU(in,Umu[mu],Umu[mu],tmp,mu,dag ); out = out + tmp;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
void DhopOE(const FermionField &in, FermionField &out, int dag)
|
||||||
|
{
|
||||||
|
FermionField tmp(in.Grid());
|
||||||
|
assert(in.Checkerboard()==Even);
|
||||||
|
Dhop5(in,out,MassFieldOdd,MassFieldEven,dag);
|
||||||
|
for(int mu=0;mu<4;mu++){
|
||||||
|
DhopDirU(in,UmuOdd[mu],UmuEven[mu],tmp,mu,dag ); out = out + tmp;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
void DhopEO(const FermionField &in, FermionField &out, int dag)
|
||||||
|
{
|
||||||
|
FermionField tmp(in.Grid());
|
||||||
|
assert(in.Checkerboard()==Odd);
|
||||||
|
Dhop5(in,out, MassFieldEven,MassFieldOdd ,dag );
|
||||||
|
for(int mu=0;mu<4;mu++){
|
||||||
|
DhopDirU(in,UmuEven[mu],UmuOdd[mu],tmp,mu,dag ); out = out + tmp;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
// Multigrid assistance; force term uses too
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
void Mdir(const FermionField &in, FermionField &out, int dir, int disp){ assert(0);};
|
||||||
|
void MdirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
|
||||||
|
void DhopDir(const FermionField &in, FermionField &out, int dir, int disp) { assert(0);};
|
||||||
|
void DhopDirAll(const FermionField &in, std::vector<FermionField> &out) { assert(0);};
|
||||||
|
void DhopDirCalc(const FermionField &in, FermionField &out, int dirdisp,int gamma, int dag) { assert(0);};
|
||||||
|
|
||||||
|
void DhopDirU(const FermionField &in, const GaugeLinkField &U5e, const GaugeLinkField &U5o, FermionField &out, int mu, int dag)
|
||||||
|
{
|
||||||
|
RealD sgn= 1.0;
|
||||||
|
if (dag ) sgn=-1.0;
|
||||||
|
|
||||||
|
Gamma::Algebra Gmu [] = {
|
||||||
|
Gamma::Algebra::GammaX,
|
||||||
|
Gamma::Algebra::GammaY,
|
||||||
|
Gamma::Algebra::GammaZ,
|
||||||
|
Gamma::Algebra::GammaT
|
||||||
|
};
|
||||||
|
|
||||||
|
// mass is 1,1,1,1,-m has to multiply the round the world term
|
||||||
|
FermionField tmp (in.Grid());
|
||||||
|
tmp = U5e * Cshift(in,mu+1,1);
|
||||||
|
out = tmp - Gamma(Gmu[mu])*tmp*sgn;
|
||||||
|
|
||||||
|
tmp = Cshift(adj(U5o)*in,mu+1,-1);
|
||||||
|
out = out + tmp + Gamma(Gmu[mu])*tmp*sgn;
|
||||||
|
|
||||||
|
out = -0.5*out;
|
||||||
|
};
|
||||||
|
|
||||||
|
void Dhop5(const FermionField &in, FermionField &out, ComplexField &massE, ComplexField &massO, int dag)
|
||||||
|
{
|
||||||
|
// Mass term.... must multiple the round world with mass = 1,1,1,1, -m
|
||||||
|
RealD sgn= 1.0;
|
||||||
|
if (dag ) sgn=-1.0;
|
||||||
|
|
||||||
|
Gamma G5(Gamma::Algebra::Gamma5);
|
||||||
|
|
||||||
|
FermionField tmp (in.Grid());
|
||||||
|
tmp = massE*Cshift(in,0,1);
|
||||||
|
out = tmp - G5*tmp*sgn;
|
||||||
|
|
||||||
|
tmp = Cshift(massO*in,0,-1);
|
||||||
|
out = out + tmp + G5*tmp*sgn;
|
||||||
|
out = -0.5*out;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Constructor
|
||||||
|
DWFSlowFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
||||||
|
GridRedBlackCartesian &Hgrid, RealD _mass, RealD _M5)
|
||||||
|
:
|
||||||
|
_grid(&Fgrid),
|
||||||
|
_cbgrid(&Hgrid),
|
||||||
|
_grid4(_Umu.Grid()),
|
||||||
|
Umu(Nd,&Fgrid),
|
||||||
|
UmuEven(Nd,&Hgrid),
|
||||||
|
UmuOdd(Nd,&Hgrid),
|
||||||
|
MassField(&Fgrid),
|
||||||
|
MassFieldEven(&Hgrid),
|
||||||
|
MassFieldOdd(&Hgrid),
|
||||||
|
M5(_M5),
|
||||||
|
mass(_mass),
|
||||||
|
_tmp(&Hgrid)
|
||||||
|
{
|
||||||
|
Ls=Fgrid._fdimensions[0];
|
||||||
|
ImportGauge(_Umu);
|
||||||
|
|
||||||
|
typedef typename FermionField::scalar_type scalar;
|
||||||
|
|
||||||
|
Lattice<iScalar<vInteger> > coor(&Fgrid);
|
||||||
|
LatticeCoordinate(coor, 0); // Scoor
|
||||||
|
ComplexField one(&Fgrid);
|
||||||
|
MassField =scalar(-mass);
|
||||||
|
one =scalar(1.0);
|
||||||
|
MassField =where(coor==Integer(Ls-1),MassField,one);
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
pickCheckerboard(Even,UmuEven[mu],Umu[mu]);
|
||||||
|
pickCheckerboard(Odd ,UmuOdd[mu],Umu[mu]);
|
||||||
|
}
|
||||||
|
pickCheckerboard(Even,MassFieldEven,MassField);
|
||||||
|
pickCheckerboard(Odd ,MassFieldOdd,MassField);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// DoubleStore impl dependent
|
||||||
|
void ImportGauge(const GaugeField &_Umu4)
|
||||||
|
{
|
||||||
|
GaugeLinkField U4(_grid4);
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
U4 = PeekIndex<LorentzIndex>(_Umu4, mu);
|
||||||
|
for(int s=0;s<this->Ls;s++){
|
||||||
|
InsertSlice(U4,Umu[mu],s,0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
// Data members require to support the functionality
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
public:
|
||||||
|
virtual RealD Mass(void) { return mass; }
|
||||||
|
virtual int isTrivialEE(void) { return 1; };
|
||||||
|
RealD mass;
|
||||||
|
RealD M5;
|
||||||
|
int Ls;
|
||||||
|
|
||||||
|
GridBase *_grid4;
|
||||||
|
GridBase *_grid;
|
||||||
|
GridBase *_cbgrid4;
|
||||||
|
GridBase *_cbgrid;
|
||||||
|
|
||||||
|
// Copy of the gauge field , with even and odd subsets
|
||||||
|
std::vector<GaugeLinkField> Umu;
|
||||||
|
std::vector<GaugeLinkField> UmuEven;
|
||||||
|
std::vector<GaugeLinkField> UmuOdd;
|
||||||
|
ComplexField MassField;
|
||||||
|
ComplexField MassFieldEven;
|
||||||
|
ComplexField MassFieldOdd;
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
// Conserved current utilities
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
void ContractConservedCurrent(PropagatorField &q_in_1,
|
||||||
|
PropagatorField &q_in_2,
|
||||||
|
PropagatorField &q_out,
|
||||||
|
PropagatorField &phys_src,
|
||||||
|
Current curr_type,
|
||||||
|
unsigned int mu){}
|
||||||
|
void SeqConservedCurrent(PropagatorField &q_in,
|
||||||
|
PropagatorField &q_out,
|
||||||
|
PropagatorField &phys_src,
|
||||||
|
Current curr_type,
|
||||||
|
unsigned int mu,
|
||||||
|
unsigned int tmin,
|
||||||
|
unsigned int tmax,
|
||||||
|
ComplexField &lattice_cmplx){}
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef DWFSlowFermion<WilsonImplF> DWFSlowFermionF;
|
||||||
|
typedef DWFSlowFermion<WilsonImplD> DWFSlowFermionD;
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
@ -47,6 +47,7 @@ Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
|||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
// Fermion operators / actions
|
// Fermion operators / actions
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
|
#include <Grid/qcd/action/fermion/DWFSlow.h> // Slow DWF
|
||||||
|
|
||||||
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
|
#include <Grid/qcd/action/fermion/WilsonFermion.h> // 4d wilson like
|
||||||
NAMESPACE_CHECK(Wilson);
|
NAMESPACE_CHECK(Wilson);
|
||||||
@ -112,28 +113,21 @@ NAMESPACE_CHECK(DWFutils);
|
|||||||
// Cayley 5d
|
// Cayley 5d
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
typedef WilsonFermion<WilsonImplR> WilsonFermionR;
|
typedef WilsonFermion<WilsonImplD2> WilsonFermionD2;
|
||||||
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
|
typedef WilsonFermion<WilsonImplF> WilsonFermionF;
|
||||||
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
|
typedef WilsonFermion<WilsonImplD> WilsonFermionD;
|
||||||
|
|
||||||
//typedef WilsonFermion<WilsonImplRL> WilsonFermionRL;
|
|
||||||
//typedef WilsonFermion<WilsonImplFH> WilsonFermionFH;
|
|
||||||
//typedef WilsonFermion<WilsonImplDF> WilsonFermionDF;
|
|
||||||
|
|
||||||
typedef WilsonFermion<WilsonAdjImplR> WilsonAdjFermionR;
|
|
||||||
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
|
typedef WilsonFermion<WilsonAdjImplF> WilsonAdjFermionF;
|
||||||
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
|
typedef WilsonFermion<WilsonAdjImplD> WilsonAdjFermionD;
|
||||||
|
|
||||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplR> WilsonTwoIndexSymmetricFermionR;
|
|
||||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
|
typedef WilsonFermion<WilsonTwoIndexSymmetricImplF> WilsonTwoIndexSymmetricFermionF;
|
||||||
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
|
typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermionD;
|
||||||
|
|
||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplR> WilsonTwoIndexAntiSymmetricFermionR;
|
|
||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
||||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
||||||
|
|
||||||
// Twisted mass fermion
|
// Twisted mass fermion
|
||||||
typedef WilsonTMFermion<WilsonImplR> WilsonTMFermionR;
|
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
|
||||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||||
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
|
typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
|
||||||
|
|
||||||
@ -141,23 +135,20 @@ typedef WilsonTMFermion<WilsonImplD> WilsonTMFermionD;
|
|||||||
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
|
template <typename WImpl> using WilsonClover = WilsonCloverFermion<WImpl, CloverHelpers<WImpl>>;
|
||||||
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
|
template <typename WImpl> using WilsonExpClover = WilsonCloverFermion<WImpl, ExpCloverHelpers<WImpl>>;
|
||||||
|
|
||||||
typedef WilsonClover<WilsonImplR> WilsonCloverFermionR;
|
typedef WilsonClover<WilsonImplD2> WilsonCloverFermionD2;
|
||||||
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
|
typedef WilsonClover<WilsonImplF> WilsonCloverFermionF;
|
||||||
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
|
typedef WilsonClover<WilsonImplD> WilsonCloverFermionD;
|
||||||
|
|
||||||
typedef WilsonExpClover<WilsonImplR> WilsonExpCloverFermionR;
|
typedef WilsonExpClover<WilsonImplD2> WilsonExpCloverFermionD2;
|
||||||
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
|
typedef WilsonExpClover<WilsonImplF> WilsonExpCloverFermionF;
|
||||||
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
|
typedef WilsonExpClover<WilsonImplD> WilsonExpCloverFermionD;
|
||||||
|
|
||||||
typedef WilsonClover<WilsonAdjImplR> WilsonCloverAdjFermionR;
|
|
||||||
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
|
typedef WilsonClover<WilsonAdjImplF> WilsonCloverAdjFermionF;
|
||||||
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
|
typedef WilsonClover<WilsonAdjImplD> WilsonCloverAdjFermionD;
|
||||||
|
|
||||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplR> WilsonCloverTwoIndexSymmetricFermionR;
|
|
||||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
|
typedef WilsonClover<WilsonTwoIndexSymmetricImplF> WilsonCloverTwoIndexSymmetricFermionF;
|
||||||
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
|
typedef WilsonClover<WilsonTwoIndexSymmetricImplD> WilsonCloverTwoIndexSymmetricFermionD;
|
||||||
|
|
||||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplR> WilsonCloverTwoIndexAntiSymmetricFermionR;
|
|
||||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
|
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplF> WilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||||
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
|
typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||||
|
|
||||||
@ -165,161 +156,108 @@ typedef WilsonClover<WilsonTwoIndexAntiSymmetricImplD> WilsonCloverTwoIndexAntiS
|
|||||||
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
|
template <typename WImpl> using CompactWilsonClover = CompactWilsonCloverFermion<WImpl, CompactCloverHelpers<WImpl>>;
|
||||||
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
|
template <typename WImpl> using CompactWilsonExpClover = CompactWilsonCloverFermion<WImpl, CompactExpCloverHelpers<WImpl>>;
|
||||||
|
|
||||||
typedef CompactWilsonClover<WilsonImplR> CompactWilsonCloverFermionR;
|
typedef CompactWilsonClover<WilsonImplD2> CompactWilsonCloverFermionD2;
|
||||||
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
|
typedef CompactWilsonClover<WilsonImplF> CompactWilsonCloverFermionF;
|
||||||
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
|
typedef CompactWilsonClover<WilsonImplD> CompactWilsonCloverFermionD;
|
||||||
|
|
||||||
typedef CompactWilsonExpClover<WilsonImplR> CompactWilsonExpCloverFermionR;
|
typedef CompactWilsonExpClover<WilsonImplD2> CompactWilsonExpCloverFermionD2;
|
||||||
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
|
typedef CompactWilsonExpClover<WilsonImplF> CompactWilsonExpCloverFermionF;
|
||||||
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
|
typedef CompactWilsonExpClover<WilsonImplD> CompactWilsonExpCloverFermionD;
|
||||||
|
|
||||||
typedef CompactWilsonClover<WilsonAdjImplR> CompactWilsonCloverAdjFermionR;
|
|
||||||
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
|
typedef CompactWilsonClover<WilsonAdjImplF> CompactWilsonCloverAdjFermionF;
|
||||||
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
|
typedef CompactWilsonClover<WilsonAdjImplD> CompactWilsonCloverAdjFermionD;
|
||||||
|
|
||||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplR> CompactWilsonCloverTwoIndexSymmetricFermionR;
|
|
||||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
|
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplF> CompactWilsonCloverTwoIndexSymmetricFermionF;
|
||||||
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
|
typedef CompactWilsonClover<WilsonTwoIndexSymmetricImplD> CompactWilsonCloverTwoIndexSymmetricFermionD;
|
||||||
|
|
||||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplR> CompactWilsonCloverTwoIndexAntiSymmetricFermionR;
|
|
||||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
|
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplF> CompactWilsonCloverTwoIndexAntiSymmetricFermionF;
|
||||||
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
|
typedef CompactWilsonClover<WilsonTwoIndexAntiSymmetricImplD> CompactWilsonCloverTwoIndexAntiSymmetricFermionD;
|
||||||
|
|
||||||
// Domain Wall fermions
|
// Domain Wall fermions
|
||||||
typedef DomainWallFermion<WilsonImplR> DomainWallFermionR;
|
|
||||||
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
|
typedef DomainWallFermion<WilsonImplF> DomainWallFermionF;
|
||||||
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
|
typedef DomainWallFermion<WilsonImplD> DomainWallFermionD;
|
||||||
|
typedef DomainWallFermion<WilsonImplD2> DomainWallFermionD2;
|
||||||
|
|
||||||
//typedef DomainWallFermion<WilsonImplRL> DomainWallFermionRL;
|
typedef DomainWallEOFAFermion<WilsonImplD2> DomainWallEOFAFermionD2;
|
||||||
//typedef DomainWallFermion<WilsonImplFH> DomainWallFermionFH;
|
|
||||||
//typedef DomainWallFermion<WilsonImplDF> DomainWallFermionDF;
|
|
||||||
|
|
||||||
typedef DomainWallEOFAFermion<WilsonImplR> DomainWallEOFAFermionR;
|
|
||||||
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
|
typedef DomainWallEOFAFermion<WilsonImplF> DomainWallEOFAFermionF;
|
||||||
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
|
typedef DomainWallEOFAFermion<WilsonImplD> DomainWallEOFAFermionD;
|
||||||
|
|
||||||
//typedef DomainWallEOFAFermion<WilsonImplRL> DomainWallEOFAFermionRL;
|
typedef MobiusFermion<WilsonImplD2> MobiusFermionD2;
|
||||||
//typedef DomainWallEOFAFermion<WilsonImplFH> DomainWallEOFAFermionFH;
|
|
||||||
//typedef DomainWallEOFAFermion<WilsonImplDF> DomainWallEOFAFermionDF;
|
|
||||||
|
|
||||||
typedef MobiusFermion<WilsonImplR> MobiusFermionR;
|
|
||||||
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
|
typedef MobiusFermion<WilsonImplF> MobiusFermionF;
|
||||||
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
|
typedef MobiusFermion<WilsonImplD> MobiusFermionD;
|
||||||
|
|
||||||
//typedef MobiusFermion<WilsonImplRL> MobiusFermionRL;
|
typedef MobiusEOFAFermion<WilsonImplD2> MobiusEOFAFermionD2;
|
||||||
//typedef MobiusFermion<WilsonImplFH> MobiusFermionFH;
|
|
||||||
//typedef MobiusFermion<WilsonImplDF> MobiusFermionDF;
|
|
||||||
|
|
||||||
typedef MobiusEOFAFermion<WilsonImplR> MobiusEOFAFermionR;
|
|
||||||
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
|
typedef MobiusEOFAFermion<WilsonImplF> MobiusEOFAFermionF;
|
||||||
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
|
typedef MobiusEOFAFermion<WilsonImplD> MobiusEOFAFermionD;
|
||||||
|
|
||||||
//typedef MobiusEOFAFermion<WilsonImplRL> MobiusEOFAFermionRL;
|
typedef ZMobiusFermion<ZWilsonImplD2> ZMobiusFermionD2;
|
||||||
//typedef MobiusEOFAFermion<WilsonImplFH> MobiusEOFAFermionFH;
|
|
||||||
//typedef MobiusEOFAFermion<WilsonImplDF> MobiusEOFAFermionDF;
|
|
||||||
|
|
||||||
typedef ZMobiusFermion<ZWilsonImplR> ZMobiusFermionR;
|
|
||||||
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
|
typedef ZMobiusFermion<ZWilsonImplF> ZMobiusFermionF;
|
||||||
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
|
typedef ZMobiusFermion<ZWilsonImplD> ZMobiusFermionD;
|
||||||
|
|
||||||
//typedef ZMobiusFermion<ZWilsonImplRL> ZMobiusFermionRL;
|
typedef ScaledShamirFermion<WilsonImplD2> ScaledShamirFermionD2;
|
||||||
//typedef ZMobiusFermion<ZWilsonImplFH> ZMobiusFermionFH;
|
|
||||||
//typedef ZMobiusFermion<ZWilsonImplDF> ZMobiusFermionDF;
|
|
||||||
|
|
||||||
// Ls vectorised
|
|
||||||
typedef ScaledShamirFermion<WilsonImplR> ScaledShamirFermionR;
|
|
||||||
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
|
typedef ScaledShamirFermion<WilsonImplF> ScaledShamirFermionF;
|
||||||
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
|
typedef ScaledShamirFermion<WilsonImplD> ScaledShamirFermionD;
|
||||||
|
|
||||||
typedef MobiusZolotarevFermion<WilsonImplR> MobiusZolotarevFermionR;
|
typedef MobiusZolotarevFermion<WilsonImplD2> MobiusZolotarevFermionD2;
|
||||||
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
|
typedef MobiusZolotarevFermion<WilsonImplF> MobiusZolotarevFermionF;
|
||||||
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
|
typedef MobiusZolotarevFermion<WilsonImplD> MobiusZolotarevFermionD;
|
||||||
typedef ShamirZolotarevFermion<WilsonImplR> ShamirZolotarevFermionR;
|
typedef ShamirZolotarevFermion<WilsonImplD2> ShamirZolotarevFermionD2;
|
||||||
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
|
typedef ShamirZolotarevFermion<WilsonImplF> ShamirZolotarevFermionF;
|
||||||
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
|
typedef ShamirZolotarevFermion<WilsonImplD> ShamirZolotarevFermionD;
|
||||||
|
|
||||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplR> OverlapWilsonCayleyTanhFermionR;
|
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD2> OverlapWilsonCayleyTanhFermionD2;
|
||||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
|
typedef OverlapWilsonCayleyTanhFermion<WilsonImplF> OverlapWilsonCayleyTanhFermionF;
|
||||||
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
|
typedef OverlapWilsonCayleyTanhFermion<WilsonImplD> OverlapWilsonCayleyTanhFermionD;
|
||||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplR> OverlapWilsonCayleyZolotarevFermionR;
|
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD2> OverlapWilsonCayleyZolotarevFermionD2;
|
||||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
|
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplF> OverlapWilsonCayleyZolotarevFermionF;
|
||||||
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
|
typedef OverlapWilsonCayleyZolotarevFermion<WilsonImplD> OverlapWilsonCayleyZolotarevFermionD;
|
||||||
|
|
||||||
// Continued fraction
|
// Continued fraction
|
||||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplR> OverlapWilsonContFracTanhFermionR;
|
typedef OverlapWilsonContFracTanhFermion<WilsonImplD2> OverlapWilsonContFracTanhFermionD2;
|
||||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
|
typedef OverlapWilsonContFracTanhFermion<WilsonImplF> OverlapWilsonContFracTanhFermionF;
|
||||||
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
|
typedef OverlapWilsonContFracTanhFermion<WilsonImplD> OverlapWilsonContFracTanhFermionD;
|
||||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplR> OverlapWilsonContFracZolotarevFermionR;
|
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD2> OverlapWilsonContFracZolotarevFermionD2;
|
||||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
|
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplF> OverlapWilsonContFracZolotarevFermionF;
|
||||||
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
|
typedef OverlapWilsonContFracZolotarevFermion<WilsonImplD> OverlapWilsonContFracZolotarevFermionD;
|
||||||
|
|
||||||
// Partial fraction
|
// Partial fraction
|
||||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplR> OverlapWilsonPartialFractionTanhFermionR;
|
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD2> OverlapWilsonPartialFractionTanhFermionD2;
|
||||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
|
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplF> OverlapWilsonPartialFractionTanhFermionF;
|
||||||
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
|
typedef OverlapWilsonPartialFractionTanhFermion<WilsonImplD> OverlapWilsonPartialFractionTanhFermionD;
|
||||||
|
|
||||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplR> OverlapWilsonPartialFractionZolotarevFermionR;
|
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD2> OverlapWilsonPartialFractionZolotarevFermionD2;
|
||||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
|
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplF> OverlapWilsonPartialFractionZolotarevFermionF;
|
||||||
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
|
typedef OverlapWilsonPartialFractionZolotarevFermion<WilsonImplD> OverlapWilsonPartialFractionZolotarevFermionD;
|
||||||
|
|
||||||
// Gparity cases; partial list until tested
|
// Gparity cases; partial list until tested
|
||||||
typedef WilsonFermion<GparityWilsonImplR> GparityWilsonFermionR;
|
|
||||||
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
|
typedef WilsonFermion<GparityWilsonImplF> GparityWilsonFermionF;
|
||||||
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
|
typedef WilsonFermion<GparityWilsonImplD> GparityWilsonFermionD;
|
||||||
|
|
||||||
//typedef WilsonFermion<GparityWilsonImplRL> GparityWilsonFermionRL;
|
|
||||||
//typedef WilsonFermion<GparityWilsonImplFH> GparityWilsonFermionFH;
|
|
||||||
//typedef WilsonFermion<GparityWilsonImplDF> GparityWilsonFermionDF;
|
|
||||||
|
|
||||||
typedef DomainWallFermion<GparityWilsonImplR> GparityDomainWallFermionR;
|
|
||||||
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
|
typedef DomainWallFermion<GparityWilsonImplF> GparityDomainWallFermionF;
|
||||||
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
|
typedef DomainWallFermion<GparityWilsonImplD> GparityDomainWallFermionD;
|
||||||
|
|
||||||
//typedef DomainWallFermion<GparityWilsonImplRL> GparityDomainWallFermionRL;
|
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionD2;
|
||||||
//typedef DomainWallFermion<GparityWilsonImplFH> GparityDomainWallFermionFH;
|
|
||||||
//typedef DomainWallFermion<GparityWilsonImplDF> GparityDomainWallFermionDF;
|
|
||||||
|
|
||||||
typedef DomainWallEOFAFermion<GparityWilsonImplR> GparityDomainWallEOFAFermionR;
|
|
||||||
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
|
typedef DomainWallEOFAFermion<GparityWilsonImplF> GparityDomainWallEOFAFermionF;
|
||||||
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
|
typedef DomainWallEOFAFermion<GparityWilsonImplD> GparityDomainWallEOFAFermionD;
|
||||||
|
|
||||||
//typedef DomainWallEOFAFermion<GparityWilsonImplRL> GparityDomainWallEOFAFermionRL;
|
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionD2;
|
||||||
//typedef DomainWallEOFAFermion<GparityWilsonImplFH> GparityDomainWallEOFAFermionFH;
|
|
||||||
//typedef DomainWallEOFAFermion<GparityWilsonImplDF> GparityDomainWallEOFAFermionDF;
|
|
||||||
|
|
||||||
typedef WilsonTMFermion<GparityWilsonImplR> GparityWilsonTMFermionR;
|
|
||||||
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
|
typedef WilsonTMFermion<GparityWilsonImplF> GparityWilsonTMFermionF;
|
||||||
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
|
typedef WilsonTMFermion<GparityWilsonImplD> GparityWilsonTMFermionD;
|
||||||
|
|
||||||
//typedef WilsonTMFermion<GparityWilsonImplRL> GparityWilsonTMFermionRL;
|
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionD2;
|
||||||
//typedef WilsonTMFermion<GparityWilsonImplFH> GparityWilsonTMFermionFH;
|
|
||||||
//typedef WilsonTMFermion<GparityWilsonImplDF> GparityWilsonTMFermionDF;
|
|
||||||
|
|
||||||
typedef MobiusFermion<GparityWilsonImplR> GparityMobiusFermionR;
|
|
||||||
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
|
typedef MobiusFermion<GparityWilsonImplF> GparityMobiusFermionF;
|
||||||
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
|
typedef MobiusFermion<GparityWilsonImplD> GparityMobiusFermionD;
|
||||||
|
|
||||||
//typedef MobiusFermion<GparityWilsonImplRL> GparityMobiusFermionRL;
|
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionD2;
|
||||||
//typedef MobiusFermion<GparityWilsonImplFH> GparityMobiusFermionFH;
|
|
||||||
//typedef MobiusFermion<GparityWilsonImplDF> GparityMobiusFermionDF;
|
|
||||||
|
|
||||||
typedef MobiusEOFAFermion<GparityWilsonImplR> GparityMobiusEOFAFermionR;
|
|
||||||
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
|
typedef MobiusEOFAFermion<GparityWilsonImplF> GparityMobiusEOFAFermionF;
|
||||||
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
|
typedef MobiusEOFAFermion<GparityWilsonImplD> GparityMobiusEOFAFermionD;
|
||||||
|
|
||||||
//typedef MobiusEOFAFermion<GparityWilsonImplRL> GparityMobiusEOFAFermionRL;
|
|
||||||
//typedef MobiusEOFAFermion<GparityWilsonImplFH> GparityMobiusEOFAFermionFH;
|
|
||||||
//typedef MobiusEOFAFermion<GparityWilsonImplDF> GparityMobiusEOFAFermionDF;
|
|
||||||
|
|
||||||
typedef ImprovedStaggeredFermion<StaggeredImplR> ImprovedStaggeredFermionR;
|
|
||||||
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
|
typedef ImprovedStaggeredFermion<StaggeredImplF> ImprovedStaggeredFermionF;
|
||||||
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
|
typedef ImprovedStaggeredFermion<StaggeredImplD> ImprovedStaggeredFermionD;
|
||||||
|
|
||||||
typedef NaiveStaggeredFermion<StaggeredImplR> NaiveStaggeredFermionR;
|
|
||||||
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
|
typedef NaiveStaggeredFermion<StaggeredImplF> NaiveStaggeredFermionF;
|
||||||
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
|
typedef NaiveStaggeredFermion<StaggeredImplD> NaiveStaggeredFermionD;
|
||||||
|
|
||||||
typedef ImprovedStaggeredFermion5D<StaggeredImplR> ImprovedStaggeredFermion5DR;
|
|
||||||
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
|
typedef ImprovedStaggeredFermion5D<StaggeredImplF> ImprovedStaggeredFermion5DF;
|
||||||
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
|
typedef ImprovedStaggeredFermion5D<StaggeredImplD> ImprovedStaggeredFermion5DD;
|
||||||
|
|
||||||
|
@ -49,6 +49,8 @@ public:
|
|||||||
|
|
||||||
virtual FermionField &tmp(void) = 0;
|
virtual FermionField &tmp(void) = 0;
|
||||||
|
|
||||||
|
virtual void DirichletBlock(const Coordinate & _Block) { assert(0); };
|
||||||
|
|
||||||
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
|
GridBase * Grid(void) { return FermionGrid(); }; // this is all the linalg routines need to know
|
||||||
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
|
GridBase * RedBlackGrid(void) { return FermionRedBlackGrid(); };
|
||||||
|
|
||||||
|
@ -30,6 +30,18 @@ directory
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
/*
|
||||||
|
Policy implementation for G-parity boundary conditions
|
||||||
|
|
||||||
|
Rather than treating the gauge field as a flavored field, the Grid implementation of G-parity treats the gauge field as a regular
|
||||||
|
field with complex conjugate boundary conditions. In order to ensure the second flavor interacts with the conjugate links and the first
|
||||||
|
with the regular links we overload the functionality of doubleStore, whose purpose is to store the gauge field and the barrel-shifted gauge field
|
||||||
|
to avoid communicating links when applying the Dirac operator, such that the double-stored field contains also a flavor index which maps to
|
||||||
|
either the link or the conjugate link. This flavored field is then used by multLink to apply the correct link to a spinor.
|
||||||
|
|
||||||
|
Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||||
|
mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||||
|
*/
|
||||||
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
template <class S, class Representation = FundamentalRepresentation, class Options=CoeffReal>
|
||||||
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
class GparityWilsonImpl : public ConjugateGaugeImpl<GaugeImplTypes<S, Representation::Dimension> > {
|
||||||
public:
|
public:
|
||||||
@ -113,7 +125,7 @@ public:
|
|||||||
|| ((distance== 1)&&(icoor[direction]==1))
|
|| ((distance== 1)&&(icoor[direction]==1))
|
||||||
|| ((distance==-1)&&(icoor[direction]==0));
|
|| ((distance==-1)&&(icoor[direction]==0));
|
||||||
|
|
||||||
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu]; //only if we are going around the world
|
permute_lane = permute_lane && SE->_around_the_world && St.parameters.twists[mmu] && mmu < Nd-1; //only if we are going around the world in a spatial direction
|
||||||
|
|
||||||
//Apply the links
|
//Apply the links
|
||||||
int f_upper = permute_lane ? 1 : 0;
|
int f_upper = permute_lane ? 1 : 0;
|
||||||
@ -139,10 +151,10 @@ public:
|
|||||||
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
assert((distance == 1) || (distance == -1)); // nearest neighbour stencil hard code
|
||||||
assert((sl == 1) || (sl == 2));
|
assert((sl == 1) || (sl == 2));
|
||||||
|
|
||||||
if ( SE->_around_the_world && St.parameters.twists[mmu] ) {
|
//If this site is an global boundary site, perform the G-parity flavor twist
|
||||||
|
if ( mmu < Nd-1 && SE->_around_the_world && St.parameters.twists[mmu] ) {
|
||||||
if ( sl == 2 ) {
|
if ( sl == 2 ) {
|
||||||
|
//Only do the twist for lanes on the edge of the physical node
|
||||||
ExtractBuffer<sobj> vals(Nsimd);
|
ExtractBuffer<sobj> vals(Nsimd);
|
||||||
|
|
||||||
extract(chi,vals);
|
extract(chi,vals);
|
||||||
@ -197,6 +209,19 @@ public:
|
|||||||
reg = memory;
|
reg = memory;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//Poke 'poke_f0' onto flavor 0 and 'poke_f1' onto flavor 1 in direction mu of the doubled gauge field Uds
|
||||||
|
inline void pokeGparityDoubledGaugeField(DoubledGaugeField &Uds, const GaugeLinkField &poke_f0, const GaugeLinkField &poke_f1, const int mu){
|
||||||
|
autoView(poke_f0_v, poke_f0, CpuRead);
|
||||||
|
autoView(poke_f1_v, poke_f1, CpuRead);
|
||||||
|
autoView(Uds_v, Uds, CpuWrite);
|
||||||
|
thread_foreach(ss,poke_f0_v,{
|
||||||
|
Uds_v[ss](0)(mu) = poke_f0_v[ss]();
|
||||||
|
Uds_v[ss](1)(mu) = poke_f1_v[ss]();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
inline void DoubleStore(GridBase *GaugeGrid,DoubledGaugeField &Uds,const GaugeField &Umu)
|
||||||
{
|
{
|
||||||
conformable(Uds.Grid(),GaugeGrid);
|
conformable(Uds.Grid(),GaugeGrid);
|
||||||
@ -207,14 +232,19 @@ public:
|
|||||||
GaugeLinkField Uconj(GaugeGrid);
|
GaugeLinkField Uconj(GaugeGrid);
|
||||||
|
|
||||||
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
//Here the first Nd-1 directions are treated as "spatial", and a twist value of 1 indicates G-parity BCs in that direction.
|
||||||
|
//mu=Nd-1 is assumed to be the time direction and a twist value of 1 indicates antiperiodic BCs
|
||||||
LatticeCoordinate(coor,mu);
|
for(int mu=0;mu<Nd-1;mu++){
|
||||||
|
|
||||||
|
if( Params.twists[mu] ){
|
||||||
|
LatticeCoordinate(coor,mu);
|
||||||
|
}
|
||||||
|
|
||||||
U = PeekIndex<LorentzIndex>(Umu,mu);
|
U = PeekIndex<LorentzIndex>(Umu,mu);
|
||||||
Uconj = conjugate(U);
|
Uconj = conjugate(U);
|
||||||
|
|
||||||
|
// Implement the isospin rotation sign on the boundary between f=1 and f=0
|
||||||
// This phase could come from a simple bc 1,1,-1,1 ..
|
// This phase could come from a simple bc 1,1,-1,1 ..
|
||||||
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
int neglink = GaugeGrid->GlobalDimensions()[mu]-1;
|
||||||
if ( Params.twists[mu] ) {
|
if ( Params.twists[mu] ) {
|
||||||
@ -229,7 +259,7 @@ public:
|
|||||||
thread_foreach(ss,U_v,{
|
thread_foreach(ss,U_v,{
|
||||||
Uds_v[ss](0)(mu) = U_v[ss]();
|
Uds_v[ss](0)(mu) = U_v[ss]();
|
||||||
Uds_v[ss](1)(mu) = Uconj_v[ss]();
|
Uds_v[ss](1)(mu) = Uconj_v[ss]();
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
U = adj(Cshift(U ,mu,-1)); // correct except for spanning the boundary
|
||||||
@ -260,6 +290,38 @@ public:
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
{ //periodic / antiperiodic temporal BCs
|
||||||
|
int mu = Nd-1;
|
||||||
|
int L = GaugeGrid->GlobalDimensions()[mu];
|
||||||
|
int Lmu = L - 1;
|
||||||
|
|
||||||
|
LatticeCoordinate(coor, mu);
|
||||||
|
|
||||||
|
U = PeekIndex<LorentzIndex>(Umu, mu); //Get t-directed links
|
||||||
|
|
||||||
|
GaugeLinkField *Upoke = &U;
|
||||||
|
|
||||||
|
if(Params.twists[mu]){ //antiperiodic
|
||||||
|
Utmp = where(coor == Lmu, -U, U);
|
||||||
|
Upoke = &Utmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
Uconj = conjugate(*Upoke); //second flavor interacts with conjugate links
|
||||||
|
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu);
|
||||||
|
|
||||||
|
//Get the barrel-shifted field
|
||||||
|
Utmp = adj(Cshift(U, mu, -1)); //is a forward shift!
|
||||||
|
Upoke = &Utmp;
|
||||||
|
|
||||||
|
if(Params.twists[mu]){
|
||||||
|
U = where(coor == 0, -Utmp, Utmp); //boundary phase
|
||||||
|
Upoke = &U;
|
||||||
|
}
|
||||||
|
|
||||||
|
Uconj = conjugate(*Upoke);
|
||||||
|
pokeGparityDoubledGaugeField(Uds, *Upoke, Uconj, mu + 4);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
inline void InsertForce4D(GaugeField &mat, FermionField &Btilde, FermionField &A, int mu) {
|
||||||
@ -298,28 +360,48 @@ public:
|
|||||||
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
inline void extractLinkField(std::vector<GaugeLinkField> &mat, DoubledGaugeField &Uds){
|
||||||
assert(0);
|
assert(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
inline void InsertForce5D(GaugeField &mat, FermionField &Btilde, FermionField Ã, int mu) {
|
||||||
|
int Ls=Btilde.Grid()->_fdimensions[0];
|
||||||
int Ls = Btilde.Grid()->_fdimensions[0];
|
|
||||||
|
|
||||||
GaugeLinkField tmp(mat.Grid());
|
|
||||||
tmp = Zero();
|
|
||||||
{
|
{
|
||||||
autoView( tmp_v , tmp, CpuWrite);
|
GridBase *GaugeGrid = mat.Grid();
|
||||||
autoView( Atilde_v , Atilde, CpuRead);
|
Lattice<iScalar<vInteger> > coor(GaugeGrid);
|
||||||
autoView( Btilde_v , Btilde, CpuRead);
|
|
||||||
thread_for(ss,tmp.Grid()->oSites(),{
|
if( Params.twists[mu] ){
|
||||||
for (int s = 0; s < Ls; s++) {
|
LatticeCoordinate(coor,mu);
|
||||||
int sF = s + Ls * ss;
|
}
|
||||||
auto ttmp = traceIndex<SpinIndex>(outerProduct(Btilde_v[sF], Atilde_v[sF]));
|
|
||||||
tmp_v[ss]() = tmp_v[ss]() + ttmp(0, 0) + conjugate(ttmp(1, 1));
|
autoView( mat_v , mat, AcceleratorWrite);
|
||||||
}
|
autoView( Btilde_v , Btilde, AcceleratorRead);
|
||||||
});
|
autoView( Atilde_v , Atilde, AcceleratorRead);
|
||||||
|
accelerator_for(sss,mat.Grid()->oSites(), FermionField::vector_type::Nsimd(),{
|
||||||
|
int sU=sss;
|
||||||
|
typedef decltype(coalescedRead(mat_v[sU](mu)() )) ColorMatrixType;
|
||||||
|
ColorMatrixType sum;
|
||||||
|
zeroit(sum);
|
||||||
|
for(int s=0;s<Ls;s++){
|
||||||
|
int sF = s+Ls*sU;
|
||||||
|
for(int spn=0;spn<Ns;spn++){ //sum over spin
|
||||||
|
//Flavor 0
|
||||||
|
auto bb = coalescedRead(Btilde_v[sF](0)(spn) ); //color vector
|
||||||
|
auto aa = coalescedRead(Atilde_v[sF](0)(spn) );
|
||||||
|
sum = sum + outerProduct(bb,aa);
|
||||||
|
|
||||||
|
//Flavor 1
|
||||||
|
bb = coalescedRead(Btilde_v[sF](1)(spn) );
|
||||||
|
aa = coalescedRead(Atilde_v[sF](1)(spn) );
|
||||||
|
sum = sum + conjugate(outerProduct(bb,aa));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
coalescedWrite(mat_v[sU](mu)(), sum);
|
||||||
|
});
|
||||||
}
|
}
|
||||||
PokeIndex<LorentzIndex>(mat, tmp, mu);
|
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -47,18 +47,6 @@ public:
|
|||||||
FermionField _tmp;
|
FermionField _tmp;
|
||||||
FermionField &tmp(void) { return _tmp; }
|
FermionField &tmp(void) { return _tmp; }
|
||||||
|
|
||||||
////////////////////////////////////////
|
|
||||||
// Performance monitoring
|
|
||||||
////////////////////////////////////////
|
|
||||||
void Report(void);
|
|
||||||
void ZeroCounters(void);
|
|
||||||
double DhopTotalTime;
|
|
||||||
double DhopCalls;
|
|
||||||
double DhopCommTime;
|
|
||||||
double DhopComputeTime;
|
|
||||||
double DhopComputeTime2;
|
|
||||||
double DhopFaceTime;
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// Implement the abstract base
|
// Implement the abstract base
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
|
@ -52,18 +52,6 @@ public:
|
|||||||
FermionField _tmp;
|
FermionField _tmp;
|
||||||
FermionField &tmp(void) { return _tmp; }
|
FermionField &tmp(void) { return _tmp; }
|
||||||
|
|
||||||
////////////////////////////////////////
|
|
||||||
// Performance monitoring
|
|
||||||
////////////////////////////////////////
|
|
||||||
void Report(void);
|
|
||||||
void ZeroCounters(void);
|
|
||||||
double DhopTotalTime;
|
|
||||||
double DhopCalls;
|
|
||||||
double DhopCommTime;
|
|
||||||
double DhopComputeTime;
|
|
||||||
double DhopComputeTime2;
|
|
||||||
double DhopFaceTime;
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// Implement the abstract base
|
// Implement the abstract base
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
|
@ -47,18 +47,6 @@ public:
|
|||||||
FermionField _tmp;
|
FermionField _tmp;
|
||||||
FermionField &tmp(void) { return _tmp; }
|
FermionField &tmp(void) { return _tmp; }
|
||||||
|
|
||||||
////////////////////////////////////////
|
|
||||||
// Performance monitoring
|
|
||||||
////////////////////////////////////////
|
|
||||||
void Report(void);
|
|
||||||
void ZeroCounters(void);
|
|
||||||
double DhopTotalTime;
|
|
||||||
double DhopCalls;
|
|
||||||
double DhopCommTime;
|
|
||||||
double DhopComputeTime;
|
|
||||||
double DhopComputeTime2;
|
|
||||||
double DhopFaceTime;
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// Implement the abstract base
|
// Implement the abstract base
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
|
@ -32,17 +32,218 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
// Wilson compressor will need FaceGather policies for:
|
||||||
|
// Periodic, Dirichlet, and partial Dirichlet for DWF
|
||||||
|
///////////////////////////////////////////////////////////////
|
||||||
|
const int dwf_compressor_depth=2;
|
||||||
|
#define DWF_COMPRESS
|
||||||
|
class FaceGatherPartialDWF
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
#ifdef DWF_COMPRESS
|
||||||
|
static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
|
||||||
|
#else
|
||||||
|
static int PartialCompressionFactor(GridBase *grid) { return 1;}
|
||||||
|
#endif
|
||||||
|
template<class vobj,class cobj,class compressor>
|
||||||
|
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
|
||||||
|
const Lattice<vobj> &rhs,
|
||||||
|
cobj *buffer,
|
||||||
|
compressor &compress,
|
||||||
|
int off,int so,int partial)
|
||||||
|
{
|
||||||
|
//DWF only hack: If a direction that is OFF node we use Partial Dirichlet
|
||||||
|
// Shrinks local and remote comms buffers
|
||||||
|
GridBase *Grid = rhs.Grid();
|
||||||
|
int Ls = Grid->_rdimensions[0];
|
||||||
|
#ifdef DWF_COMPRESS
|
||||||
|
int depth=dwf_compressor_depth;
|
||||||
|
#else
|
||||||
|
int depth=Ls/2;
|
||||||
|
#endif
|
||||||
|
std::pair<int,int> *table_v = & table[0];
|
||||||
|
auto rhs_v = rhs.View(AcceleratorRead);
|
||||||
|
int vol=table.size()/Ls;
|
||||||
|
accelerator_forNB( idx,table.size(), vobj::Nsimd(), {
|
||||||
|
Integer i=idx/Ls;
|
||||||
|
Integer s=idx%Ls;
|
||||||
|
Integer sc=depth+s-(Ls-depth);
|
||||||
|
if(s<depth) compress.Compress(buffer[off+i+s*vol],rhs_v[so+table_v[idx].second]);
|
||||||
|
if(s>=Ls-depth) compress.Compress(buffer[off+i+sc*vol],rhs_v[so+table_v[idx].second]);
|
||||||
|
});
|
||||||
|
rhs_v.ViewClose();
|
||||||
|
}
|
||||||
|
template<class decompressor,class Decompression>
|
||||||
|
static void DecompressFace(decompressor decompress,Decompression &dd)
|
||||||
|
{
|
||||||
|
auto Ls = dd.dims[0];
|
||||||
|
#ifdef DWF_COMPRESS
|
||||||
|
int depth=dwf_compressor_depth;
|
||||||
|
#else
|
||||||
|
int depth=Ls/2;
|
||||||
|
#endif
|
||||||
|
// Just pass in the Grid
|
||||||
|
auto kp = dd.kernel_p;
|
||||||
|
auto mp = dd.mpi_p;
|
||||||
|
int size= dd.buffer_size;
|
||||||
|
int vol= size/Ls;
|
||||||
|
accelerator_forNB(o,size,1,{
|
||||||
|
int idx=o/Ls;
|
||||||
|
int s=o%Ls;
|
||||||
|
if ( s < depth ) {
|
||||||
|
int oo=s*vol+idx;
|
||||||
|
kp[o]=mp[oo];
|
||||||
|
} else if ( s >= Ls-depth ) {
|
||||||
|
int sc = depth + s - (Ls-depth);
|
||||||
|
int oo=sc*vol+idx;
|
||||||
|
kp[o]=mp[oo];
|
||||||
|
} else {
|
||||||
|
kp[o] = Zero();//fill rest with zero if partial dirichlet
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Need to gather *interior portions* for ALL s-slices in simd directions
|
||||||
|
// Do the gather as need to treat SIMD lanes differently, and insert zeroes on receive side
|
||||||
|
// Reorder the fifth dim to be s=Ls-1 , s=0, s=1,...,Ls-2.
|
||||||
|
////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
template<class vobj,class cobj,class compressor>
|
||||||
|
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
|
||||||
|
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
|
||||||
|
compressor &compress,int type,int partial)
|
||||||
|
{
|
||||||
|
GridBase *Grid = rhs.Grid();
|
||||||
|
int Ls = Grid->_rdimensions[0];
|
||||||
|
#ifdef DWF_COMPRESS
|
||||||
|
int depth=dwf_compressor_depth;
|
||||||
|
#else
|
||||||
|
int depth = Ls/2;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// insertion of zeroes...
|
||||||
|
assert( (table.size()&0x1)==0);
|
||||||
|
int num=table.size()/2;
|
||||||
|
int so = plane*rhs.Grid()->_ostride[dimension]; // base offset for start of plane
|
||||||
|
|
||||||
|
auto rhs_v = rhs.View(AcceleratorRead);
|
||||||
|
auto p0=&pointers[0][0];
|
||||||
|
auto p1=&pointers[1][0];
|
||||||
|
auto tp=&table[0];
|
||||||
|
int nnum=num/Ls;
|
||||||
|
accelerator_forNB(j, num, vobj::Nsimd(), {
|
||||||
|
// Reorders both local and remote comms buffers
|
||||||
|
//
|
||||||
|
int s = j % Ls;
|
||||||
|
int sp1 = (s+depth)%Ls; // peri incremented s slice
|
||||||
|
|
||||||
|
int hxyz= j/Ls;
|
||||||
|
|
||||||
|
int xyz0= hxyz*2; // xyzt part of coor
|
||||||
|
int xyz1= hxyz*2+1;
|
||||||
|
|
||||||
|
int jj= hxyz + sp1*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
|
||||||
|
|
||||||
|
int kk0= xyz0*Ls + s ; // s=0 goes to s=1
|
||||||
|
int kk1= xyz1*Ls + s ; // s=Ls-1 -> s=0
|
||||||
|
compress.CompressExchange(p0[jj],p1[jj],
|
||||||
|
rhs_v[so+tp[kk0 ].second], // Same s, consecutive xyz sites
|
||||||
|
rhs_v[so+tp[kk1 ].second],
|
||||||
|
type);
|
||||||
|
});
|
||||||
|
rhs_v.ViewClose();
|
||||||
|
}
|
||||||
|
// Merge routine is for SIMD faces
|
||||||
|
template<class decompressor,class Merger>
|
||||||
|
static void MergeFace(decompressor decompress,Merger &mm)
|
||||||
|
{
|
||||||
|
auto Ls = mm.dims[0];
|
||||||
|
#ifdef DWF_COMPRESS
|
||||||
|
int depth=dwf_compressor_depth;
|
||||||
|
#else
|
||||||
|
int depth = Ls/2;
|
||||||
|
#endif
|
||||||
|
int num= mm.buffer_size/2; // relate vol and Ls to buffer size
|
||||||
|
auto mp = &mm.mpointer[0];
|
||||||
|
auto vp0= &mm.vpointers[0][0]; // First arg is exchange first
|
||||||
|
auto vp1= &mm.vpointers[1][0];
|
||||||
|
auto type= mm.type;
|
||||||
|
int nnum = num/Ls;
|
||||||
|
accelerator_forNB(o,num,Merger::Nsimd,{
|
||||||
|
|
||||||
|
int s=o%Ls;
|
||||||
|
int hxyz=o/Ls; // xyzt related component
|
||||||
|
int xyz0=hxyz*2;
|
||||||
|
int xyz1=hxyz*2+1;
|
||||||
|
|
||||||
|
int sp = (s+depth)%Ls;
|
||||||
|
int jj= hxyz + sp*nnum ; // 0,1,2,3 -> Ls-1 slice , 0-slice, 1-slice ....
|
||||||
|
|
||||||
|
int oo0= s+xyz0*Ls;
|
||||||
|
int oo1= s+xyz1*Ls;
|
||||||
|
|
||||||
|
// same ss0, ss1 pair goes to new layout
|
||||||
|
decompress.Exchange(mp[oo0],mp[oo1],vp0[jj],vp1[jj],type);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
class FaceGatherDWFMixedBCs
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
#ifdef DWF_COMPRESS
|
||||||
|
static int PartialCompressionFactor(GridBase *grid) {return grid->_fdimensions[0]/(2*dwf_compressor_depth);};
|
||||||
|
#else
|
||||||
|
static int PartialCompressionFactor(GridBase *grid) {return 1;}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template<class vobj,class cobj,class compressor>
|
||||||
|
static void Gather_plane_simple (commVector<std::pair<int,int> >& table,
|
||||||
|
const Lattice<vobj> &rhs,
|
||||||
|
cobj *buffer,
|
||||||
|
compressor &compress,
|
||||||
|
int off,int so,int partial)
|
||||||
|
{
|
||||||
|
// std::cout << " face gather simple DWF partial "<<partial <<std::endl;
|
||||||
|
if(partial) FaceGatherPartialDWF::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
|
||||||
|
else FaceGatherSimple::Gather_plane_simple(table,rhs,buffer,compress,off,so,partial);
|
||||||
|
}
|
||||||
|
template<class vobj,class cobj,class compressor>
|
||||||
|
static void Gather_plane_exchange(commVector<std::pair<int,int> >& table,const Lattice<vobj> &rhs,
|
||||||
|
std::vector<cobj *> pointers,int dimension,int plane,int cbmask,
|
||||||
|
compressor &compress,int type,int partial)
|
||||||
|
{
|
||||||
|
// std::cout << " face gather exch DWF partial "<<partial <<std::endl;
|
||||||
|
if(partial) FaceGatherPartialDWF::Gather_plane_exchange(table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
|
||||||
|
else FaceGatherSimple::Gather_plane_exchange (table,rhs,pointers,dimension, plane,cbmask,compress,type,partial);
|
||||||
|
}
|
||||||
|
template<class decompressor,class Merger>
|
||||||
|
static void MergeFace(decompressor decompress,Merger &mm)
|
||||||
|
{
|
||||||
|
int partial = mm.partial;
|
||||||
|
// std::cout << " merge DWF partial "<<partial <<std::endl;
|
||||||
|
if ( partial ) FaceGatherPartialDWF::MergeFace(decompress,mm);
|
||||||
|
else FaceGatherSimple::MergeFace(decompress,mm);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class decompressor,class Decompression>
|
||||||
|
static void DecompressFace(decompressor decompress,Decompression &dd)
|
||||||
|
{
|
||||||
|
int partial = dd.partial;
|
||||||
|
// std::cout << " decompress DWF partial "<<partial <<std::endl;
|
||||||
|
if ( partial ) FaceGatherPartialDWF::DecompressFace(decompress,dd);
|
||||||
|
else FaceGatherSimple::DecompressFace(decompress,dd);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// optimised versions supporting half precision too
|
// optimised versions supporting half precision too??? Deprecate
|
||||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector,typename SFINAE = void >
|
|
||||||
class WilsonCompressorTemplate;
|
|
||||||
|
|
||||||
|
|
||||||
|
//Could make FaceGather a template param, but then behaviour is runtime not compile time
|
||||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
|
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
|
||||||
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
|
class WilsonCompressorTemplate : public FaceGatherDWFMixedBCs
|
||||||
typename std::enable_if<std::is_same<_HCspinor,_Hspinor>::value>::type >
|
// : public FaceGatherSimple
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
@ -79,172 +280,81 @@ public:
|
|||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
/* Exchange includes precision change if mpi data is not same */
|
/* Exchange includes precision change if mpi data is not same */
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
accelerator_inline void Exchange(SiteHalfSpinor *mp,
|
accelerator_inline void Exchange(SiteHalfSpinor &mp0,
|
||||||
const SiteHalfSpinor * __restrict__ vp0,
|
SiteHalfSpinor &mp1,
|
||||||
const SiteHalfSpinor * __restrict__ vp1,
|
const SiteHalfSpinor & vp0,
|
||||||
Integer type,Integer o) const {
|
const SiteHalfSpinor & vp1,
|
||||||
|
Integer type) const {
|
||||||
#ifdef GRID_SIMT
|
#ifdef GRID_SIMT
|
||||||
exchangeSIMT(mp[2*o],mp[2*o+1],vp0[o],vp1[o],type);
|
exchangeSIMT(mp0,mp1,vp0,vp1,type);
|
||||||
#else
|
#else
|
||||||
SiteHalfSpinor tmp1;
|
SiteHalfSpinor tmp1;
|
||||||
SiteHalfSpinor tmp2;
|
SiteHalfSpinor tmp2;
|
||||||
exchange(tmp1,tmp2,vp0[o],vp1[o],type);
|
exchange(tmp1,tmp2,vp0,vp1,type);
|
||||||
vstream(mp[2*o ],tmp1);
|
vstream(mp0,tmp1);
|
||||||
vstream(mp[2*o+1],tmp2);
|
vstream(mp1,tmp2);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
/* Have a decompression step if mpi data is not same */
|
/* Have a decompression step if mpi data is not same */
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
accelerator_inline void Decompress(SiteHalfSpinor * __restrict__ out,
|
accelerator_inline void Decompress(SiteHalfSpinor &out,
|
||||||
SiteHalfSpinor * __restrict__ in, Integer o) const {
|
SiteHalfSpinor &in) const {
|
||||||
assert(0);
|
out = in;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
/* Compress Exchange */
|
/* Compress Exchange */
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
accelerator_inline void CompressExchange(SiteHalfSpinor * __restrict__ out0,
|
accelerator_inline void CompressExchange(SiteHalfSpinor &out0,
|
||||||
SiteHalfSpinor * __restrict__ out1,
|
SiteHalfSpinor &out1,
|
||||||
const SiteSpinor * __restrict__ in,
|
const SiteSpinor &in0,
|
||||||
Integer j,Integer k, Integer m,Integer type) const
|
const SiteSpinor &in1,
|
||||||
|
Integer type) const
|
||||||
{
|
{
|
||||||
#ifdef GRID_SIMT
|
#ifdef GRID_SIMT
|
||||||
typedef SiteSpinor vobj;
|
typedef SiteSpinor vobj;
|
||||||
typedef SiteHalfSpinor hvobj;
|
typedef SiteHalfSpinor hvobj;
|
||||||
typedef decltype(coalescedRead(*in)) sobj;
|
typedef decltype(coalescedRead(in0)) sobj;
|
||||||
typedef decltype(coalescedRead(*out0)) hsobj;
|
typedef decltype(coalescedRead(out0)) hsobj;
|
||||||
|
|
||||||
constexpr unsigned int Nsimd = vobj::Nsimd();
|
constexpr unsigned int Nsimd = vobj::Nsimd();
|
||||||
unsigned int mask = Nsimd >> (type + 1);
|
unsigned int mask = Nsimd >> (type + 1);
|
||||||
int lane = acceleratorSIMTlane(Nsimd);
|
int lane = acceleratorSIMTlane(Nsimd);
|
||||||
int j0 = lane &(~mask); // inner coor zero
|
int j0 = lane &(~mask); // inner coor zero
|
||||||
int j1 = lane |(mask) ; // inner coor one
|
int j1 = lane |(mask) ; // inner coor one
|
||||||
const vobj *vp0 = &in[k]; // out0[j] = merge low bit of type from in[k] and in[m]
|
const vobj *vp0 = &in0;
|
||||||
const vobj *vp1 = &in[m]; // out1[j] = merge hi bit of type from in[k] and in[m]
|
const vobj *vp1 = &in1;
|
||||||
const vobj *vp = (lane&mask) ? vp1:vp0;// if my lane has high bit take vp1, low bit take vp0
|
const vobj *vp = (lane&mask) ? vp1:vp0;
|
||||||
auto sa = coalescedRead(*vp,j0); // lane to read for out 0, NB 50% read coalescing
|
auto sa = coalescedRead(*vp,j0);
|
||||||
auto sb = coalescedRead(*vp,j1); // lane to read for out 1
|
auto sb = coalescedRead(*vp,j1);
|
||||||
hsobj psa, psb;
|
hsobj psa, psb;
|
||||||
projector::Proj(psa,sa,mu,dag); // spin project the result0
|
projector::Proj(psa,sa,mu,dag);
|
||||||
projector::Proj(psb,sb,mu,dag); // spin project the result1
|
projector::Proj(psb,sb,mu,dag);
|
||||||
coalescedWrite(out0[j],psa);
|
coalescedWrite(out0,psa);
|
||||||
coalescedWrite(out1[j],psb);
|
coalescedWrite(out1,psb);
|
||||||
#else
|
#else
|
||||||
SiteHalfSpinor temp1, temp2;
|
SiteHalfSpinor temp1, temp2;
|
||||||
SiteHalfSpinor temp3, temp4;
|
SiteHalfSpinor temp3, temp4;
|
||||||
projector::Proj(temp1,in[k],mu,dag);
|
projector::Proj(temp1,in0,mu,dag);
|
||||||
projector::Proj(temp2,in[m],mu,dag);
|
projector::Proj(temp2,in1,mu,dag);
|
||||||
exchange(temp3,temp4,temp1,temp2,type);
|
exchange(temp3,temp4,temp1,temp2,type);
|
||||||
vstream(out0[j],temp3);
|
vstream(out0,temp3);
|
||||||
vstream(out1[j],temp4);
|
vstream(out1,temp4);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
/* Pass the info to the stencil */
|
/* Pass the info to the stencil */
|
||||||
/*****************************************************/
|
/*****************************************************/
|
||||||
accelerator_inline bool DecompressionStep(void) const { return false; }
|
accelerator_inline bool DecompressionStep(void) const {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
#if 0
|
|
||||||
template<class _HCspinor,class _Hspinor,class _Spinor, class projector>
|
|
||||||
class WilsonCompressorTemplate< _HCspinor, _Hspinor, _Spinor, projector,
|
|
||||||
typename std::enable_if<!std::is_same<_HCspinor,_Hspinor>::value>::type >
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
int mu,dag;
|
|
||||||
|
|
||||||
void Point(int p) { mu=p; };
|
|
||||||
|
|
||||||
WilsonCompressorTemplate(int _dag=0){
|
|
||||||
dag = _dag;
|
|
||||||
}
|
|
||||||
|
|
||||||
typedef _Spinor SiteSpinor;
|
|
||||||
typedef _Hspinor SiteHalfSpinor;
|
|
||||||
typedef _HCspinor SiteHalfCommSpinor;
|
|
||||||
typedef typename SiteHalfCommSpinor::vector_type vComplexLow;
|
|
||||||
typedef typename SiteHalfSpinor::vector_type vComplexHigh;
|
|
||||||
constexpr static int Nw=sizeof(SiteHalfSpinor)/sizeof(vComplexHigh);
|
|
||||||
|
|
||||||
accelerator_inline int CommDatumSize(void) const {
|
|
||||||
return sizeof(SiteHalfCommSpinor);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*****************************************************/
|
|
||||||
/* Compress includes precision change if mpi data is not same */
|
|
||||||
/*****************************************************/
|
|
||||||
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
|
|
||||||
SiteHalfSpinor hsp;
|
|
||||||
SiteHalfCommSpinor *hbuf = (SiteHalfCommSpinor *)buf;
|
|
||||||
projector::Proj(hsp,in,mu,dag);
|
|
||||||
precisionChange((vComplexLow *)&hbuf[o],(vComplexHigh *)&hsp,Nw);
|
|
||||||
}
|
|
||||||
accelerator_inline void Compress(SiteHalfSpinor &buf,const SiteSpinor &in) const {
|
|
||||||
#ifdef GRID_SIMT
|
|
||||||
typedef decltype(coalescedRead(buf)) sobj;
|
|
||||||
sobj sp;
|
|
||||||
auto sin = coalescedRead(in);
|
|
||||||
projector::Proj(sp,sin,mu,dag);
|
|
||||||
coalescedWrite(buf,sp);
|
|
||||||
#else
|
|
||||||
projector::Proj(buf,in,mu,dag);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
/*****************************************************/
|
|
||||||
/* Exchange includes precision change if mpi data is not same */
|
|
||||||
/*****************************************************/
|
|
||||||
accelerator_inline void Exchange(SiteHalfSpinor *mp,
|
|
||||||
SiteHalfSpinor *vp0,
|
|
||||||
SiteHalfSpinor *vp1,
|
|
||||||
Integer type,Integer o) const {
|
|
||||||
SiteHalfSpinor vt0,vt1;
|
|
||||||
SiteHalfCommSpinor *vpp0 = (SiteHalfCommSpinor *)vp0;
|
|
||||||
SiteHalfCommSpinor *vpp1 = (SiteHalfCommSpinor *)vp1;
|
|
||||||
precisionChange((vComplexHigh *)&vt0,(vComplexLow *)&vpp0[o],Nw);
|
|
||||||
precisionChange((vComplexHigh *)&vt1,(vComplexLow *)&vpp1[o],Nw);
|
|
||||||
exchange(mp[2*o],mp[2*o+1],vt0,vt1,type);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*****************************************************/
|
|
||||||
/* Have a decompression step if mpi data is not same */
|
|
||||||
/*****************************************************/
|
|
||||||
accelerator_inline void Decompress(SiteHalfSpinor *out, SiteHalfSpinor *in, Integer o) const {
|
|
||||||
SiteHalfCommSpinor *hin=(SiteHalfCommSpinor *)in;
|
|
||||||
precisionChange((vComplexHigh *)&out[o],(vComplexLow *)&hin[o],Nw);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*****************************************************/
|
|
||||||
/* Compress Exchange */
|
|
||||||
/*****************************************************/
|
|
||||||
accelerator_inline void CompressExchange(SiteHalfSpinor *out0,
|
|
||||||
SiteHalfSpinor *out1,
|
|
||||||
const SiteSpinor *in,
|
|
||||||
Integer j,Integer k, Integer m,Integer type) const {
|
|
||||||
SiteHalfSpinor temp1, temp2,temp3,temp4;
|
|
||||||
SiteHalfCommSpinor *hout0 = (SiteHalfCommSpinor *)out0;
|
|
||||||
SiteHalfCommSpinor *hout1 = (SiteHalfCommSpinor *)out1;
|
|
||||||
projector::Proj(temp1,in[k],mu,dag);
|
|
||||||
projector::Proj(temp2,in[m],mu,dag);
|
|
||||||
exchange(temp3,temp4,temp1,temp2,type);
|
|
||||||
precisionChange((vComplexLow *)&hout0[j],(vComplexHigh *)&temp3,Nw);
|
|
||||||
precisionChange((vComplexLow *)&hout1[j],(vComplexHigh *)&temp4,Nw);
|
|
||||||
}
|
|
||||||
|
|
||||||
/*****************************************************/
|
|
||||||
/* Pass the info to the stencil */
|
|
||||||
/*****************************************************/
|
|
||||||
accelerator_inline bool DecompressionStep(void) const { return true; }
|
|
||||||
|
|
||||||
};
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define DECLARE_PROJ(Projector,Compressor,spProj) \
|
#define DECLARE_PROJ(Projector,Compressor,spProj) \
|
||||||
class Projector { \
|
class Projector { \
|
||||||
public: \
|
public: \
|
||||||
@ -294,11 +404,7 @@ public:
|
|||||||
typedef typename Base::View_type View_type;
|
typedef typename Base::View_type View_type;
|
||||||
typedef typename Base::StencilVector StencilVector;
|
typedef typename Base::StencilVector StencilVector;
|
||||||
|
|
||||||
void ZeroCountersi(void) { }
|
// Vector<int> surface_list;
|
||||||
void Reporti(int calls) { }
|
|
||||||
|
|
||||||
std::vector<int> surface_list;
|
|
||||||
|
|
||||||
WilsonStencil(GridBase *grid,
|
WilsonStencil(GridBase *grid,
|
||||||
int npoints,
|
int npoints,
|
||||||
int checkerboard,
|
int checkerboard,
|
||||||
@ -306,11 +412,11 @@ public:
|
|||||||
const std::vector<int> &distances,Parameters p)
|
const std::vector<int> &distances,Parameters p)
|
||||||
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p)
|
: CartesianStencil<vobj,cobj,Parameters> (grid,npoints,checkerboard,directions,distances,p)
|
||||||
{
|
{
|
||||||
ZeroCountersi();
|
// surface_list.resize(0);
|
||||||
surface_list.resize(0);
|
|
||||||
this->same_node.resize(npoints);
|
this->same_node.resize(npoints);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
void BuildSurfaceList(int Ls,int vol4){
|
void BuildSurfaceList(int Ls,int vol4){
|
||||||
|
|
||||||
// find same node for SHM
|
// find same node for SHM
|
||||||
@ -331,7 +437,8 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
template < class compressor>
|
template < class compressor>
|
||||||
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
|
void HaloExchangeOpt(const Lattice<vobj> &source,compressor &compress)
|
||||||
{
|
{
|
||||||
@ -377,28 +484,29 @@ public:
|
|||||||
|
|
||||||
int dag = compress.dag;
|
int dag = compress.dag;
|
||||||
int face_idx=0;
|
int face_idx=0;
|
||||||
|
#define vet_same_node(a,b) \
|
||||||
|
{ auto tmp = b; }
|
||||||
if ( dag ) {
|
if ( dag ) {
|
||||||
assert(this->same_node[Xp]==this->HaloGatherDir(source,XpCompress,Xp,face_idx));
|
vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XpCompress,Xp,face_idx));
|
||||||
assert(this->same_node[Yp]==this->HaloGatherDir(source,YpCompress,Yp,face_idx));
|
vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YpCompress,Yp,face_idx));
|
||||||
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
|
vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZpCompress,Zp,face_idx));
|
||||||
assert(this->same_node[Tp]==this->HaloGatherDir(source,TpCompress,Tp,face_idx));
|
vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TpCompress,Tp,face_idx));
|
||||||
assert(this->same_node[Xm]==this->HaloGatherDir(source,XmCompress,Xm,face_idx));
|
vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XmCompress,Xm,face_idx));
|
||||||
assert(this->same_node[Ym]==this->HaloGatherDir(source,YmCompress,Ym,face_idx));
|
vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YmCompress,Ym,face_idx));
|
||||||
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
|
vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZmCompress,Zm,face_idx));
|
||||||
assert(this->same_node[Tm]==this->HaloGatherDir(source,TmCompress,Tm,face_idx));
|
vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TmCompress,Tm,face_idx));
|
||||||
} else {
|
} else {
|
||||||
assert(this->same_node[Xp]==this->HaloGatherDir(source,XmCompress,Xp,face_idx));
|
vet_same_node(this->same_node[Xp],this->HaloGatherDir(source,XmCompress,Xp,face_idx));
|
||||||
assert(this->same_node[Yp]==this->HaloGatherDir(source,YmCompress,Yp,face_idx));
|
vet_same_node(this->same_node[Yp],this->HaloGatherDir(source,YmCompress,Yp,face_idx));
|
||||||
assert(this->same_node[Zp]==this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
|
vet_same_node(this->same_node[Zp],this->HaloGatherDir(source,ZmCompress,Zp,face_idx));
|
||||||
assert(this->same_node[Tp]==this->HaloGatherDir(source,TmCompress,Tp,face_idx));
|
vet_same_node(this->same_node[Tp],this->HaloGatherDir(source,TmCompress,Tp,face_idx));
|
||||||
assert(this->same_node[Xm]==this->HaloGatherDir(source,XpCompress,Xm,face_idx));
|
vet_same_node(this->same_node[Xm],this->HaloGatherDir(source,XpCompress,Xm,face_idx));
|
||||||
assert(this->same_node[Ym]==this->HaloGatherDir(source,YpCompress,Ym,face_idx));
|
vet_same_node(this->same_node[Ym],this->HaloGatherDir(source,YpCompress,Ym,face_idx));
|
||||||
assert(this->same_node[Zm]==this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
|
vet_same_node(this->same_node[Zm],this->HaloGatherDir(source,ZpCompress,Zm,face_idx));
|
||||||
assert(this->same_node[Tm]==this->HaloGatherDir(source,TpCompress,Tm,face_idx));
|
vet_same_node(this->same_node[Tm],this->HaloGatherDir(source,TpCompress,Tm,face_idx));
|
||||||
}
|
}
|
||||||
this->face_table_computed=1;
|
this->face_table_computed=1;
|
||||||
assert(this->u_comm_offset==this->_unified_buffer_size);
|
assert(this->u_comm_offset==this->_unified_buffer_size);
|
||||||
accelerator_barrier();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
|
@ -74,20 +74,6 @@ public:
|
|||||||
FermionField _tmp;
|
FermionField _tmp;
|
||||||
FermionField &tmp(void) { return _tmp; }
|
FermionField &tmp(void) { return _tmp; }
|
||||||
|
|
||||||
void Report(void);
|
|
||||||
void ZeroCounters(void);
|
|
||||||
double DhopCalls;
|
|
||||||
double DhopCommTime;
|
|
||||||
double DhopComputeTime;
|
|
||||||
double DhopComputeTime2;
|
|
||||||
double DhopFaceTime;
|
|
||||||
double DhopTotalTime;
|
|
||||||
|
|
||||||
double DerivCalls;
|
|
||||||
double DerivCommTime;
|
|
||||||
double DerivComputeTime;
|
|
||||||
double DerivDhopComputeTime;
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////
|
||||||
// override multiply; cut number routines if pass dagger argument
|
// override multiply; cut number routines if pass dagger argument
|
||||||
// and also make interface more uniformly consistent
|
// and also make interface more uniformly consistent
|
||||||
|
@ -75,19 +75,8 @@ public:
|
|||||||
FermionField _tmp;
|
FermionField _tmp;
|
||||||
FermionField &tmp(void) { return _tmp; }
|
FermionField &tmp(void) { return _tmp; }
|
||||||
|
|
||||||
void Report(void);
|
int Dirichlet;
|
||||||
void ZeroCounters(void);
|
Coordinate Block;
|
||||||
double DhopCalls;
|
|
||||||
double DhopCommTime;
|
|
||||||
double DhopComputeTime;
|
|
||||||
double DhopComputeTime2;
|
|
||||||
double DhopFaceTime;
|
|
||||||
double DhopTotalTime;
|
|
||||||
|
|
||||||
double DerivCalls;
|
|
||||||
double DerivCommTime;
|
|
||||||
double DerivComputeTime;
|
|
||||||
double DerivDhopComputeTime;
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
// Implement the abstract base
|
// Implement the abstract base
|
||||||
@ -173,7 +162,10 @@ public:
|
|||||||
GridCartesian &FourDimGrid,
|
GridCartesian &FourDimGrid,
|
||||||
GridRedBlackCartesian &FourDimRedBlackGrid,
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
||||||
double _M5,const ImplParams &p= ImplParams());
|
double _M5,const ImplParams &p= ImplParams());
|
||||||
|
|
||||||
|
virtual void DirichletBlock(const Coordinate & block)
|
||||||
|
{
|
||||||
|
}
|
||||||
// Constructors
|
// Constructors
|
||||||
/*
|
/*
|
||||||
WilsonFermion5D(int simd,
|
WilsonFermion5D(int simd,
|
||||||
|
@ -37,7 +37,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
|
template <class S, class Representation = FundamentalRepresentation,class Options = CoeffReal >
|
||||||
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
|
class WilsonImpl : public PeriodicGaugeImpl<GaugeImplTypes<S, Representation::Dimension > > {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
static const int Dimension = Representation::Dimension;
|
static const int Dimension = Representation::Dimension;
|
||||||
static const bool isFundamental = Representation::isFundamental;
|
static const bool isFundamental = Representation::isFundamental;
|
||||||
static const bool LsVectorised=false;
|
static const bool LsVectorised=false;
|
||||||
@ -242,19 +242,13 @@ public:
|
|||||||
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
|
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffReal > WilsonImplR; // Real.. whichever prec
|
||||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
|
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffReal > WilsonImplF; // Float
|
||||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
|
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffReal > WilsonImplD; // Double
|
||||||
|
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffReal > WilsonImplD2; // Double
|
||||||
//typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplRL; // Real.. whichever prec
|
|
||||||
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplFH; // Float
|
|
||||||
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffRealHalfComms > WilsonImplDF; // Double
|
|
||||||
|
|
||||||
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
|
typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplex > ZWilsonImplR; // Real.. whichever prec
|
||||||
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
|
typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplex > ZWilsonImplF; // Float
|
||||||
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
|
typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplex > ZWilsonImplD; // Double
|
||||||
|
typedef WilsonImpl<vComplexD2, FundamentalRepresentation, CoeffComplex > ZWilsonImplD2; // Double
|
||||||
|
|
||||||
//typedef WilsonImpl<vComplex, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplRL; // Real.. whichever prec
|
|
||||||
//typedef WilsonImpl<vComplexF, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplFH; // Float
|
|
||||||
//typedef WilsonImpl<vComplexD, FundamentalRepresentation, CoeffComplexHalfComms > ZWilsonImplDF; // Double
|
|
||||||
|
|
||||||
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
|
typedef WilsonImpl<vComplex, AdjointRepresentation, CoeffReal > WilsonAdjImplR; // Real.. whichever prec
|
||||||
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float
|
typedef WilsonImpl<vComplexF, AdjointRepresentation, CoeffReal > WilsonAdjImplF; // Float
|
||||||
typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD; // Double
|
typedef WilsonImpl<vComplexD, AdjointRepresentation, CoeffReal > WilsonAdjImplD; // Double
|
||||||
|
@ -52,13 +52,6 @@ public:
|
|||||||
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
|
typedef AcceleratorVector<int,STENCIL_MAX> StencilVector;
|
||||||
public:
|
public:
|
||||||
|
|
||||||
#ifdef GRID_SYCL
|
|
||||||
#define SYCL_HACK
|
|
||||||
#endif
|
|
||||||
#ifdef SYCL_HACK
|
|
||||||
static void HandDhopSiteSycl(StencilVector st_perm,StencilEntry *st_p, SiteDoubledGaugeField *U,SiteHalfSpinor *buf,
|
|
||||||
int ss,int sU,const SiteSpinor *in, SiteSpinor *out);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
static void DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||||
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
int Ls, int Nsite, const FermionField &in, FermionField &out,
|
||||||
|
@ -152,58 +152,6 @@ void CayleyFermion5D<Impl>::DminusDag(const FermionField &psi, FermionField &chi
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyReport(void)
|
|
||||||
{
|
|
||||||
this->Report();
|
|
||||||
Coordinate latt = GridDefaultLatt();
|
|
||||||
RealD volume = this->Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
|
||||||
RealD NP = this->_FourDimGrid->_Nprocessors;
|
|
||||||
if ( M5Dcalls > 0 ) {
|
|
||||||
std::cout << GridLogMessage << "#### M5D calls report " << std::endl;
|
|
||||||
std::cout << GridLogMessage << "CayleyFermion5D Number of M5D Calls : " << M5Dcalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << M5Dtime / M5Dcalls << " us" << std::endl;
|
|
||||||
|
|
||||||
// Flops = 10.0*(Nc*Ns) *Ls*vol
|
|
||||||
RealD mflops = 10.0*(Nc*Ns)*volume*M5Dcalls/M5Dtime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
|
|
||||||
// Bytes = sizeof(Real) * (Nc*Ns*Nreim) * Ls * vol * (read+write) (/2 for red black counting)
|
|
||||||
// read = 2 ( psi[ss+s+1] and psi[ss+s-1] count as 1 )
|
|
||||||
// write = 1
|
|
||||||
RealD Gbytes = sizeof(Real) * (Nc*Ns*2) * volume * 3 /2. * 1.e-9;
|
|
||||||
std::cout << GridLogMessage << "Average bandwidth (GB/s) : " << Gbytes/M5Dtime*M5Dcalls*1.e6 << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( MooeeInvCalls > 0 ) {
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "#### MooeeInv calls report " << std::endl;
|
|
||||||
std::cout << GridLogMessage << "CayleyFermion5D Number of MooeeInv Calls : " << MooeeInvCalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "CayleyFermion5D ComputeTime/Calls : " << MooeeInvTime / MooeeInvCalls << " us" << std::endl;
|
|
||||||
#ifdef GRID_CUDA
|
|
||||||
RealD mflops = ( -16.*Nc*Ns+this->Ls*(1.+18.*Nc*Ns) )*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
#else
|
|
||||||
// Flops = MADD * Ls *Ls *4dvol * spin/colour/complex
|
|
||||||
RealD mflops = 2.0*24*this->Ls*volume*MooeeInvCalls/MooeeInvTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
template<class Impl> void CayleyFermion5D<Impl>::CayleyZeroCounters(void)
|
|
||||||
{
|
|
||||||
this->ZeroCounters();
|
|
||||||
M5Dflops=0;
|
|
||||||
M5Dcalls=0;
|
|
||||||
M5Dtime=0;
|
|
||||||
MooeeInvFlops=0;
|
|
||||||
MooeeInvCalls=0;
|
|
||||||
MooeeInvTime=0;
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
|
void CayleyFermion5D<Impl>::M5D (const FermionField &psi, FermionField &chi)
|
||||||
{
|
{
|
||||||
@ -646,7 +594,6 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
|
|||||||
assert(mass_plus == mass_minus);
|
assert(mass_plus == mass_minus);
|
||||||
RealD mass = mass_plus;
|
RealD mass = mass_plus;
|
||||||
|
|
||||||
#if (!defined(GRID_HIP))
|
|
||||||
Gamma::Algebra Gmu [] = {
|
Gamma::Algebra Gmu [] = {
|
||||||
Gamma::Algebra::GammaX,
|
Gamma::Algebra::GammaX,
|
||||||
Gamma::Algebra::GammaY,
|
Gamma::Algebra::GammaY,
|
||||||
@ -765,7 +712,7 @@ void CayleyFermion5D<Impl>::ContractConservedCurrent( PropagatorField &q_in_1,
|
|||||||
else q_out += C;
|
else q_out += C;
|
||||||
|
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Impl>
|
template <class Impl>
|
||||||
@ -832,7 +779,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if (!defined(GRID_HIP))
|
|
||||||
int tshift = (mu == Nd-1) ? 1 : 0;
|
int tshift = (mu == Nd-1) ? 1 : 0;
|
||||||
unsigned int LLt = GridDefaultLatt()[Tp];
|
unsigned int LLt = GridDefaultLatt()[Tp];
|
||||||
////////////////////////////////////////////////
|
////////////////////////////////////////////////
|
||||||
@ -952,7 +898,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
|||||||
|
|
||||||
InsertSlice(L_Q, q_out, s , 0);
|
InsertSlice(L_Q, q_out, s , 0);
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
#undef Pp
|
#undef Pp
|
||||||
#undef Pm
|
#undef Pm
|
||||||
@ -960,88 +905,6 @@ void CayleyFermion5D<Impl>::SeqConservedCurrent(PropagatorField &q_in,
|
|||||||
#undef TopRowWithSource
|
#undef TopRowWithSource
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#if 0
|
|
||||||
template<class Impl>
|
|
||||||
void CayleyFermion5D<Impl>::MooeeInternalCompute(int dag, int inv,
|
|
||||||
Vector<iSinglet<Simd> > & Matp,
|
|
||||||
Vector<iSinglet<Simd> > & Matm)
|
|
||||||
{
|
|
||||||
int Ls=this->Ls;
|
|
||||||
|
|
||||||
GridBase *grid = this->FermionRedBlackGrid();
|
|
||||||
int LLs = grid->_rdimensions[0];
|
|
||||||
|
|
||||||
if ( LLs == Ls ) {
|
|
||||||
return; // Not vectorised in 5th direction
|
|
||||||
}
|
|
||||||
|
|
||||||
Eigen::MatrixXcd Pplus = Eigen::MatrixXcd::Zero(Ls,Ls);
|
|
||||||
Eigen::MatrixXcd Pminus = Eigen::MatrixXcd::Zero(Ls,Ls);
|
|
||||||
|
|
||||||
for(int s=0;s<Ls;s++){
|
|
||||||
Pplus(s,s) = bee[s];
|
|
||||||
Pminus(s,s)= bee[s];
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int s=0;s<Ls-1;s++){
|
|
||||||
Pminus(s,s+1) = -cee[s];
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int s=0;s<Ls-1;s++){
|
|
||||||
Pplus(s+1,s) = -cee[s+1];
|
|
||||||
}
|
|
||||||
Pplus (0,Ls-1) = mass*cee[0];
|
|
||||||
Pminus(Ls-1,0) = mass*cee[Ls-1];
|
|
||||||
|
|
||||||
Eigen::MatrixXcd PplusMat ;
|
|
||||||
Eigen::MatrixXcd PminusMat;
|
|
||||||
|
|
||||||
if ( inv ) {
|
|
||||||
PplusMat =Pplus.inverse();
|
|
||||||
PminusMat=Pminus.inverse();
|
|
||||||
} else {
|
|
||||||
PplusMat =Pplus;
|
|
||||||
PminusMat=Pminus;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(dag){
|
|
||||||
PplusMat.adjointInPlace();
|
|
||||||
PminusMat.adjointInPlace();
|
|
||||||
}
|
|
||||||
|
|
||||||
typedef typename SiteHalfSpinor::scalar_type scalar_type;
|
|
||||||
const int Nsimd=Simd::Nsimd();
|
|
||||||
Matp.resize(Ls*LLs);
|
|
||||||
Matm.resize(Ls*LLs);
|
|
||||||
|
|
||||||
for(int s2=0;s2<Ls;s2++){
|
|
||||||
for(int s1=0;s1<LLs;s1++){
|
|
||||||
int istride = LLs;
|
|
||||||
int ostride = 1;
|
|
||||||
Simd Vp;
|
|
||||||
Simd Vm;
|
|
||||||
scalar_type *sp = (scalar_type *)&Vp;
|
|
||||||
scalar_type *sm = (scalar_type *)&Vm;
|
|
||||||
for(int l=0;l<Nsimd;l++){
|
|
||||||
if ( switcheroo<Coeff_t>::iscomplex() ) {
|
|
||||||
sp[l] = PplusMat (l*istride+s1*ostride,s2);
|
|
||||||
sm[l] = PminusMat(l*istride+s1*ostride,s2);
|
|
||||||
} else {
|
|
||||||
// if real
|
|
||||||
scalar_type tmp;
|
|
||||||
tmp = PplusMat (l*istride+s1*ostride,s2);
|
|
||||||
sp[l] = scalar_type(tmp.real(),tmp.real());
|
|
||||||
tmp = PminusMat(l*istride+s1*ostride,s2);
|
|
||||||
sm[l] = scalar_type(tmp.real(),tmp.real());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Matp[LLs*s2+s1] = Vp;
|
|
||||||
Matm[LLs*s2+s1] = Vm;
|
|
||||||
}}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|
||||||
|
@ -63,23 +63,18 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
|||||||
|
|
||||||
// 10 = 3 complex mult + 2 complex add
|
// 10 = 3 complex mult + 2 complex add
|
||||||
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
|
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
|
||||||
M5Dcalls++;
|
uint64_t nloop = grid->oSites();
|
||||||
M5Dtime-=usecond();
|
|
||||||
|
|
||||||
uint64_t nloop = grid->oSites()/Ls;
|
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss= sss*Ls;
|
uint64_t s = sss%Ls;
|
||||||
|
uint64_t ss= sss-s;
|
||||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||||
spinor tmp1, tmp2;
|
spinor tmp1, tmp2;
|
||||||
for(int s=0;s<Ls;s++){
|
uint64_t idx_u = ss+((s+1)%Ls);
|
||||||
uint64_t idx_u = ss+((s+1)%Ls);
|
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
spProj5m(tmp1,psi(idx_u));
|
||||||
spProj5m(tmp1,psi(idx_u));
|
spProj5p(tmp2,psi(idx_l));
|
||||||
spProj5p(tmp2,psi(idx_l));
|
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
||||||
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
|
||||||
}
|
|
||||||
});
|
});
|
||||||
M5Dtime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -105,23 +100,18 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
|||||||
int Ls=this->Ls;
|
int Ls=this->Ls;
|
||||||
|
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
M5Dcalls++;
|
uint64_t nloop = grid->oSites();
|
||||||
M5Dtime-=usecond();
|
|
||||||
|
|
||||||
uint64_t nloop = grid->oSites()/Ls;
|
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t s = sss%Ls;
|
||||||
|
uint64_t ss= sss-s;
|
||||||
typedef decltype(coalescedRead(psi[0])) spinor;
|
typedef decltype(coalescedRead(psi[0])) spinor;
|
||||||
spinor tmp1,tmp2;
|
spinor tmp1,tmp2;
|
||||||
for(int s=0;s<Ls;s++){
|
uint64_t idx_u = ss+((s+1)%Ls);
|
||||||
uint64_t idx_u = ss+((s+1)%Ls);
|
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
||||||
uint64_t idx_l = ss+((s+Ls-1)%Ls);
|
spProj5p(tmp1,psi(idx_u));
|
||||||
spProj5p(tmp1,psi(idx_u));
|
spProj5m(tmp2,psi(idx_l));
|
||||||
spProj5m(tmp2,psi(idx_l));
|
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
||||||
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
|
|
||||||
}
|
|
||||||
});
|
});
|
||||||
M5Dtime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -142,8 +132,6 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
|
|||||||
auto pleem = & leem[0];
|
auto pleem = & leem[0];
|
||||||
auto pueem = & ueem[0];
|
auto pueem = & ueem[0];
|
||||||
|
|
||||||
MooeeInvCalls++;
|
|
||||||
MooeeInvTime-=usecond();
|
|
||||||
uint64_t nloop = grid->oSites()/Ls;
|
uint64_t nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -180,8 +168,6 @@ CayleyFermion5D<Impl>::MooeeInv (const FermionField &psi_i, FermionField &chi
|
|||||||
coalescedWrite(chi[ss+s],res);
|
coalescedWrite(chi[ss+s],res);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
MooeeInvTime+=usecond();
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -204,10 +190,6 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
|
|||||||
|
|
||||||
assert(psi.Checkerboard() == psi.Checkerboard());
|
assert(psi.Checkerboard() == psi.Checkerboard());
|
||||||
|
|
||||||
MooeeInvCalls++;
|
|
||||||
MooeeInvTime-=usecond();
|
|
||||||
|
|
||||||
|
|
||||||
uint64_t nloop = grid->oSites()/Ls;
|
uint64_t nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -244,7 +226,6 @@ CayleyFermion5D<Impl>::MooeeInvDag (const FermionField &psi_i, FermionField &chi
|
|||||||
coalescedWrite(chi[ss+s],res);
|
coalescedWrite(chi[ss+s],res);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
MooeeInvTime+=usecond();
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -94,10 +94,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
|||||||
d_p[ss] = diag[s];
|
d_p[ss] = diag[s];
|
||||||
}}
|
}}
|
||||||
|
|
||||||
|
|
||||||
M5Dcalls++;
|
|
||||||
M5Dtime-=usecond();
|
|
||||||
|
|
||||||
assert(Nc==3);
|
assert(Nc==3);
|
||||||
|
|
||||||
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
|
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
|
||||||
@ -198,7 +194,6 @@ CayleyFermion5D<Impl>::M5D(const FermionField &psi_i,
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
});
|
});
|
||||||
M5Dtime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -242,8 +237,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
|||||||
d_p[ss] = diag[s];
|
d_p[ss] = diag[s];
|
||||||
}}
|
}}
|
||||||
|
|
||||||
M5Dcalls++;
|
|
||||||
M5Dtime-=usecond();
|
|
||||||
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
|
thread_loop( (int ss=0;ss<grid->oSites();ss+=LLs),{ // adds LLs
|
||||||
#if 0
|
#if 0
|
||||||
alignas(64) SiteHalfSpinor hp;
|
alignas(64) SiteHalfSpinor hp;
|
||||||
@ -339,7 +332,6 @@ CayleyFermion5D<Impl>::M5Ddag(const FermionField &psi_i,
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
});
|
});
|
||||||
M5Dtime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -813,9 +805,6 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
|
|||||||
}
|
}
|
||||||
assert(_Matp->size()==Ls*LLs);
|
assert(_Matp->size()==Ls*LLs);
|
||||||
|
|
||||||
MooeeInvCalls++;
|
|
||||||
MooeeInvTime-=usecond();
|
|
||||||
|
|
||||||
if ( switcheroo<Coeff_t>::iscomplex() ) {
|
if ( switcheroo<Coeff_t>::iscomplex() ) {
|
||||||
thread_loop( (auto site=0;site<vol;site++),{
|
thread_loop( (auto site=0;site<vol;site++),{
|
||||||
MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
|
MooeeInternalZAsm(psi,chi,LLs,site,*_Matp,*_Matm);
|
||||||
@ -825,7 +814,7 @@ CayleyFermion5D<Impl>::MooeeInternal(const FermionField &psi, FermionField &chi,
|
|||||||
MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
|
MooeeInternalAsm(psi,chi,LLs,site,*_Matp,*_Matm);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
MooeeInvTime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
@ -54,8 +54,6 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
|
|||||||
auto pupper = &upper[0];
|
auto pupper = &upper[0];
|
||||||
auto plower = &lower[0];
|
auto plower = &lower[0];
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
this->M5Dcalls++;
|
|
||||||
this->M5Dtime -= usecond();
|
|
||||||
|
|
||||||
auto nloop=grid->oSites()/Ls;
|
auto nloop=grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
@ -71,7 +69,6 @@ void DomainWallEOFAFermion<Impl>::M5D(const FermionField& psi_i, const FermionFi
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->M5Dtime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -91,8 +88,6 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
|
|||||||
auto plower = &lower[0];
|
auto plower = &lower[0];
|
||||||
|
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
this->M5Dcalls++;
|
|
||||||
this->M5Dtime -= usecond();
|
|
||||||
|
|
||||||
auto nloop=grid->oSites()/Ls;
|
auto nloop=grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
@ -108,7 +103,6 @@ void DomainWallEOFAFermion<Impl>::M5Ddag(const FermionField& psi_i, const Fermio
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->M5Dtime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -127,8 +121,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
|
|||||||
auto pleem = & this->leem[0];
|
auto pleem = & this->leem[0];
|
||||||
auto pueem = & this->ueem[0];
|
auto pueem = & this->ueem[0];
|
||||||
|
|
||||||
this->MooeeInvCalls++;
|
|
||||||
this->MooeeInvTime -= usecond();
|
|
||||||
uint64_t nloop=grid->oSites()/Ls;
|
uint64_t nloop=grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -164,7 +156,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInv(const FermionField& psi_i, FermionFie
|
|||||||
coalescedWrite(chi[ss+s],res);
|
coalescedWrite(chi[ss+s],res);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
this->MooeeInvTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -185,8 +176,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
|
|||||||
|
|
||||||
assert(psi.Checkerboard() == psi.Checkerboard());
|
assert(psi.Checkerboard() == psi.Checkerboard());
|
||||||
|
|
||||||
this->MooeeInvCalls++;
|
|
||||||
this->MooeeInvTime -= usecond();
|
|
||||||
auto nloop = grid->oSites()/Ls;
|
auto nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -223,7 +212,6 @@ void DomainWallEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi_i, Fermion
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->MooeeInvTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
@ -298,45 +298,33 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl &
|
|||||||
int LLs = in.Grid()->_rdimensions[0];
|
int LLs = in.Grid()->_rdimensions[0];
|
||||||
int len = U.Grid()->oSites();
|
int len = U.Grid()->oSites();
|
||||||
|
|
||||||
DhopFaceTime-=usecond();
|
|
||||||
st.Prepare();
|
st.Prepare();
|
||||||
st.HaloGather(in,compressor);
|
st.HaloGather(in,compressor);
|
||||||
DhopFaceTime+=usecond();
|
|
||||||
|
|
||||||
DhopCommTime -=usecond();
|
|
||||||
std::vector<std::vector<CommsRequest_t> > requests;
|
std::vector<std::vector<CommsRequest_t> > requests;
|
||||||
st.CommunicateBegin(requests);
|
st.CommunicateBegin(requests);
|
||||||
|
|
||||||
// st.HaloExchangeOptGather(in,compressor); // Wilson compressor
|
// st.HaloExchangeOptGather(in,compressor); // Wilson compressor
|
||||||
DhopFaceTime-=usecond();
|
|
||||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||||
DhopFaceTime+=usecond();
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Remove explicit thread mapping introduced for OPA reasons.
|
// Remove explicit thread mapping introduced for OPA reasons.
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
DhopComputeTime-=usecond();
|
|
||||||
{
|
{
|
||||||
int interior=1;
|
int interior=1;
|
||||||
int exterior=0;
|
int exterior=0;
|
||||||
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime+=usecond();
|
|
||||||
|
|
||||||
DhopFaceTime-=usecond();
|
|
||||||
st.CommsMerge(compressor);
|
st.CommsMerge(compressor);
|
||||||
DhopFaceTime+=usecond();
|
|
||||||
|
|
||||||
st.CommunicateComplete(requests);
|
st.CommunicateComplete(requests);
|
||||||
DhopCommTime +=usecond();
|
|
||||||
|
|
||||||
DhopComputeTime2-=usecond();
|
|
||||||
{
|
{
|
||||||
int interior=0;
|
int interior=0;
|
||||||
int exterior=1;
|
int exterior=1;
|
||||||
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime2+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -347,22 +335,14 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
|
|||||||
Compressor compressor;
|
Compressor compressor;
|
||||||
int LLs = in.Grid()->_rdimensions[0];
|
int LLs = in.Grid()->_rdimensions[0];
|
||||||
|
|
||||||
//double t1=usecond();
|
|
||||||
DhopTotalTime -= usecond();
|
|
||||||
DhopCommTime -= usecond();
|
|
||||||
st.HaloExchange(in,compressor);
|
st.HaloExchange(in,compressor);
|
||||||
DhopCommTime += usecond();
|
|
||||||
|
|
||||||
DhopComputeTime -= usecond();
|
|
||||||
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
|
// Dhop takes the 4d grid from U, and makes a 5d index for fermion
|
||||||
{
|
{
|
||||||
int interior=1;
|
int interior=1;
|
||||||
int exterior=1;
|
int exterior=1;
|
||||||
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime += usecond();
|
|
||||||
DhopTotalTime += usecond();
|
|
||||||
|
|
||||||
}
|
}
|
||||||
/*CHANGE END*/
|
/*CHANGE END*/
|
||||||
|
|
||||||
@ -371,7 +351,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st,
|
|||||||
template<class Impl>
|
template<class Impl>
|
||||||
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
|
void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=1;
|
|
||||||
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
||||||
conformable(in.Grid(),out.Grid()); // drops the cb check
|
conformable(in.Grid(),out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -383,7 +362,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopOE(const FermionField &in, FermionFie
|
|||||||
template<class Impl>
|
template<class Impl>
|
||||||
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=1;
|
|
||||||
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
||||||
conformable(in.Grid(),out.Grid()); // drops the cb check
|
conformable(in.Grid(),out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -395,7 +373,6 @@ void ImprovedStaggeredFermion5D<Impl>::DhopEO(const FermionField &in, FermionFie
|
|||||||
template<class Impl>
|
template<class Impl>
|
||||||
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=2;
|
|
||||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||||
conformable(in.Grid(),out.Grid());
|
conformable(in.Grid(),out.Grid());
|
||||||
|
|
||||||
@ -404,58 +381,6 @@ void ImprovedStaggeredFermion5D<Impl>::Dhop(const FermionField &in, FermionField
|
|||||||
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
|
DhopInternal(Stencil,Lebesgue,Umu,UUUmu,in,out,dag);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
|
||||||
void ImprovedStaggeredFermion5D<Impl>::Report(void)
|
|
||||||
{
|
|
||||||
Coordinate latt = GridDefaultLatt();
|
|
||||||
RealD volume = Ls; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
|
||||||
RealD NP = _FourDimGrid->_Nprocessors;
|
|
||||||
RealD NN = _FourDimGrid->NodeCount();
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Number of DhopEO Calls : "
|
|
||||||
<< DhopCalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D TotalTime /Calls : "
|
|
||||||
<< DhopTotalTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D CommTime /Calls : "
|
|
||||||
<< DhopCommTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D ComputeTime/Calls : "
|
|
||||||
<< DhopComputeTime / DhopCalls << " us" << std::endl;
|
|
||||||
|
|
||||||
// Average the compute time
|
|
||||||
_FourDimGrid->GlobalSum(DhopComputeTime);
|
|
||||||
DhopComputeTime/=NP;
|
|
||||||
|
|
||||||
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
|
|
||||||
|
|
||||||
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D Stencil" <<std::endl; Stencil.Report();
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilEven"<<std::endl; StencilEven.Report();
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
|
|
||||||
}
|
|
||||||
template<class Impl>
|
|
||||||
void ImprovedStaggeredFermion5D<Impl>::ZeroCounters(void)
|
|
||||||
{
|
|
||||||
DhopCalls = 0;
|
|
||||||
DhopTotalTime = 0;
|
|
||||||
DhopCommTime = 0;
|
|
||||||
DhopComputeTime = 0;
|
|
||||||
DhopFaceTime = 0;
|
|
||||||
|
|
||||||
|
|
||||||
Stencil.ZeroCounters();
|
|
||||||
StencilEven.ZeroCounters();
|
|
||||||
StencilOdd.ZeroCounters();
|
|
||||||
}
|
|
||||||
|
|
||||||
/////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////
|
||||||
// Implement the general interface. Here we use SAME mass on all slices
|
// Implement the general interface. Here we use SAME mass on all slices
|
||||||
/////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////
|
||||||
|
@ -334,7 +334,6 @@ void ImprovedStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionF
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
|
void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=2;
|
|
||||||
conformable(in.Grid(), _grid); // verifies full grid
|
conformable(in.Grid(), _grid); // verifies full grid
|
||||||
conformable(in.Grid(), out.Grid());
|
conformable(in.Grid(), out.Grid());
|
||||||
|
|
||||||
@ -346,7 +345,6 @@ void ImprovedStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
|
void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=1;
|
|
||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -359,7 +357,6 @@ void ImprovedStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
|
void ImprovedStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=1;
|
|
||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -418,47 +415,33 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st
|
|||||||
Compressor compressor;
|
Compressor compressor;
|
||||||
int len = U.Grid()->oSites();
|
int len = U.Grid()->oSites();
|
||||||
|
|
||||||
DhopTotalTime -= usecond();
|
|
||||||
|
|
||||||
DhopFaceTime -= usecond();
|
|
||||||
st.Prepare();
|
st.Prepare();
|
||||||
st.HaloGather(in,compressor);
|
st.HaloGather(in,compressor);
|
||||||
DhopFaceTime += usecond();
|
|
||||||
|
|
||||||
DhopCommTime -=usecond();
|
|
||||||
std::vector<std::vector<CommsRequest_t> > requests;
|
std::vector<std::vector<CommsRequest_t> > requests;
|
||||||
st.CommunicateBegin(requests);
|
st.CommunicateBegin(requests);
|
||||||
|
|
||||||
DhopFaceTime-=usecond();
|
|
||||||
st.CommsMergeSHM(compressor);
|
st.CommsMergeSHM(compressor);
|
||||||
DhopFaceTime+= usecond();
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Removed explicit thread comms
|
// Removed explicit thread comms
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
DhopComputeTime -= usecond();
|
|
||||||
{
|
{
|
||||||
int interior=1;
|
int interior=1;
|
||||||
int exterior=0;
|
int exterior=0;
|
||||||
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime += usecond();
|
|
||||||
|
|
||||||
st.CommunicateComplete(requests);
|
st.CommunicateComplete(requests);
|
||||||
DhopCommTime +=usecond();
|
|
||||||
|
|
||||||
// First to enter, last to leave timing
|
// First to enter, last to leave timing
|
||||||
DhopFaceTime -= usecond();
|
|
||||||
st.CommsMerge(compressor);
|
st.CommsMerge(compressor);
|
||||||
DhopFaceTime -= usecond();
|
|
||||||
|
|
||||||
DhopComputeTime2 -= usecond();
|
|
||||||
{
|
{
|
||||||
int interior=0;
|
int interior=0;
|
||||||
int exterior=1;
|
int exterior=1;
|
||||||
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime2 += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -471,78 +454,16 @@ void ImprovedStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Le
|
|||||||
{
|
{
|
||||||
assert((dag == DaggerNo) || (dag == DaggerYes));
|
assert((dag == DaggerNo) || (dag == DaggerYes));
|
||||||
|
|
||||||
DhopTotalTime -= usecond();
|
|
||||||
|
|
||||||
DhopCommTime -= usecond();
|
|
||||||
Compressor compressor;
|
Compressor compressor;
|
||||||
st.HaloExchange(in, compressor);
|
st.HaloExchange(in, compressor);
|
||||||
DhopCommTime += usecond();
|
|
||||||
|
|
||||||
DhopComputeTime -= usecond();
|
|
||||||
{
|
{
|
||||||
int interior=1;
|
int interior=1;
|
||||||
int exterior=1;
|
int exterior=1;
|
||||||
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
Kernels::DhopImproved(st,lo,U,UUU,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime += usecond();
|
|
||||||
DhopTotalTime += usecond();
|
|
||||||
};
|
};
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
// Reporting
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
template<class Impl>
|
|
||||||
void ImprovedStaggeredFermion<Impl>::Report(void)
|
|
||||||
{
|
|
||||||
Coordinate latt = _grid->GlobalDimensions();
|
|
||||||
RealD volume = 1; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
|
||||||
RealD NP = _grid->_Nprocessors;
|
|
||||||
RealD NN = _grid->NodeCount();
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion Number of DhopEO Calls : "
|
|
||||||
<< DhopCalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion TotalTime /Calls : "
|
|
||||||
<< DhopTotalTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion CommTime /Calls : "
|
|
||||||
<< DhopCommTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion ComputeTime/Calls : "
|
|
||||||
<< DhopComputeTime / DhopCalls << " us" << std::endl;
|
|
||||||
|
|
||||||
// Average the compute time
|
|
||||||
_grid->GlobalSum(DhopComputeTime);
|
|
||||||
DhopComputeTime/=NP;
|
|
||||||
|
|
||||||
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
|
|
||||||
|
|
||||||
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion Stencil" <<std::endl; Stencil.Report();
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilEven"<<std::endl; StencilEven.Report();
|
|
||||||
std::cout << GridLogMessage << "ImprovedStaggeredFermion StencilOdd" <<std::endl; StencilOdd.Report();
|
|
||||||
}
|
|
||||||
template<class Impl>
|
|
||||||
void ImprovedStaggeredFermion<Impl>::ZeroCounters(void)
|
|
||||||
{
|
|
||||||
DhopCalls = 0;
|
|
||||||
DhopTotalTime = 0;
|
|
||||||
DhopCommTime = 0;
|
|
||||||
DhopComputeTime = 0;
|
|
||||||
DhopFaceTime = 0;
|
|
||||||
|
|
||||||
Stencil.ZeroCounters();
|
|
||||||
StencilEven.ZeroCounters();
|
|
||||||
StencilOdd.ZeroCounters();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
// Conserved current - not yet implemented.
|
// Conserved current - not yet implemented.
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
|
@ -55,9 +55,6 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
|
|||||||
auto plower = &lower[0];
|
auto plower = &lower[0];
|
||||||
|
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
this->M5Dcalls++;
|
|
||||||
this->M5Dtime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss = sss*Ls;
|
uint64_t ss = sss*Ls;
|
||||||
@ -73,7 +70,6 @@ void MobiusEOFAFermion<Impl>::M5D(const FermionField &psi_i, const FermionField
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->M5Dtime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -99,9 +95,6 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
|
|||||||
auto pshift_coeffs = &shift_coeffs[0];
|
auto pshift_coeffs = &shift_coeffs[0];
|
||||||
|
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
this->M5Dcalls++;
|
|
||||||
this->M5Dtime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss = sss*Ls;
|
uint64_t ss = sss*Ls;
|
||||||
@ -122,7 +115,6 @@ void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField &psi_i, const Fermion
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->M5Dtime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -143,9 +135,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
|
|||||||
auto plower = &lower[0];
|
auto plower = &lower[0];
|
||||||
|
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
this->M5Dcalls++;
|
|
||||||
this->M5Dtime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(), {
|
accelerator_for(sss,nloop,Simd::Nsimd(), {
|
||||||
uint64_t ss = sss*Ls;
|
uint64_t ss = sss*Ls;
|
||||||
@ -161,8 +150,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField &psi_i, const FermionFie
|
|||||||
coalescedWrite(chi[ss+s], pdiag[s]*phi(ss+s) + pupper[s]*tmp1 + plower[s]*tmp2);
|
coalescedWrite(chi[ss+s], pdiag[s]*phi(ss+s) + pupper[s]*tmp1 + plower[s]*tmp2);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->M5Dtime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -186,9 +173,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
|
|||||||
auto pshift_coeffs = &shift_coeffs[0];
|
auto pshift_coeffs = &shift_coeffs[0];
|
||||||
|
|
||||||
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
// Flops = 6.0*(Nc*Ns) *Ls*vol
|
||||||
this->M5Dcalls++;
|
|
||||||
this->M5Dtime -= usecond();
|
|
||||||
|
|
||||||
auto pm = this->pm;
|
auto pm = this->pm;
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
@ -217,7 +201,6 @@ void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField &psi_i, const Ferm
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->M5Dtime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -237,9 +220,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
|
|||||||
|
|
||||||
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
|
if(this->shift != 0.0){ MooeeInv_shift(psi_i,chi_i); return; }
|
||||||
|
|
||||||
this->MooeeInvCalls++;
|
|
||||||
this->MooeeInvTime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -277,7 +257,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField &psi_i, FermionField &
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->MooeeInvTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -297,8 +276,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
|
|||||||
auto pueem= & this->ueem[0];
|
auto pueem= & this->ueem[0];
|
||||||
auto pMooeeInv_shift_lc = &MooeeInv_shift_lc[0];
|
auto pMooeeInv_shift_lc = &MooeeInv_shift_lc[0];
|
||||||
auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
|
auto pMooeeInv_shift_norm = &MooeeInv_shift_norm[0];
|
||||||
this->MooeeInvCalls++;
|
|
||||||
this->MooeeInvTime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
@ -343,7 +320,6 @@ void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField &psi_i, FermionF
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->MooeeInvTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -363,9 +339,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
|
|||||||
auto pleem= & this->leem[0];
|
auto pleem= & this->leem[0];
|
||||||
auto pueem= & this->ueem[0];
|
auto pueem= & this->ueem[0];
|
||||||
|
|
||||||
this->MooeeInvCalls++;
|
|
||||||
this->MooeeInvTime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -402,7 +375,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField &psi_i, FermionFiel
|
|||||||
coalescedWrite(chi[ss+s],res);
|
coalescedWrite(chi[ss+s],res);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
this->MooeeInvTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -423,9 +395,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
|
|||||||
auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
|
auto pMooeeInvDag_shift_lc = &MooeeInvDag_shift_lc[0];
|
||||||
auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
|
auto pMooeeInvDag_shift_norm = &MooeeInvDag_shift_norm[0];
|
||||||
|
|
||||||
this->MooeeInvCalls++;
|
|
||||||
this->MooeeInvTime -= usecond();
|
|
||||||
|
|
||||||
int nloop = grid->oSites()/Ls;
|
int nloop = grid->oSites()/Ls;
|
||||||
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
accelerator_for(sss,nloop,Simd::Nsimd(),{
|
||||||
uint64_t ss=sss*Ls;
|
uint64_t ss=sss*Ls;
|
||||||
@ -469,7 +438,6 @@ void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField &psi_i, Fermi
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
this->MooeeInvTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
@ -263,7 +263,6 @@ void NaiveStaggeredFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionFiel
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
|
void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=2;
|
|
||||||
conformable(in.Grid(), _grid); // verifies full grid
|
conformable(in.Grid(), _grid); // verifies full grid
|
||||||
conformable(in.Grid(), out.Grid());
|
conformable(in.Grid(), out.Grid());
|
||||||
|
|
||||||
@ -275,7 +274,6 @@ void NaiveStaggeredFermion<Impl>::Dhop(const FermionField &in, FermionField &out
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
|
void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=1;
|
|
||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -288,7 +286,6 @@ void NaiveStaggeredFermion<Impl>::DhopOE(const FermionField &in, FermionField &o
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
|
void NaiveStaggeredFermion<Impl>::DhopEO(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=1;
|
|
||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -345,47 +342,33 @@ void NaiveStaggeredFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, L
|
|||||||
Compressor compressor;
|
Compressor compressor;
|
||||||
int len = U.Grid()->oSites();
|
int len = U.Grid()->oSites();
|
||||||
|
|
||||||
DhopTotalTime -= usecond();
|
|
||||||
|
|
||||||
DhopFaceTime -= usecond();
|
|
||||||
st.Prepare();
|
st.Prepare();
|
||||||
st.HaloGather(in,compressor);
|
st.HaloGather(in,compressor);
|
||||||
DhopFaceTime += usecond();
|
|
||||||
|
|
||||||
DhopCommTime -=usecond();
|
|
||||||
std::vector<std::vector<CommsRequest_t> > requests;
|
std::vector<std::vector<CommsRequest_t> > requests;
|
||||||
st.CommunicateBegin(requests);
|
st.CommunicateBegin(requests);
|
||||||
|
|
||||||
DhopFaceTime-=usecond();
|
|
||||||
st.CommsMergeSHM(compressor);
|
st.CommsMergeSHM(compressor);
|
||||||
DhopFaceTime+= usecond();
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
// Removed explicit thread comms
|
// Removed explicit thread comms
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
DhopComputeTime -= usecond();
|
|
||||||
{
|
{
|
||||||
int interior=1;
|
int interior=1;
|
||||||
int exterior=0;
|
int exterior=0;
|
||||||
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
|
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime += usecond();
|
|
||||||
|
|
||||||
st.CommunicateComplete(requests);
|
st.CommunicateComplete(requests);
|
||||||
DhopCommTime +=usecond();
|
|
||||||
|
|
||||||
// First to enter, last to leave timing
|
// First to enter, last to leave timing
|
||||||
DhopFaceTime -= usecond();
|
|
||||||
st.CommsMerge(compressor);
|
st.CommsMerge(compressor);
|
||||||
DhopFaceTime -= usecond();
|
|
||||||
|
|
||||||
DhopComputeTime2 -= usecond();
|
|
||||||
{
|
{
|
||||||
int interior=0;
|
int interior=0;
|
||||||
int exterior=1;
|
int exterior=1;
|
||||||
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
|
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime2 += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Impl>
|
template <class Impl>
|
||||||
@ -396,78 +379,16 @@ void NaiveStaggeredFermion<Impl>::DhopInternalSerialComms(StencilImpl &st, Lebes
|
|||||||
{
|
{
|
||||||
assert((dag == DaggerNo) || (dag == DaggerYes));
|
assert((dag == DaggerNo) || (dag == DaggerYes));
|
||||||
|
|
||||||
DhopTotalTime -= usecond();
|
|
||||||
|
|
||||||
DhopCommTime -= usecond();
|
|
||||||
Compressor compressor;
|
Compressor compressor;
|
||||||
st.HaloExchange(in, compressor);
|
st.HaloExchange(in, compressor);
|
||||||
DhopCommTime += usecond();
|
|
||||||
|
|
||||||
DhopComputeTime -= usecond();
|
|
||||||
{
|
{
|
||||||
int interior=1;
|
int interior=1;
|
||||||
int exterior=1;
|
int exterior=1;
|
||||||
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
|
Kernels::DhopNaive(st,lo,U,in,out,dag,interior,exterior);
|
||||||
}
|
}
|
||||||
DhopComputeTime += usecond();
|
|
||||||
DhopTotalTime += usecond();
|
|
||||||
};
|
};
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
// Reporting
|
|
||||||
////////////////////////////////////////////////////////////////
|
|
||||||
template<class Impl>
|
|
||||||
void NaiveStaggeredFermion<Impl>::Report(void)
|
|
||||||
{
|
|
||||||
Coordinate latt = _grid->GlobalDimensions();
|
|
||||||
RealD volume = 1; for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
|
||||||
RealD NP = _grid->_Nprocessors;
|
|
||||||
RealD NN = _grid->NodeCount();
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion Number of DhopEO Calls : "
|
|
||||||
<< DhopCalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion TotalTime /Calls : "
|
|
||||||
<< DhopTotalTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion CommTime /Calls : "
|
|
||||||
<< DhopCommTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion ComputeTime/Calls : "
|
|
||||||
<< DhopComputeTime / DhopCalls << " us" << std::endl;
|
|
||||||
|
|
||||||
// Average the compute time
|
|
||||||
_grid->GlobalSum(DhopComputeTime);
|
|
||||||
DhopComputeTime/=NP;
|
|
||||||
|
|
||||||
RealD mflops = 1154*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
|
|
||||||
|
|
||||||
RealD Fullmflops = 1154*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
|
|
||||||
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion Stencil" <<std::endl; Stencil.Report();
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion StencilEven"<<std::endl; StencilEven.Report();
|
|
||||||
std::cout << GridLogMessage << "NaiveStaggeredFermion StencilOdd" <<std::endl; StencilOdd.Report();
|
|
||||||
}
|
|
||||||
template<class Impl>
|
|
||||||
void NaiveStaggeredFermion<Impl>::ZeroCounters(void)
|
|
||||||
{
|
|
||||||
DhopCalls = 0;
|
|
||||||
DhopTotalTime = 0;
|
|
||||||
DhopCommTime = 0;
|
|
||||||
DhopComputeTime = 0;
|
|
||||||
DhopFaceTime = 0;
|
|
||||||
|
|
||||||
Stencil.ZeroCounters();
|
|
||||||
StencilEven.ZeroCounters();
|
|
||||||
StencilOdd.ZeroCounters();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
// Conserved current - not yet implemented.
|
// Conserved current - not yet implemented.
|
||||||
////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////
|
||||||
|
@ -60,8 +60,13 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
|||||||
UmuOdd (_FourDimRedBlackGrid),
|
UmuOdd (_FourDimRedBlackGrid),
|
||||||
Lebesgue(_FourDimGrid),
|
Lebesgue(_FourDimGrid),
|
||||||
LebesgueEvenOdd(_FourDimRedBlackGrid),
|
LebesgueEvenOdd(_FourDimRedBlackGrid),
|
||||||
_tmp(&FiveDimRedBlackGrid)
|
_tmp(&FiveDimRedBlackGrid),
|
||||||
|
Dirichlet(0)
|
||||||
{
|
{
|
||||||
|
Stencil.lo = &Lebesgue;
|
||||||
|
StencilEven.lo = &LebesgueEvenOdd;
|
||||||
|
StencilOdd.lo = &LebesgueEvenOdd;
|
||||||
|
|
||||||
// some assertions
|
// some assertions
|
||||||
assert(FiveDimGrid._ndimension==5);
|
assert(FiveDimGrid._ndimension==5);
|
||||||
assert(FourDimGrid._ndimension==4);
|
assert(FourDimGrid._ndimension==4);
|
||||||
@ -91,6 +96,19 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
|||||||
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
|
assert(FourDimRedBlackGrid._simd_layout[d] ==FourDimGrid._simd_layout[d]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if ( p.dirichlet.size() == Nd+1) {
|
||||||
|
Coordinate block = p.dirichlet;
|
||||||
|
if ( block[0] || block[1] || block[2] || block[3] || block[4] ){
|
||||||
|
Dirichlet = 1;
|
||||||
|
std::cout << GridLogMessage << " WilsonFermion: non-trivial Dirichlet condition "<< block << std::endl;
|
||||||
|
std::cout << GridLogMessage << " WilsonFermion: partial Dirichlet "<< p.partialDirichlet << std::endl;
|
||||||
|
Block = block;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
Coordinate block(Nd+1,0);
|
||||||
|
Block = block;
|
||||||
|
}
|
||||||
|
|
||||||
if (Impl::LsVectorised) {
|
if (Impl::LsVectorised) {
|
||||||
|
|
||||||
int nsimd = Simd::Nsimd();
|
int nsimd = Simd::Nsimd();
|
||||||
@ -125,99 +143,38 @@ WilsonFermion5D<Impl>::WilsonFermion5D(GaugeField &_Umu,
|
|||||||
StencilEven.BuildSurfaceList(LLs,vol4);
|
StencilEven.BuildSurfaceList(LLs,vol4);
|
||||||
StencilOdd.BuildSurfaceList(LLs,vol4);
|
StencilOdd.BuildSurfaceList(LLs,vol4);
|
||||||
|
|
||||||
// std::cout << GridLogMessage << " SurfaceLists "<< Stencil.surface_list.size()
|
|
||||||
// <<" " << StencilEven.surface_list.size()<<std::endl;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
|
||||||
void WilsonFermion5D<Impl>::Report(void)
|
|
||||||
{
|
|
||||||
RealD NP = _FourDimGrid->_Nprocessors;
|
|
||||||
RealD NN = _FourDimGrid->NodeCount();
|
|
||||||
RealD volume = Ls;
|
|
||||||
Coordinate latt = _FourDimGrid->GlobalDimensions();
|
|
||||||
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
|
||||||
|
|
||||||
if ( DhopCalls > 0 ) {
|
|
||||||
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D Number of DhopEO Calls : " << DhopCalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
|
|
||||||
|
|
||||||
// Average the compute time
|
|
||||||
_FourDimGrid->GlobalSum(DhopComputeTime);
|
|
||||||
DhopComputeTime/=NP;
|
|
||||||
RealD mflops = 1344*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
|
|
||||||
|
|
||||||
RealD Fullmflops = 1344*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( DerivCalls > 0 ) {
|
|
||||||
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D Number of Deriv Calls : " <<DerivCalls <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
|
|
||||||
|
|
||||||
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NP << std::endl;
|
|
||||||
|
|
||||||
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NP << std::endl; }
|
|
||||||
|
|
||||||
if (DerivCalls > 0 || DhopCalls > 0){
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D Stencil" <<std::endl; Stencil.Report();
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D StencilEven"<<std::endl; StencilEven.Report();
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd" <<std::endl; StencilOdd.Report();
|
|
||||||
}
|
|
||||||
if ( DhopCalls > 0){
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion5D StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Impl>
|
|
||||||
void WilsonFermion5D<Impl>::ZeroCounters(void) {
|
|
||||||
DhopCalls = 0;
|
|
||||||
DhopCommTime = 0;
|
|
||||||
DhopComputeTime = 0;
|
|
||||||
DhopComputeTime2= 0;
|
|
||||||
DhopFaceTime = 0;
|
|
||||||
DhopTotalTime = 0;
|
|
||||||
|
|
||||||
DerivCalls = 0;
|
|
||||||
DerivCommTime = 0;
|
|
||||||
DerivComputeTime = 0;
|
|
||||||
DerivDhopComputeTime = 0;
|
|
||||||
|
|
||||||
Stencil.ZeroCounters();
|
|
||||||
StencilEven.ZeroCounters();
|
|
||||||
StencilOdd.ZeroCounters();
|
|
||||||
Stencil.ZeroCountersi();
|
|
||||||
StencilEven.ZeroCountersi();
|
|
||||||
StencilOdd.ZeroCountersi();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
|
void WilsonFermion5D<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||||
{
|
{
|
||||||
GaugeField HUmu(_Umu.Grid());
|
GaugeField HUmu(_Umu.Grid());
|
||||||
HUmu = _Umu*(-0.5);
|
HUmu = _Umu*(-0.5);
|
||||||
|
if ( Dirichlet ) {
|
||||||
|
|
||||||
|
if ( this->Params.partialDirichlet ) {
|
||||||
|
std::cout << GridLogMessage << " partialDirichlet BCs " <<Block<<std::endl;
|
||||||
|
} else {
|
||||||
|
std::cout << GridLogMessage << " FULL Dirichlet BCs " <<Block<<std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
std:: cout << GridLogMessage << "Checking block size multiple of rank boundaries for Dirichlet"<<std::endl;
|
||||||
|
for(int d=0;d<Nd;d++) {
|
||||||
|
int GaugeBlock = Block[d+1];
|
||||||
|
int ldim=GaugeGrid()->LocalDimensions()[d];
|
||||||
|
if (GaugeBlock) assert( (GaugeBlock%ldim)==0);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!this->Params.partialDirichlet) {
|
||||||
|
std::cout << GridLogMessage << " Dirichlet filtering gauge field BCs block " <<Block<<std::endl;
|
||||||
|
Coordinate GaugeBlock(Nd);
|
||||||
|
for(int d=0;d<Nd;d++) GaugeBlock[d] = Block[d+1];
|
||||||
|
DirichletFilter<GaugeField> Filter(GaugeBlock);
|
||||||
|
Filter.applyFilter(HUmu);
|
||||||
|
} else {
|
||||||
|
std::cout << GridLogMessage << " Dirichlet "<< Dirichlet << " NOT filtered gauge field" <<std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
|
Impl::DoubleStore(GaugeGrid(),Umu,HUmu);
|
||||||
pickCheckerboard(Even,UmuEven,Umu);
|
pickCheckerboard(Even,UmuEven,Umu);
|
||||||
pickCheckerboard(Odd ,UmuOdd,Umu);
|
pickCheckerboard(Odd ,UmuOdd,Umu);
|
||||||
@ -259,7 +216,6 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
|
|||||||
const FermionField &B,
|
const FermionField &B,
|
||||||
int dag)
|
int dag)
|
||||||
{
|
{
|
||||||
DerivCalls++;
|
|
||||||
assert((dag==DaggerNo) ||(dag==DaggerYes));
|
assert((dag==DaggerNo) ||(dag==DaggerYes));
|
||||||
|
|
||||||
conformable(st.Grid(),A.Grid());
|
conformable(st.Grid(),A.Grid());
|
||||||
@ -270,15 +226,12 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
|
|||||||
FermionField Btilde(B.Grid());
|
FermionField Btilde(B.Grid());
|
||||||
FermionField Atilde(B.Grid());
|
FermionField Atilde(B.Grid());
|
||||||
|
|
||||||
DerivCommTime-=usecond();
|
|
||||||
st.HaloExchange(B,compressor);
|
st.HaloExchange(B,compressor);
|
||||||
DerivCommTime+=usecond();
|
|
||||||
|
|
||||||
Atilde=A;
|
Atilde=A;
|
||||||
int LLs = B.Grid()->_rdimensions[0];
|
int LLs = B.Grid()->_rdimensions[0];
|
||||||
|
|
||||||
|
|
||||||
DerivComputeTime-=usecond();
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////
|
||||||
// Flip gamma if dag
|
// Flip gamma if dag
|
||||||
@ -290,8 +243,6 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
|
|||||||
// Call the single hop
|
// Call the single hop
|
||||||
////////////////////////
|
////////////////////////
|
||||||
|
|
||||||
DerivDhopComputeTime -= usecond();
|
|
||||||
|
|
||||||
int Usites = U.Grid()->oSites();
|
int Usites = U.Grid()->oSites();
|
||||||
|
|
||||||
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
|
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, Usites, B, Btilde, mu,gamma);
|
||||||
@ -299,10 +250,8 @@ void WilsonFermion5D<Impl>::DerivInternal(StencilImpl & st,
|
|||||||
////////////////////////////
|
////////////////////////////
|
||||||
// spin trace outer product
|
// spin trace outer product
|
||||||
////////////////////////////
|
////////////////////////////
|
||||||
DerivDhopComputeTime += usecond();
|
|
||||||
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
|
Impl::InsertForce5D(mat, Btilde, Atilde, mu);
|
||||||
}
|
}
|
||||||
DerivComputeTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
@ -360,12 +309,10 @@ void WilsonFermion5D<Impl>::DhopInternal(StencilImpl & st, LebesgueOrder &lo,
|
|||||||
DoubledGaugeField & U,
|
DoubledGaugeField & U,
|
||||||
const FermionField &in, FermionField &out,int dag)
|
const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopTotalTime-=usecond();
|
|
||||||
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
|
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
|
||||||
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
|
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
|
||||||
else
|
else
|
||||||
DhopInternalSerialComms(st,lo,U,in,out,dag);
|
DhopInternalSerialComms(st,lo,U,in,out,dag);
|
||||||
DhopTotalTime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -374,6 +321,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
|
|||||||
DoubledGaugeField & U,
|
DoubledGaugeField & U,
|
||||||
const FermionField &in, FermionField &out,int dag)
|
const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("DhopInternalOverlappedComms");
|
||||||
Compressor compressor(dag);
|
Compressor compressor(dag);
|
||||||
|
|
||||||
int LLs = in.Grid()->_rdimensions[0];
|
int LLs = in.Grid()->_rdimensions[0];
|
||||||
@ -382,53 +330,58 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
|
|||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Start comms // Gather intranode and extra node differentiated??
|
// Start comms // Gather intranode and extra node differentiated??
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
DhopFaceTime-=usecond();
|
{
|
||||||
st.HaloExchangeOptGather(in,compressor);
|
GRID_TRACE("Gather");
|
||||||
DhopFaceTime+=usecond();
|
st.HaloExchangeOptGather(in,compressor);
|
||||||
|
accelerator_barrier();
|
||||||
DhopCommTime -=usecond();
|
}
|
||||||
|
|
||||||
std::vector<std::vector<CommsRequest_t> > requests;
|
std::vector<std::vector<CommsRequest_t> > requests;
|
||||||
|
auto id=traceStart("Communicate overlapped");
|
||||||
st.CommunicateBegin(requests);
|
st.CommunicateBegin(requests);
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Overlap with comms
|
// Overlap with comms
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
DhopFaceTime-=usecond();
|
{
|
||||||
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
GRID_TRACE("MergeSHM");
|
||||||
DhopFaceTime+=usecond();
|
st.CommsMergeSHM(compressor);// Could do this inside parallel region overlapped with comms
|
||||||
|
}
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// do the compute interior
|
// do the compute interior
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
|
int Opt = WilsonKernelsStatic::Opt; // Why pass this. Kernels should know
|
||||||
DhopComputeTime-=usecond();
|
|
||||||
if (dag == DaggerYes) {
|
if (dag == DaggerYes) {
|
||||||
|
GRID_TRACE("DhopDagInterior");
|
||||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
||||||
} else {
|
} else {
|
||||||
|
GRID_TRACE("DhopInterior");
|
||||||
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,1,0);
|
||||||
}
|
}
|
||||||
DhopComputeTime+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Complete comms
|
// Complete comms
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
st.CommunicateComplete(requests);
|
st.CommunicateComplete(requests);
|
||||||
DhopCommTime +=usecond();
|
traceStop(id);
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// do the compute exterior
|
// do the compute exterior
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
DhopFaceTime-=usecond();
|
{
|
||||||
st.CommsMerge(compressor);
|
GRID_TRACE("Merge");
|
||||||
DhopFaceTime+=usecond();
|
st.CommsMerge(compressor);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
DhopComputeTime2-=usecond();
|
|
||||||
if (dag == DaggerYes) {
|
if (dag == DaggerYes) {
|
||||||
|
GRID_TRACE("DhopDagExterior");
|
||||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
||||||
} else {
|
} else {
|
||||||
|
GRID_TRACE("DhopExterior");
|
||||||
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
Kernels::DhopKernel (Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out,0,1);
|
||||||
}
|
}
|
||||||
DhopComputeTime2+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -438,29 +391,30 @@ void WilsonFermion5D<Impl>::DhopInternalSerialComms(StencilImpl & st, LebesgueOr
|
|||||||
const FermionField &in,
|
const FermionField &in,
|
||||||
FermionField &out,int dag)
|
FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("DhopInternalSerialComms");
|
||||||
Compressor compressor(dag);
|
Compressor compressor(dag);
|
||||||
|
|
||||||
int LLs = in.Grid()->_rdimensions[0];
|
int LLs = in.Grid()->_rdimensions[0];
|
||||||
|
|
||||||
|
{
|
||||||
|
GRID_TRACE("HaloExchange");
|
||||||
|
st.HaloExchangeOpt(in,compressor);
|
||||||
|
}
|
||||||
|
|
||||||
DhopCommTime-=usecond();
|
|
||||||
st.HaloExchangeOpt(in,compressor);
|
|
||||||
DhopCommTime+=usecond();
|
|
||||||
|
|
||||||
DhopComputeTime-=usecond();
|
|
||||||
int Opt = WilsonKernelsStatic::Opt;
|
int Opt = WilsonKernelsStatic::Opt;
|
||||||
if (dag == DaggerYes) {
|
if (dag == DaggerYes) {
|
||||||
|
GRID_TRACE("DhopDag");
|
||||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
||||||
} else {
|
} else {
|
||||||
|
GRID_TRACE("Dhop");
|
||||||
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),LLs,U.oSites(),in,out);
|
||||||
}
|
}
|
||||||
DhopComputeTime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
|
void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls++;
|
|
||||||
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
||||||
conformable(in.Grid(),out.Grid()); // drops the cb check
|
conformable(in.Grid(),out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -472,7 +426,6 @@ void WilsonFermion5D<Impl>::DhopOE(const FermionField &in, FermionField &out,int
|
|||||||
template<class Impl>
|
template<class Impl>
|
||||||
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls++;
|
|
||||||
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
conformable(in.Grid(),FermionRedBlackGrid()); // verifies half grid
|
||||||
conformable(in.Grid(),out.Grid()); // drops the cb check
|
conformable(in.Grid(),out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -484,7 +437,6 @@ void WilsonFermion5D<Impl>::DhopEO(const FermionField &in, FermionField &out,int
|
|||||||
template<class Impl>
|
template<class Impl>
|
||||||
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
void WilsonFermion5D<Impl>::Dhop(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=2;
|
|
||||||
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
conformable(in.Grid(),FermionGrid()); // verifies full grid
|
||||||
conformable(in.Grid(),out.Grid());
|
conformable(in.Grid(),out.Grid());
|
||||||
|
|
||||||
@ -539,12 +491,17 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
|
|||||||
LatComplex sk(_grid); sk = Zero();
|
LatComplex sk(_grid); sk = Zero();
|
||||||
LatComplex sk2(_grid); sk2= Zero();
|
LatComplex sk2(_grid); sk2= Zero();
|
||||||
LatComplex W(_grid); W= Zero();
|
LatComplex W(_grid); W= Zero();
|
||||||
LatComplex a(_grid); a= Zero();
|
|
||||||
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
|
LatComplex one (_grid); one = ScalComplex(1.0,0.0);
|
||||||
LatComplex cosha(_grid);
|
LatComplex cosha(_grid);
|
||||||
LatComplex kmu(_grid);
|
LatComplex kmu(_grid);
|
||||||
LatComplex Wea(_grid);
|
LatComplex Wea(_grid);
|
||||||
LatComplex Wema(_grid);
|
LatComplex Wema(_grid);
|
||||||
|
LatComplex ea(_grid);
|
||||||
|
LatComplex ema(_grid);
|
||||||
|
LatComplex eaLs(_grid);
|
||||||
|
LatComplex emaLs(_grid);
|
||||||
|
LatComplex ea2Ls(_grid);
|
||||||
|
LatComplex ema2Ls(_grid);
|
||||||
LatComplex sinha(_grid);
|
LatComplex sinha(_grid);
|
||||||
LatComplex sinhaLs(_grid);
|
LatComplex sinhaLs(_grid);
|
||||||
LatComplex coshaLs(_grid);
|
LatComplex coshaLs(_grid);
|
||||||
@ -579,39 +536,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
|
|||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
cosha = (one + W*W + sk) / (abs(W)*2.0);
|
cosha = (one + W*W + sk) / (abs(W)*2.0);
|
||||||
|
|
||||||
// FIXME Need a Lattice acosh
|
ea = (cosha + sqrt(cosha*cosha-one));
|
||||||
|
ema= (cosha - sqrt(cosha*cosha-one));
|
||||||
{
|
eaLs = pow(ea,Ls);
|
||||||
autoView(cosha_v,cosha,CpuRead);
|
emaLs= pow(ema,Ls);
|
||||||
autoView(a_v,a,CpuWrite);
|
ea2Ls = pow(ea,2.0*Ls);
|
||||||
for(int idx=0;idx<_grid->lSites();idx++){
|
ema2Ls= pow(ema,2.0*Ls);
|
||||||
Coordinate lcoor(Nd);
|
Wea= abs(W) * ea;
|
||||||
Tcomplex cc;
|
Wema= abs(W) * ema;
|
||||||
// RealD sgn;
|
// a=log(ea);
|
||||||
_grid->LocalIndexToLocalCoor(idx,lcoor);
|
|
||||||
peekLocalSite(cc,cosha_v,lcoor);
|
sinha = 0.5*(ea - ema);
|
||||||
assert((double)real(cc)>=1.0);
|
sinhaLs = 0.5*(eaLs-emaLs);
|
||||||
assert(fabs((double)imag(cc))<=1.0e-15);
|
coshaLs = 0.5*(eaLs+emaLs);
|
||||||
cc = ScalComplex(::acosh(real(cc)),0.0);
|
|
||||||
pokeLocalSite(cc,a_v,lcoor);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Wea = ( exp( a) * abs(W) );
|
|
||||||
Wema= ( exp(-a) * abs(W) );
|
|
||||||
sinha = 0.5*(exp( a) - exp(-a));
|
|
||||||
sinhaLs = 0.5*(exp( a*Ls) - exp(-a*Ls));
|
|
||||||
coshaLs = 0.5*(exp( a*Ls) + exp(-a*Ls));
|
|
||||||
|
|
||||||
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
|
A = one / (abs(W) * sinha * 2.0) * one / (sinhaLs * 2.0);
|
||||||
F = exp( a*Ls) * (one - Wea + (Wema - one) * mass*mass);
|
F = eaLs * (one - Wea + (Wema - one) * mass*mass);
|
||||||
F = F + exp(-a*Ls) * (Wema - one + (one - Wea) * mass*mass);
|
F = F + emaLs * (Wema - one + (one - Wea) * mass*mass);
|
||||||
F = F - abs(W) * sinha * 4.0 * mass;
|
F = F - abs(W) * sinha * 4.0 * mass;
|
||||||
|
|
||||||
Bpp = (A/F) * (exp(-a*Ls*2.0) - one) * (one - Wema) * (one - mass*mass * one);
|
Bpp = (A/F) * (ema2Ls - one) * (one - Wema) * (one - mass*mass * one);
|
||||||
Bmm = (A/F) * (one - exp(a*Ls*2.0)) * (one - Wea) * (one - mass*mass * one);
|
Bmm = (A/F) * (one - ea2Ls) * (one - Wea) * (one - mass*mass * one);
|
||||||
App = (A/F) * (exp(-a*Ls*2.0) - one) * exp(-a) * (exp(-a) - abs(W)) * (one - mass*mass * one);
|
App = (A/F) * (ema2Ls - one) * ema * (ema - abs(W)) * (one - mass*mass * one);
|
||||||
Amm = (A/F) * (one - exp(a*Ls*2.0)) * exp(a) * (exp(a) - abs(W)) * (one - mass*mass * one);
|
Amm = (A/F) * (one - ea2Ls) * ea * (ea - abs(W)) * (one - mass*mass * one);
|
||||||
ABpm = (A/F) * abs(W) * sinha * 2.0 * (one + mass * coshaLs * 2.0 + mass*mass * one);
|
ABpm = (A/F) * abs(W) * sinha * 2.0 * (one + mass * coshaLs * 2.0 + mass*mass * one);
|
||||||
|
|
||||||
//P+ source, P- source
|
//P+ source, P- source
|
||||||
@ -634,29 +581,29 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt_5d(FermionField &out,const
|
|||||||
buf1_4d = Zero();
|
buf1_4d = Zero();
|
||||||
ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
|
ExtractSlice(buf1_4d, PRsource, (tt-1), 0);
|
||||||
//G(s,t)
|
//G(s,t)
|
||||||
bufR_4d = bufR_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf1_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf1_4d;
|
bufR_4d = bufR_4d + A * eaLs * pow(ema,f) * signW * buf1_4d + A * emaLs * pow(ea,f) * signW * buf1_4d;
|
||||||
//A++*exp(a(s+t))
|
//A++*exp(a(s+t))
|
||||||
bufR_4d = bufR_4d + App * exp(a*ss) * exp(a*tt) * signW * buf1_4d ;
|
bufR_4d = bufR_4d + App * pow(ea,ss) * pow(ea,tt) * signW * buf1_4d ;
|
||||||
//A+-*exp(a(s-t))
|
//A+-*exp(a(s-t))
|
||||||
bufR_4d = bufR_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf1_4d ;
|
bufR_4d = bufR_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf1_4d ;
|
||||||
//A-+*exp(a(-s+t))
|
//A-+*exp(a(-s+t))
|
||||||
bufR_4d = bufR_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf1_4d ;
|
bufR_4d = bufR_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf1_4d ;
|
||||||
//A--*exp(a(-s-t))
|
//A--*exp(a(-s-t))
|
||||||
bufR_4d = bufR_4d + Amm * exp(-a*ss) * exp(-a*tt) * signW * buf1_4d ;
|
bufR_4d = bufR_4d + Amm * pow(ema,ss) * pow(ema,tt) * signW * buf1_4d ;
|
||||||
|
|
||||||
//GL
|
//GL
|
||||||
buf2_4d = Zero();
|
buf2_4d = Zero();
|
||||||
ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
|
ExtractSlice(buf2_4d, PLsource, (tt-1), 0);
|
||||||
//G(s,t)
|
//G(s,t)
|
||||||
bufL_4d = bufL_4d + A * exp(a*Ls) * exp(-a*f) * signW * buf2_4d + A * exp(-a*Ls) * exp(a*f) * signW * buf2_4d;
|
bufL_4d = bufL_4d + A * eaLs * pow(ema,f) * signW * buf2_4d + A * emaLs * pow(ea,f) * signW * buf2_4d;
|
||||||
//B++*exp(a(s+t))
|
//B++*exp(a(s+t))
|
||||||
bufL_4d = bufL_4d + Bpp * exp(a*ss) * exp(a*tt) * signW * buf2_4d ;
|
bufL_4d = bufL_4d + Bpp * pow(ea,ss) * pow(ea,tt) * signW * buf2_4d ;
|
||||||
//B+-*exp(a(s-t))
|
//B+-*exp(a(s-t))
|
||||||
bufL_4d = bufL_4d + ABpm * exp(a*ss) * exp(-a*tt) * signW * buf2_4d ;
|
bufL_4d = bufL_4d + ABpm * pow(ea,ss) * pow(ema,tt) * signW * buf2_4d ;
|
||||||
//B-+*exp(a(-s+t))
|
//B-+*exp(a(-s+t))
|
||||||
bufL_4d = bufL_4d + ABpm * exp(-a*ss) * exp(a*tt) * signW * buf2_4d ;
|
bufL_4d = bufL_4d + ABpm * pow(ema,ss) * pow(ea,tt) * signW * buf2_4d ;
|
||||||
//B--*exp(a(-s-t))
|
//B--*exp(a(-s-t))
|
||||||
bufL_4d = bufL_4d + Bmm * exp(-a*ss) * exp(-a*tt) * signW * buf2_4d ;
|
bufL_4d = bufL_4d + Bmm * pow(ema,ss) * pow(ema,tt) * signW * buf2_4d ;
|
||||||
}
|
}
|
||||||
InsertSlice(bufR_4d, GR, (ss-1), 0);
|
InsertSlice(bufR_4d, GR, (ss-1), 0);
|
||||||
InsertSlice(bufL_4d, GL, (ss-1), 0);
|
InsertSlice(bufL_4d, GL, (ss-1), 0);
|
||||||
@ -775,28 +722,12 @@ void WilsonFermion5D<Impl>::MomentumSpacePropagatorHt(FermionField &out,const Fe
|
|||||||
W = one - M5 + sk2;
|
W = one - M5 + sk2;
|
||||||
|
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
// Cosh alpha -> alpha
|
// Cosh alpha -> exp(+/- alpha)
|
||||||
////////////////////////////////////////////
|
////////////////////////////////////////////
|
||||||
cosha = (one + W*W + sk) / (abs(W)*2.0);
|
cosha = (one + W*W + sk) / (abs(W)*2.0);
|
||||||
|
|
||||||
// FIXME Need a Lattice acosh
|
Wea = abs(W)*(cosha + sqrt(cosha*cosha-one));
|
||||||
{
|
Wema= abs(W)*(cosha - sqrt(cosha*cosha-one));
|
||||||
autoView(cosha_v,cosha,CpuRead);
|
|
||||||
autoView(a_v,a,CpuWrite);
|
|
||||||
for(int idx=0;idx<_grid->lSites();idx++){
|
|
||||||
Coordinate lcoor(Nd);
|
|
||||||
Tcomplex cc;
|
|
||||||
// RealD sgn;
|
|
||||||
_grid->LocalIndexToLocalCoor(idx,lcoor);
|
|
||||||
peekLocalSite(cc,cosha_v,lcoor);
|
|
||||||
assert((double)real(cc)>=1.0);
|
|
||||||
assert(fabs((double)imag(cc))<=1.0e-15);
|
|
||||||
cc = ScalComplex(::acosh(real(cc)),0.0);
|
|
||||||
pokeLocalSite(cc,a_v,lcoor);
|
|
||||||
}}
|
|
||||||
|
|
||||||
Wea = ( exp( a) * abs(W) );
|
|
||||||
Wema= ( exp(-a) * abs(W) );
|
|
||||||
|
|
||||||
num = num + ( one - Wema ) * mass * in;
|
num = num + ( one - Wema ) * mass * in;
|
||||||
denom= ( Wea - one ) + mass*mass * (one - Wema);
|
denom= ( Wea - one ) + mass*mass * (one - Wema);
|
||||||
|
@ -60,6 +60,9 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
|||||||
_tmp(&Hgrid),
|
_tmp(&Hgrid),
|
||||||
anisotropyCoeff(anis)
|
anisotropyCoeff(anis)
|
||||||
{
|
{
|
||||||
|
Stencil.lo = &Lebesgue;
|
||||||
|
StencilEven.lo = &LebesgueEvenOdd;
|
||||||
|
StencilOdd.lo = &LebesgueEvenOdd;
|
||||||
// Allocate the required comms buffer
|
// Allocate the required comms buffer
|
||||||
ImportGauge(_Umu);
|
ImportGauge(_Umu);
|
||||||
if (anisotropyCoeff.isAnisotropic){
|
if (anisotropyCoeff.isAnisotropic){
|
||||||
@ -76,91 +79,6 @@ WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
|
|||||||
StencilOdd.BuildSurfaceList(1,vol4);
|
StencilOdd.BuildSurfaceList(1,vol4);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Impl>
|
|
||||||
void WilsonFermion<Impl>::Report(void)
|
|
||||||
{
|
|
||||||
RealD NP = _grid->_Nprocessors;
|
|
||||||
RealD NN = _grid->NodeCount();
|
|
||||||
RealD volume = 1;
|
|
||||||
Coordinate latt = _grid->GlobalDimensions();
|
|
||||||
for(int mu=0;mu<Nd;mu++) volume=volume*latt[mu];
|
|
||||||
|
|
||||||
if ( DhopCalls > 0 ) {
|
|
||||||
std::cout << GridLogMessage << "#### Dhop calls report " << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion Number of DhopEO Calls : " << DhopCalls << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion TotalTime /Calls : " << DhopTotalTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion CommTime /Calls : " << DhopCommTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion FaceTime /Calls : " << DhopFaceTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion ComputeTime1/Calls : " << DhopComputeTime / DhopCalls << " us" << std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion ComputeTime2/Calls : " << DhopComputeTime2/ DhopCalls << " us" << std::endl;
|
|
||||||
|
|
||||||
// Average the compute time
|
|
||||||
_grid->GlobalSum(DhopComputeTime);
|
|
||||||
DhopComputeTime/=NP;
|
|
||||||
RealD mflops = 1320*volume*DhopCalls/DhopComputeTime/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank : " << mflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node : " << mflops/NN << std::endl;
|
|
||||||
|
|
||||||
RealD Fullmflops = 1320*volume*DhopCalls/(DhopTotalTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per rank (full): " << Fullmflops/NP << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full): " << Fullmflops/NN << std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
if ( DerivCalls > 0 ) {
|
|
||||||
std::cout << GridLogMessage << "#### Deriv calls report "<< std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion Number of Deriv Calls : " <<DerivCalls <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion CommTime/Calls : " <<DerivCommTime/DerivCalls<<" us" <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion ComputeTime/Calls : " <<DerivComputeTime/DerivCalls<<" us" <<std::endl;
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion Dhop ComputeTime/Calls : " <<DerivDhopComputeTime/DerivCalls<<" us" <<std::endl;
|
|
||||||
|
|
||||||
// how to count flops here?
|
|
||||||
RealD mflops = 144*volume*DerivCalls/DerivDhopComputeTime;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call ? : " << mflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node ? : " << mflops/NP << std::endl;
|
|
||||||
|
|
||||||
// how to count flops here?
|
|
||||||
RealD Fullmflops = 144*volume*DerivCalls/(DerivDhopComputeTime+DerivCommTime)/2; // 2 for red black counting
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call (full) ? : " << Fullmflops << std::endl;
|
|
||||||
std::cout << GridLogMessage << "Average mflops/s per call per node (full) ? : " << Fullmflops/NP << std::endl; }
|
|
||||||
|
|
||||||
if (DerivCalls > 0 || DhopCalls > 0){
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion Stencil" <<std::endl; Stencil.Report();
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion StencilEven"<<std::endl; StencilEven.Report();
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion StencilOdd" <<std::endl; StencilOdd.Report();
|
|
||||||
}
|
|
||||||
if ( DhopCalls > 0){
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion Stencil Reporti()" <<std::endl; Stencil.Reporti(DhopCalls);
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion StencilEven Reporti()"<<std::endl; StencilEven.Reporti(DhopCalls);
|
|
||||||
std::cout << GridLogMessage << "WilsonFermion StencilOdd Reporti()" <<std::endl; StencilOdd.Reporti(DhopCalls);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<class Impl>
|
|
||||||
void WilsonFermion<Impl>::ZeroCounters(void) {
|
|
||||||
DhopCalls = 0; // ok
|
|
||||||
DhopCommTime = 0;
|
|
||||||
DhopComputeTime = 0;
|
|
||||||
DhopComputeTime2= 0;
|
|
||||||
DhopFaceTime = 0;
|
|
||||||
DhopTotalTime = 0;
|
|
||||||
|
|
||||||
DerivCalls = 0; // ok
|
|
||||||
DerivCommTime = 0;
|
|
||||||
DerivComputeTime = 0;
|
|
||||||
DerivDhopComputeTime = 0;
|
|
||||||
|
|
||||||
Stencil.ZeroCounters();
|
|
||||||
StencilEven.ZeroCounters();
|
|
||||||
StencilOdd.ZeroCounters();
|
|
||||||
Stencil.ZeroCountersi();
|
|
||||||
StencilEven.ZeroCountersi();
|
|
||||||
StencilOdd.ZeroCountersi();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template <class Impl>
|
template <class Impl>
|
||||||
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
||||||
{
|
{
|
||||||
@ -320,7 +238,6 @@ template <class Impl>
|
|||||||
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
|
void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
|
||||||
GaugeField &mat, const FermionField &A,
|
GaugeField &mat, const FermionField &A,
|
||||||
const FermionField &B, int dag) {
|
const FermionField &B, int dag) {
|
||||||
DerivCalls++;
|
|
||||||
assert((dag == DaggerNo) || (dag == DaggerYes));
|
assert((dag == DaggerNo) || (dag == DaggerYes));
|
||||||
|
|
||||||
Compressor compressor(dag);
|
Compressor compressor(dag);
|
||||||
@ -329,11 +246,8 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
|
|||||||
FermionField Atilde(B.Grid());
|
FermionField Atilde(B.Grid());
|
||||||
Atilde = A;
|
Atilde = A;
|
||||||
|
|
||||||
DerivCommTime-=usecond();
|
|
||||||
st.HaloExchange(B, compressor);
|
st.HaloExchange(B, compressor);
|
||||||
DerivCommTime+=usecond();
|
|
||||||
|
|
||||||
DerivComputeTime-=usecond();
|
|
||||||
for (int mu = 0; mu < Nd; mu++) {
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////
|
||||||
// Flip gamma (1+g)<->(1-g) if dag
|
// Flip gamma (1+g)<->(1-g) if dag
|
||||||
@ -341,7 +255,6 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
|
|||||||
int gamma = mu;
|
int gamma = mu;
|
||||||
if (!dag) gamma += Nd;
|
if (!dag) gamma += Nd;
|
||||||
|
|
||||||
DerivDhopComputeTime -= usecond();
|
|
||||||
int Ls=1;
|
int Ls=1;
|
||||||
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
|
Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
|
||||||
|
|
||||||
@ -349,9 +262,7 @@ void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
|
|||||||
// spin trace outer product
|
// spin trace outer product
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
Impl::InsertForce4D(mat, Btilde, Atilde, mu);
|
Impl::InsertForce4D(mat, Btilde, Atilde, mu);
|
||||||
DerivDhopComputeTime += usecond();
|
|
||||||
}
|
}
|
||||||
DerivComputeTime += usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Impl>
|
template <class Impl>
|
||||||
@ -398,7 +309,6 @@ void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, co
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
|
void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls+=2;
|
|
||||||
conformable(in.Grid(), _grid); // verifies full grid
|
conformable(in.Grid(), _grid); // verifies full grid
|
||||||
conformable(in.Grid(), out.Grid());
|
conformable(in.Grid(), out.Grid());
|
||||||
|
|
||||||
@ -410,7 +320,6 @@ void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int da
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
|
void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopCalls++;
|
|
||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -423,7 +332,6 @@ void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int
|
|||||||
template <class Impl>
|
template <class Impl>
|
||||||
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
|
||||||
{
|
{
|
||||||
DhopCalls++;
|
|
||||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||||
|
|
||||||
@ -488,14 +396,12 @@ void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
|
|||||||
const FermionField &in,
|
const FermionField &in,
|
||||||
FermionField &out, int dag)
|
FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
DhopTotalTime-=usecond();
|
|
||||||
#ifdef GRID_OMP
|
#ifdef GRID_OMP
|
||||||
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
|
if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
|
||||||
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
|
DhopInternalOverlappedComms(st,lo,U,in,out,dag);
|
||||||
else
|
else
|
||||||
#endif
|
#endif
|
||||||
DhopInternalSerial(st,lo,U,in,out,dag);
|
DhopInternalSerial(st,lo,U,in,out,dag);
|
||||||
DhopTotalTime+=usecond();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Impl>
|
template <class Impl>
|
||||||
@ -504,6 +410,7 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
|
|||||||
const FermionField &in,
|
const FermionField &in,
|
||||||
FermionField &out, int dag)
|
FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("DhopOverlapped");
|
||||||
assert((dag == DaggerNo) || (dag == DaggerYes));
|
assert((dag == DaggerNo) || (dag == DaggerYes));
|
||||||
|
|
||||||
Compressor compressor(dag);
|
Compressor compressor(dag);
|
||||||
@ -514,53 +421,55 @@ void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueO
|
|||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
std::vector<std::vector<CommsRequest_t> > requests;
|
std::vector<std::vector<CommsRequest_t> > requests;
|
||||||
st.Prepare();
|
st.Prepare();
|
||||||
DhopFaceTime-=usecond();
|
{
|
||||||
st.HaloGather(in,compressor);
|
GRID_TRACE("Gather");
|
||||||
DhopFaceTime+=usecond();
|
st.HaloGather(in,compressor);
|
||||||
|
}
|
||||||
|
|
||||||
DhopCommTime -=usecond();
|
tracePush("Communication");
|
||||||
st.CommunicateBegin(requests);
|
st.CommunicateBegin(requests);
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Overlap with comms
|
// Overlap with comms
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
DhopFaceTime-=usecond();
|
{
|
||||||
st.CommsMergeSHM(compressor);
|
GRID_TRACE("MergeSHM");
|
||||||
DhopFaceTime+=usecond();
|
st.CommsMergeSHM(compressor);
|
||||||
|
}
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// do the compute interior
|
// do the compute interior
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
int Opt = WilsonKernelsStatic::Opt;
|
int Opt = WilsonKernelsStatic::Opt;
|
||||||
DhopComputeTime-=usecond();
|
|
||||||
if (dag == DaggerYes) {
|
if (dag == DaggerYes) {
|
||||||
|
GRID_TRACE("DhopDagInterior");
|
||||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
|
||||||
} else {
|
} else {
|
||||||
|
GRID_TRACE("DhopInterior");
|
||||||
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
|
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
|
||||||
}
|
}
|
||||||
DhopComputeTime+=usecond();
|
|
||||||
|
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// Complete comms
|
// Complete comms
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
st.CommunicateComplete(requests);
|
st.CommunicateComplete(requests);
|
||||||
DhopCommTime +=usecond();
|
tracePop("Communication");
|
||||||
|
|
||||||
DhopFaceTime-=usecond();
|
|
||||||
st.CommsMerge(compressor);
|
|
||||||
DhopFaceTime+=usecond();
|
|
||||||
|
|
||||||
|
{
|
||||||
|
GRID_TRACE("Merge");
|
||||||
|
st.CommsMerge(compressor);
|
||||||
|
}
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
// do the compute exterior
|
// do the compute exterior
|
||||||
/////////////////////////////
|
/////////////////////////////
|
||||||
|
|
||||||
DhopComputeTime2-=usecond();
|
|
||||||
if (dag == DaggerYes) {
|
if (dag == DaggerYes) {
|
||||||
|
GRID_TRACE("DhopDagExterior");
|
||||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
|
||||||
} else {
|
} else {
|
||||||
|
GRID_TRACE("DhopExterior");
|
||||||
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
|
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
|
||||||
}
|
}
|
||||||
DhopComputeTime2+=usecond();
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -570,20 +479,22 @@ void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
|
|||||||
const FermionField &in,
|
const FermionField &in,
|
||||||
FermionField &out, int dag)
|
FermionField &out, int dag)
|
||||||
{
|
{
|
||||||
|
GRID_TRACE("DhopSerial");
|
||||||
assert((dag == DaggerNo) || (dag == DaggerYes));
|
assert((dag == DaggerNo) || (dag == DaggerYes));
|
||||||
Compressor compressor(dag);
|
Compressor compressor(dag);
|
||||||
DhopCommTime-=usecond();
|
{
|
||||||
st.HaloExchange(in, compressor);
|
GRID_TRACE("HaloExchange");
|
||||||
DhopCommTime+=usecond();
|
st.HaloExchange(in, compressor);
|
||||||
|
}
|
||||||
|
|
||||||
DhopComputeTime-=usecond();
|
|
||||||
int Opt = WilsonKernelsStatic::Opt;
|
int Opt = WilsonKernelsStatic::Opt;
|
||||||
if (dag == DaggerYes) {
|
if (dag == DaggerYes) {
|
||||||
|
GRID_TRACE("DhopDag");
|
||||||
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
|
Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
|
||||||
} else {
|
} else {
|
||||||
|
GRID_TRACE("Dhop");
|
||||||
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
|
Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
|
||||||
}
|
}
|
||||||
DhopComputeTime+=usecond();
|
|
||||||
};
|
};
|
||||||
/*Change ends */
|
/*Change ends */
|
||||||
|
|
||||||
|
@ -72,20 +72,15 @@ accelerator_inline void get_stencil(StencilEntry * mem, StencilEntry &chip)
|
|||||||
if (SE->_is_local) { \
|
if (SE->_is_local) { \
|
||||||
int perm= SE->_permute; \
|
int perm= SE->_permute; \
|
||||||
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
|
auto tmp = coalescedReadPermute(in[SE->_offset],ptype,perm,lane); \
|
||||||
spProj(chi,tmp); \
|
spProj(chi,tmp); \
|
||||||
} else if ( st.same_node[Dir] ) { \
|
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
||||||
chi = coalescedRead(buf[SE->_offset],lane); \
|
Recon(result, Uchi); \
|
||||||
} \
|
} \
|
||||||
acceleratorSynchronise(); \
|
|
||||||
if (SE->_is_local || st.same_node[Dir] ) { \
|
|
||||||
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
|
||||||
Recon(result, Uchi); \
|
|
||||||
} \
|
|
||||||
acceleratorSynchronise();
|
acceleratorSynchronise();
|
||||||
|
|
||||||
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
|
#define GENERIC_STENCIL_LEG_EXT(Dir,spProj,Recon) \
|
||||||
SE = st.GetEntry(ptype, Dir, sF); \
|
SE = st.GetEntry(ptype, Dir, sF); \
|
||||||
if ((!SE->_is_local) && (!st.same_node[Dir]) ) { \
|
if (!SE->_is_local ) { \
|
||||||
auto chi = coalescedRead(buf[SE->_offset],lane); \
|
auto chi = coalescedRead(buf[SE->_offset],lane); \
|
||||||
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
Impl::multLink(Uchi, U[sU], chi, Dir, SE, st); \
|
||||||
Recon(result, Uchi); \
|
Recon(result, Uchi); \
|
||||||
@ -416,19 +411,6 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
|||||||
#undef LoopBody
|
#undef LoopBody
|
||||||
}
|
}
|
||||||
|
|
||||||
#define KERNEL_CALL_TMP(A) \
|
|
||||||
const uint64_t NN = Nsite*Ls; \
|
|
||||||
auto U_p = & U_v[0]; \
|
|
||||||
auto in_p = & in_v[0]; \
|
|
||||||
auto out_p = & out_v[0]; \
|
|
||||||
auto st_p = st_v._entries_p; \
|
|
||||||
auto st_perm = st_v._permute_type; \
|
|
||||||
accelerator_forNB( ss, NN, Simd::Nsimd(), { \
|
|
||||||
int sF = ss; \
|
|
||||||
int sU = ss/Ls; \
|
|
||||||
WilsonKernels<Impl>::A(st_perm,st_p,U_p,buf,sF,sU,in_p,out_p); \
|
|
||||||
}); \
|
|
||||||
accelerator_barrier();
|
|
||||||
|
|
||||||
#define KERNEL_CALLNB(A) \
|
#define KERNEL_CALLNB(A) \
|
||||||
const uint64_t NN = Nsite*Ls; \
|
const uint64_t NN = Nsite*Ls; \
|
||||||
@ -440,12 +422,34 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
|||||||
|
|
||||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
||||||
|
|
||||||
|
#define KERNEL_CALL_EXT(A) \
|
||||||
|
const uint64_t NN = Nsite*Ls; \
|
||||||
|
const uint64_t sz = st.surface_list.size(); \
|
||||||
|
auto ptr = &st.surface_list[0]; \
|
||||||
|
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
|
||||||
|
int sF = ptr[ss]; \
|
||||||
|
int sU = ss/Ls; \
|
||||||
|
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||||
|
});
|
||||||
|
|
||||||
#define ASM_CALL(A) \
|
#define ASM_CALL(A) \
|
||||||
thread_for( ss, Nsite, { \
|
thread_for( sss, Nsite, { \
|
||||||
|
int ss = st.lo->Reorder(sss); \
|
||||||
int sU = ss; \
|
int sU = ss; \
|
||||||
int sF = ss*Ls; \
|
int sF = ss*Ls; \
|
||||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
|
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
|
||||||
});
|
});
|
||||||
|
#define ASM_CALL_SLICE(A) \
|
||||||
|
auto grid = in.Grid() ; \
|
||||||
|
int nt = grid->LocalDimensions()[4]; \
|
||||||
|
int nxyz = Nsite/nt ; \
|
||||||
|
for(int t=0;t<nt;t++){ \
|
||||||
|
thread_for( sss, nxyz, { \
|
||||||
|
int ss = t*nxyz+sss; \
|
||||||
|
int sU = ss; \
|
||||||
|
int sF = ss*Ls; \
|
||||||
|
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,Ls,1,in_v,out_v); \
|
||||||
|
});}
|
||||||
|
|
||||||
template <class Impl>
|
template <class Impl>
|
||||||
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField &U, SiteHalfSpinor * buf,
|
||||||
@ -508,7 +512,6 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
|||||||
#ifndef GRID_CUDA
|
#ifndef GRID_CUDA
|
||||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
|
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
|
||||||
#endif
|
#endif
|
||||||
acceleratorFenceComputeStream();
|
|
||||||
}
|
}
|
||||||
assert(0 && " Kernel optimisation case not covered ");
|
assert(0 && " Kernel optimisation case not covered ");
|
||||||
}
|
}
|
||||||
|
@ -9,6 +9,7 @@ STAG5_IMPL_LIST=""
|
|||||||
WILSON_IMPL_LIST=" \
|
WILSON_IMPL_LIST=" \
|
||||||
WilsonImplF \
|
WilsonImplF \
|
||||||
WilsonImplD \
|
WilsonImplD \
|
||||||
|
WilsonImplD2 \
|
||||||
WilsonAdjImplF \
|
WilsonAdjImplF \
|
||||||
WilsonAdjImplD \
|
WilsonAdjImplD \
|
||||||
WilsonTwoIndexSymmetricImplF \
|
WilsonTwoIndexSymmetricImplF \
|
||||||
@ -25,8 +26,9 @@ COMPACT_WILSON_IMPL_LIST=" \
|
|||||||
DWF_IMPL_LIST=" \
|
DWF_IMPL_LIST=" \
|
||||||
WilsonImplF \
|
WilsonImplF \
|
||||||
WilsonImplD \
|
WilsonImplD \
|
||||||
|
WilsonImplD2 \
|
||||||
ZWilsonImplF \
|
ZWilsonImplF \
|
||||||
ZWilsonImplD "
|
ZWilsonImplD2 "
|
||||||
|
|
||||||
GDWF_IMPL_LIST=" \
|
GDWF_IMPL_LIST=" \
|
||||||
GparityWilsonImplF \
|
GparityWilsonImplF \
|
||||||
|
115
Grid/qcd/action/filters/DDHMCFilter.h
Normal file
115
Grid/qcd/action/filters/DDHMCFilter.h
Normal file
@ -0,0 +1,115 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution
|
||||||
|
directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
//--------------------------------------------------------------------
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
////////////////////////////////////////////////////
|
||||||
|
// DDHMC filter with sub-block size B[mu]
|
||||||
|
////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
template<typename GaugeField>
|
||||||
|
struct DDHMCFilter: public MomentumFilterBase<GaugeField>
|
||||||
|
{
|
||||||
|
Coordinate Block;
|
||||||
|
int Width;
|
||||||
|
|
||||||
|
DDHMCFilter(const Coordinate &_Block,int _Width=2): Block(_Block) { Width=_Width; }
|
||||||
|
|
||||||
|
void applyFilter(GaugeField &U) const override
|
||||||
|
{
|
||||||
|
GridBase *grid = U.Grid();
|
||||||
|
Coordinate Global=grid->GlobalDimensions();
|
||||||
|
GaugeField zzz(grid); zzz = Zero();
|
||||||
|
LatticeInteger coor(grid);
|
||||||
|
|
||||||
|
auto zzz_mu = PeekIndex<LorentzIndex>(zzz,0);
|
||||||
|
////////////////////////////////////////////////////
|
||||||
|
// Zero BDY layers
|
||||||
|
////////////////////////////////////////////////////
|
||||||
|
std::cout<<GridLogMessage<<" DDHMC Force Filter Block "<<Block<<" width " <<Width<<std::endl;
|
||||||
|
for(int mu=0;mu<Nd;mu++) {
|
||||||
|
|
||||||
|
Integer B1 = Block[mu];
|
||||||
|
if ( B1 && (B1 <= Global[mu]) ) {
|
||||||
|
LatticeCoordinate(coor,mu);
|
||||||
|
|
||||||
|
////////////////////////////////
|
||||||
|
// OmegaBar - zero all links contained in slice B-1,0 and
|
||||||
|
// mu links connecting to Omega
|
||||||
|
////////////////////////////////
|
||||||
|
if ( Width==1) {
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||||
|
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||||
|
U_mu = where(mod(coor,B1)==Integer(B1-2),zzz_mu,U_mu);
|
||||||
|
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||||
|
}
|
||||||
|
if ( Width==2) {
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
|
||||||
|
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||||
|
U_mu = where(mod(coor,B1)==Integer(B1-3),zzz_mu,U_mu);
|
||||||
|
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||||
|
}
|
||||||
|
if ( Width==3) {
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-3),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(2) ,zzz,U);
|
||||||
|
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||||
|
U_mu = where(mod(coor,B1)==Integer(B1-4),zzz_mu,U_mu);
|
||||||
|
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||||
|
}
|
||||||
|
if ( Width==4) {
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-4),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-3),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-2),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(B1-1),zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(0) ,zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(1) ,zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(2) ,zzz,U);
|
||||||
|
U = where(mod(coor,B1)==Integer(3) ,zzz,U);
|
||||||
|
auto U_mu = PeekIndex<LorentzIndex>(U,mu);
|
||||||
|
U_mu = where(mod(coor,B1)==Integer(B1-5),zzz_mu,U_mu);
|
||||||
|
PokeIndex<LorentzIndex>(U, U_mu, mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
71
Grid/qcd/action/filters/DirichletFilter.h
Normal file
71
Grid/qcd/action/filters/DirichletFilter.h
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/hmc/integrators/DirichletFilter.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution
|
||||||
|
directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
//--------------------------------------------------------------------
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
template<typename MomentaField>
|
||||||
|
struct DirichletFilter: public MomentumFilterBase<MomentaField>
|
||||||
|
{
|
||||||
|
typedef typename MomentaField::vector_type vector_type; //SIMD-vectorized complex type
|
||||||
|
typedef typename MomentaField::scalar_type scalar_type; //scalar complex type
|
||||||
|
|
||||||
|
typedef iScalar<iScalar<iScalar<vector_type> > > ScalarType; //complex phase for each site
|
||||||
|
|
||||||
|
Coordinate Block;
|
||||||
|
|
||||||
|
DirichletFilter(const Coordinate &_Block): Block(_Block){}
|
||||||
|
|
||||||
|
void applyFilter(MomentaField &P) const override
|
||||||
|
{
|
||||||
|
GridBase *grid = P.Grid();
|
||||||
|
typedef decltype(PeekIndex<LorentzIndex>(P, 0)) LatCM;
|
||||||
|
////////////////////////////////////////////////////
|
||||||
|
// Zero strictly links crossing between domains
|
||||||
|
////////////////////////////////////////////////////
|
||||||
|
LatticeInteger coor(grid);
|
||||||
|
LatCM zz(grid); zz = Zero();
|
||||||
|
for(int mu=0;mu<Nd;mu++) {
|
||||||
|
if ( (Block[mu]) && (Block[mu] <= grid->GlobalDimensions()[mu] ) ) {
|
||||||
|
// If costly could provide Grid earlier and precompute masks
|
||||||
|
std::cout << GridLogMessage << " Dirichlet in mu="<<mu<<std::endl;
|
||||||
|
LatticeCoordinate(coor,mu);
|
||||||
|
auto P_mu = PeekIndex<LorentzIndex>(P, mu);
|
||||||
|
P_mu = where(mod(coor,Block[mu])==Integer(Block[mu]-1),zz,P_mu);
|
||||||
|
PokeIndex<LorentzIndex>(P, P_mu, mu);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
@ -37,7 +37,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
template<typename MomentaField>
|
template<typename MomentaField>
|
||||||
struct MomentumFilterBase{
|
struct MomentumFilterBase{
|
||||||
virtual void applyFilter(MomentaField &P) const;
|
virtual void applyFilter(MomentaField &P) const = 0;
|
||||||
|
virtual ~MomentumFilterBase(){};
|
||||||
};
|
};
|
||||||
|
|
||||||
//Do nothing
|
//Do nothing
|
||||||
@ -83,7 +84,6 @@ struct MomentumFilterApplyPhase: public MomentumFilterBase<MomentaField>{
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
@ -69,6 +69,11 @@ public:
|
|||||||
return PeriodicBC::ShiftStaple(Link,mu);
|
return PeriodicBC::ShiftStaple(Link,mu);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Same as Cshift for periodic BCs
|
||||||
|
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||||
|
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||||
|
}
|
||||||
|
|
||||||
static inline bool isPeriodicGaugeField(void) { return true; }
|
static inline bool isPeriodicGaugeField(void) { return true; }
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -110,6 +115,11 @@ public:
|
|||||||
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
return PeriodicBC::CovShiftBackward(Link, mu, field);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//If mu is a conjugate BC direction
|
||||||
|
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U^T_\mu(L-1) | x_\mu == 0
|
||||||
|
//else
|
||||||
|
//Out(x) = U^dag_\mu(x-mu mod L)
|
||||||
static inline GaugeLinkField
|
static inline GaugeLinkField
|
||||||
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
CovShiftIdentityBackward(const GaugeLinkField &Link, int mu)
|
||||||
{
|
{
|
||||||
@ -129,6 +139,13 @@ public:
|
|||||||
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
return PeriodicBC::CovShiftIdentityForward(Link,mu);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//If mu is a conjugate BC direction
|
||||||
|
//Out(x) = S_\mu(x+mu) | x_\mu != L-1
|
||||||
|
// = S*_\mu(x+mu) | x_\mu == L-1
|
||||||
|
//else
|
||||||
|
//Out(x) = S_\mu(x+mu mod L)
|
||||||
|
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||||
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
static inline GaugeLinkField ShiftStaple(const GaugeLinkField &Link, int mu)
|
||||||
{
|
{
|
||||||
assert(_conjDirs.size() == Nd);
|
assert(_conjDirs.size() == Nd);
|
||||||
@ -138,6 +155,27 @@ public:
|
|||||||
return PeriodicBC::ShiftStaple(Link,mu);
|
return PeriodicBC::ShiftStaple(Link,mu);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||||
|
//For conjugate BC direction
|
||||||
|
//shift = 1
|
||||||
|
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||||
|
// = U*_\mu(0) | x_\mu == L-1
|
||||||
|
//shift = -1
|
||||||
|
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U*_\mu(L-1) | x_\mu == 0
|
||||||
|
//else
|
||||||
|
//shift = 1
|
||||||
|
//Out(x) = U_\mu(x+\hat\mu mod L)
|
||||||
|
//shift = -1
|
||||||
|
//Out(x) = U_\mu(x-\hat\mu mod L)
|
||||||
|
static inline GaugeLinkField CshiftLink(const GaugeLinkField &Link, int mu, int shift){
|
||||||
|
assert(_conjDirs.size() == Nd);
|
||||||
|
if(_conjDirs[mu])
|
||||||
|
return ConjugateBC::CshiftLink(Link,mu,shift);
|
||||||
|
else
|
||||||
|
return PeriodicBC::CshiftLink(Link,mu,shift);
|
||||||
|
}
|
||||||
|
|
||||||
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
static inline void setDirections(std::vector<int> &conjDirs) { _conjDirs=conjDirs; }
|
||||||
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
static inline std::vector<int> getDirections(void) { return _conjDirs; }
|
||||||
static inline bool isPeriodicGaugeField(void) { return false; }
|
static inline bool isPeriodicGaugeField(void) { return false; }
|
||||||
|
@ -13,6 +13,31 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
|
std::cout << GridLogMessage << "Pseudofermion action lamda_max "<<lambda_max<<"( bound "<<hi<<")"<<std::endl;
|
||||||
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
|
assert( (lambda_max < hi) && " High Bounds Check on operator failed" );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<class Field> void ChebyBoundsCheck(LinearOperatorBase<Field> &HermOp,
|
||||||
|
Field &GaussNoise,
|
||||||
|
RealD lo,RealD hi)
|
||||||
|
{
|
||||||
|
int orderfilter = 1000;
|
||||||
|
Chebyshev<Field> Cheb(lo,hi,orderfilter);
|
||||||
|
|
||||||
|
GridBase *FermionGrid = GaussNoise.Grid();
|
||||||
|
|
||||||
|
Field X(FermionGrid);
|
||||||
|
Field Z(FermionGrid);
|
||||||
|
|
||||||
|
X=GaussNoise;
|
||||||
|
RealD Nx = norm2(X);
|
||||||
|
Cheb(HermOp,X,Z);
|
||||||
|
RealD Nz = norm2(Z);
|
||||||
|
|
||||||
|
std::cout << "************************* "<<std::endl;
|
||||||
|
std::cout << " noise = "<<Nx<<std::endl;
|
||||||
|
std::cout << " Cheb x noise = "<<Nz<<std::endl;
|
||||||
|
std::cout << " Ratio = "<<Nz/Nx<<std::endl;
|
||||||
|
std::cout << "************************* "<<std::endl;
|
||||||
|
assert( ((Nz/Nx)<1.0) && " ChebyBoundsCheck ");
|
||||||
|
}
|
||||||
|
|
||||||
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
|
template<class Field> void InverseSqrtBoundsCheck(int MaxIter,double tol,
|
||||||
LinearOperatorBase<Field> &HermOp,
|
LinearOperatorBase<Field> &HermOp,
|
||||||
@ -40,13 +65,65 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
X=X-Y;
|
X=X-Y;
|
||||||
RealD Nd = norm2(X);
|
RealD Nd = norm2(X);
|
||||||
std::cout << "************************* "<<std::endl;
|
std::cout << "************************* "<<std::endl;
|
||||||
std::cout << " noise = "<<Nx<<std::endl;
|
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||||
std::cout << " (MdagM^-1/2)^2 noise = "<<Nz<<std::endl;
|
std::cout << " | (MdagM^-1/2)^2 noise |^2 = "<<Nz<<std::endl;
|
||||||
std::cout << " MdagM (MdagM^-1/2)^2 noise = "<<Ny<<std::endl;
|
std::cout << " | MdagM (MdagM^-1/2)^2 noise |^2 = "<<Ny<<std::endl;
|
||||||
std::cout << " noise - MdagM (MdagM^-1/2)^2 noise = "<<Nd<<std::endl;
|
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise |^2 = "<<Nd<<std::endl;
|
||||||
|
std::cout << " | noise - MdagM (MdagM^-1/2)^2 noise|/|noise| = " << std::sqrt(Nd/Nx) << std::endl;
|
||||||
std::cout << "************************* "<<std::endl;
|
std::cout << "************************* "<<std::endl;
|
||||||
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
assert( (std::sqrt(Nd/Nx)<tol) && " InverseSqrtBoundsCheck ");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* For a HermOp = M^dag M, check the approximation of HermOp^{-1/inv_pow}
|
||||||
|
by computing |X - HermOp * [ Hermop^{-1/inv_pow} ]^{inv_pow} X| < tol
|
||||||
|
for noise X (aka GaussNoise).
|
||||||
|
ApproxNegPow should be the rational approximation for X^{-1/inv_pow}
|
||||||
|
*/
|
||||||
|
template<class Field> void InversePowerBoundsCheck(int inv_pow,
|
||||||
|
int MaxIter,double tol,
|
||||||
|
LinearOperatorBase<Field> &HermOp,
|
||||||
|
Field &GaussNoise,
|
||||||
|
MultiShiftFunction &ApproxNegPow)
|
||||||
|
{
|
||||||
|
GridBase *FermionGrid = GaussNoise.Grid();
|
||||||
|
|
||||||
|
Field X(FermionGrid);
|
||||||
|
Field Y(FermionGrid);
|
||||||
|
Field Z(FermionGrid);
|
||||||
|
|
||||||
|
Field tmp1(FermionGrid), tmp2(FermionGrid);
|
||||||
|
|
||||||
|
X=GaussNoise;
|
||||||
|
RealD Nx = norm2(X);
|
||||||
|
|
||||||
|
ConjugateGradientMultiShift<Field> msCG(MaxIter,ApproxNegPow);
|
||||||
|
|
||||||
|
tmp1 = X;
|
||||||
|
|
||||||
|
Field* in = &tmp1;
|
||||||
|
Field* out = &tmp2;
|
||||||
|
for(int i=0;i<inv_pow;i++){ //apply [ Hermop^{-1/inv_pow} ]^{inv_pow} X = HermOp^{-1} X
|
||||||
|
msCG(HermOp, *in, *out); //backwards conventions!
|
||||||
|
if(i!=inv_pow-1) std::swap(in, out);
|
||||||
|
}
|
||||||
|
Z = *out;
|
||||||
|
|
||||||
|
RealD Nz = norm2(Z);
|
||||||
|
|
||||||
|
HermOp.HermOp(Z,Y);
|
||||||
|
RealD Ny = norm2(Y);
|
||||||
|
|
||||||
|
X=X-Y;
|
||||||
|
RealD Nd = norm2(X);
|
||||||
|
std::cout << "************************* "<<std::endl;
|
||||||
|
std::cout << " | noise |^2 = "<<Nx<<std::endl;
|
||||||
|
std::cout << " | (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nz<<std::endl;
|
||||||
|
std::cout << " | MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Ny<<std::endl;
|
||||||
|
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |^2 = "<<Nd<<std::endl;
|
||||||
|
std::cout << " | noise - MdagM (MdagM^-1/" << inv_pow << ")^" << inv_pow << " noise |/| noise | = "<<std::sqrt(Nd/Nx)<<std::endl;
|
||||||
|
std::cout << "************************* "<<std::endl;
|
||||||
|
assert( (std::sqrt(Nd/Nx)<tol) && " InversePowerBoundsCheck ");
|
||||||
|
}
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -0,0 +1,163 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundaryBoson.h
|
||||||
|
|
||||||
|
Copyright (C) 2021
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Two flavour ratio
|
||||||
|
///////////////////////////////////////
|
||||||
|
template<class ImplD,class ImplF>
|
||||||
|
class DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion : public Action<typename ImplD::GaugeField> {
|
||||||
|
public:
|
||||||
|
INHERIT_IMPL_TYPES(ImplD);
|
||||||
|
|
||||||
|
private:
|
||||||
|
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
|
||||||
|
RealD InnerStoppingCondition;
|
||||||
|
RealD ActionStoppingCondition;
|
||||||
|
RealD DerivativeStoppingCondition;
|
||||||
|
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||||
|
public:
|
||||||
|
DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
|
||||||
|
: NumOp(_NumOp),
|
||||||
|
DerivativeStoppingCondition(_DerivativeTol),
|
||||||
|
ActionStoppingCondition(_ActionTol),
|
||||||
|
InnerStoppingCondition(_InnerTol),
|
||||||
|
Phi(_NumOp.FermionGrid()) {};
|
||||||
|
|
||||||
|
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourBosonPseudoFermion";}
|
||||||
|
|
||||||
|
virtual std::string LogParameters(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
|
||||||
|
{
|
||||||
|
// P(phi) = e^{- phi^dag P^dag P phi}
|
||||||
|
//
|
||||||
|
// NumOp == P
|
||||||
|
//
|
||||||
|
// Take phi = P^{-1} eta ; eta = P Phi
|
||||||
|
//
|
||||||
|
// P(eta) = e^{- eta^dag eta}
|
||||||
|
//
|
||||||
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||||
|
//
|
||||||
|
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||||
|
//
|
||||||
|
RealD scale = std::sqrt(0.5);
|
||||||
|
|
||||||
|
NumOp.tolinner=InnerStoppingCondition;
|
||||||
|
NumOp.tol=ActionStoppingCondition;
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField eta(NumOp.FermionGrid());
|
||||||
|
|
||||||
|
gaussian(pRNG,eta); eta=eta*scale;
|
||||||
|
|
||||||
|
NumOp.ProjectBoundaryBar(eta);
|
||||||
|
//DumpSliceNorm("eta",eta);
|
||||||
|
NumOp.RInv(eta,Phi);
|
||||||
|
|
||||||
|
//DumpSliceNorm("Phi",Phi);
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// S = phi^dag Pdag P phi
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
virtual RealD S(const GaugeField &U) {
|
||||||
|
|
||||||
|
NumOp.tolinner=InnerStoppingCondition;
|
||||||
|
NumOp.tol=ActionStoppingCondition;
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField Y(NumOp.FermionGrid());
|
||||||
|
|
||||||
|
NumOp.R(Phi,Y);
|
||||||
|
|
||||||
|
RealD action = norm2(Y);
|
||||||
|
|
||||||
|
return action;
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
|
||||||
|
{
|
||||||
|
NumOp.tolinner=InnerStoppingCondition;
|
||||||
|
NumOp.tol=DerivativeStoppingCondition;
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
|
||||||
|
GridBase *fgrid = NumOp.FermionGrid();
|
||||||
|
GridBase *ugrid = NumOp.GaugeGrid();
|
||||||
|
|
||||||
|
FermionField X(fgrid);
|
||||||
|
FermionField Y(fgrid);
|
||||||
|
FermionField tmp(fgrid);
|
||||||
|
|
||||||
|
GaugeField force(ugrid);
|
||||||
|
|
||||||
|
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
|
||||||
|
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
|
||||||
|
FermionField DoidP_Phi(fgrid); // Vector E in my notes
|
||||||
|
FermionField DobidDddDoidP_Phi(fgrid); // Vector F in my notes
|
||||||
|
|
||||||
|
FermionField P_Phi(fgrid);
|
||||||
|
|
||||||
|
// P term
|
||||||
|
NumOp.dBoundaryBar(Phi,tmp);
|
||||||
|
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
|
||||||
|
NumOp.dBoundary(DobiDdbPhi,tmp);
|
||||||
|
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
|
||||||
|
P_Phi = Phi - DoiDdDobiDdbPhi;
|
||||||
|
NumOp.ProjectBoundaryBar(P_Phi);
|
||||||
|
|
||||||
|
// P^dag P term
|
||||||
|
NumOp.dOmegaDagInv(P_Phi,DoidP_Phi); // Vector E
|
||||||
|
NumOp.dBoundaryDag(DoidP_Phi,tmp);
|
||||||
|
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidP_Phi); // Vector F
|
||||||
|
NumOp.dBoundaryBarDag(DobidDddDoidP_Phi,tmp);
|
||||||
|
|
||||||
|
X = DobiDdbPhi;
|
||||||
|
Y = DobidDddDoidP_Phi;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||||
|
|
||||||
|
X = DoiDdDobiDdbPhi;
|
||||||
|
Y = DoidP_Phi;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||||
|
|
||||||
|
dSdU *= -1.0;
|
||||||
|
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
@ -0,0 +1,158 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
|
||||||
|
|
||||||
|
Copyright (C) 2021
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Two flavour ratio
|
||||||
|
///////////////////////////////////////
|
||||||
|
template<class ImplD,class ImplF>
|
||||||
|
class DomainDecomposedBoundaryTwoFlavourPseudoFermion : public Action<typename ImplD::GaugeField> {
|
||||||
|
public:
|
||||||
|
INHERIT_IMPL_TYPES(ImplD);
|
||||||
|
|
||||||
|
private:
|
||||||
|
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
|
||||||
|
RealD ActionStoppingCondition;
|
||||||
|
RealD DerivativeStoppingCondition;
|
||||||
|
RealD InnerStoppingCondition;
|
||||||
|
|
||||||
|
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||||
|
|
||||||
|
RealD refresh_action;
|
||||||
|
public:
|
||||||
|
DomainDecomposedBoundaryTwoFlavourPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol = 1.0e-6 )
|
||||||
|
: DenOp(_DenOp),
|
||||||
|
DerivativeStoppingCondition(_DerivativeTol),
|
||||||
|
ActionStoppingCondition(_ActionTol),
|
||||||
|
InnerStoppingCondition(_InnerTol),
|
||||||
|
Phi(_DenOp.FermionGrid()) {};
|
||||||
|
|
||||||
|
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourPseudoFermion";}
|
||||||
|
|
||||||
|
|
||||||
|
virtual std::string LogParameters(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
|
||||||
|
{
|
||||||
|
// P(phi) = e^{- phi^dag Rdag^-1 R^-1 phi}
|
||||||
|
//
|
||||||
|
// DenOp == R
|
||||||
|
//
|
||||||
|
// Take phi = R eta ; eta = R^-1 Phi
|
||||||
|
//
|
||||||
|
// P(eta) = e^{- eta^dag eta}
|
||||||
|
//
|
||||||
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||||
|
//
|
||||||
|
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||||
|
//
|
||||||
|
RealD scale = std::sqrt(0.5);
|
||||||
|
|
||||||
|
DenOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tol =ActionStoppingCondition;
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField eta(DenOp.FermionGrid());
|
||||||
|
|
||||||
|
gaussian(pRNG,eta); eta=eta*scale;
|
||||||
|
|
||||||
|
DenOp.ProjectBoundaryBar(eta);
|
||||||
|
DenOp.R(eta,Phi);
|
||||||
|
//DumpSliceNorm("Phi",Phi);
|
||||||
|
refresh_action = norm2(eta);
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// S = phi^dag Rdag^-1 R^-1 phi
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
virtual RealD S(const GaugeField &U) {
|
||||||
|
|
||||||
|
DenOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tol=ActionStoppingCondition;
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField X(DenOp.FermionGrid());
|
||||||
|
|
||||||
|
DenOp.RInv(Phi,X);
|
||||||
|
|
||||||
|
RealD action = norm2(X);
|
||||||
|
|
||||||
|
return action;
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
|
||||||
|
{
|
||||||
|
DenOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tol=DerivativeStoppingCondition;
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
GridBase *fgrid = DenOp.FermionGrid();
|
||||||
|
GridBase *ugrid = DenOp.GaugeGrid();
|
||||||
|
|
||||||
|
FermionField X(fgrid);
|
||||||
|
FermionField Y(fgrid);
|
||||||
|
FermionField tmp(fgrid);
|
||||||
|
|
||||||
|
GaugeField force(ugrid);
|
||||||
|
|
||||||
|
FermionField DiDdb_Phi(fgrid); // Vector C in my notes
|
||||||
|
FermionField DidRinv_Phi(fgrid); // Vector D in my notes
|
||||||
|
FermionField Rinv_Phi(fgrid);
|
||||||
|
|
||||||
|
// FermionField RinvDagRinv_Phi(fgrid);
|
||||||
|
// FermionField DdbdDidRinv_Phi(fgrid);
|
||||||
|
|
||||||
|
// R^-1 term
|
||||||
|
DenOp.dBoundaryBar(Phi,tmp);
|
||||||
|
DenOp.Dinverse(tmp,DiDdb_Phi); // Vector C
|
||||||
|
Rinv_Phi = Phi - DiDdb_Phi;
|
||||||
|
DenOp.ProjectBoundaryBar(Rinv_Phi);
|
||||||
|
|
||||||
|
// R^-dagger R^-1 term
|
||||||
|
DenOp.DinverseDag(Rinv_Phi,DidRinv_Phi); // Vector D
|
||||||
|
/*
|
||||||
|
DenOp.dBoundaryBarDag(DidRinv_Phi,DdbdDidRinv_Phi);
|
||||||
|
RinvDagRinv_Phi = Rinv_Phi - DdbdDidRinv_Phi;
|
||||||
|
DenOp.ProjectBoundaryBar(RinvDagRinv_Phi);
|
||||||
|
*/
|
||||||
|
X = DiDdb_Phi;
|
||||||
|
Y = DidRinv_Phi;
|
||||||
|
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=force;
|
||||||
|
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||||
|
DumpSliceNorm("force",dSdU);
|
||||||
|
dSdU *= -1.0;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
@ -0,0 +1,237 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/pseudofermion/DomainDecomposedTwoFlavourBoundary.h
|
||||||
|
|
||||||
|
Copyright (C) 2021
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Two flavour ratio
|
||||||
|
///////////////////////////////////////
|
||||||
|
template<class ImplD,class ImplF>
|
||||||
|
class DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion : public Action<typename ImplD::GaugeField> {
|
||||||
|
public:
|
||||||
|
INHERIT_IMPL_TYPES(ImplD);
|
||||||
|
|
||||||
|
private:
|
||||||
|
SchurFactoredFermionOperator<ImplD,ImplF> & NumOp;// the basic operator
|
||||||
|
SchurFactoredFermionOperator<ImplD,ImplF> & DenOp;// the basic operator
|
||||||
|
|
||||||
|
RealD InnerStoppingCondition;
|
||||||
|
RealD ActionStoppingCondition;
|
||||||
|
RealD DerivativeStoppingCondition;
|
||||||
|
|
||||||
|
FermionField Phi; // the pseudo fermion field for this trajectory
|
||||||
|
|
||||||
|
public:
|
||||||
|
DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion(SchurFactoredFermionOperator<ImplD,ImplF> &_NumOp,
|
||||||
|
SchurFactoredFermionOperator<ImplD,ImplF> &_DenOp,
|
||||||
|
RealD _DerivativeTol, RealD _ActionTol, RealD _InnerTol=1.0e-6)
|
||||||
|
: NumOp(_NumOp), DenOp(_DenOp),
|
||||||
|
Phi(_NumOp.PeriodicFermOpD.FermionGrid()),
|
||||||
|
InnerStoppingCondition(_InnerTol),
|
||||||
|
DerivativeStoppingCondition(_DerivativeTol),
|
||||||
|
ActionStoppingCondition(_ActionTol)
|
||||||
|
{};
|
||||||
|
|
||||||
|
virtual std::string action_name(){return "DomainDecomposedBoundaryTwoFlavourRatioPseudoFermion";}
|
||||||
|
|
||||||
|
virtual std::string LogParameters(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void refresh(const GaugeField &U, GridSerialRNG& sRNG, GridParallelRNG& pRNG)
|
||||||
|
{
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField eta(NumOp.PeriodicFermOpD.FermionGrid());
|
||||||
|
FermionField tmp(NumOp.PeriodicFermOpD.FermionGrid());
|
||||||
|
|
||||||
|
// P(phi) = e^{- phi^dag P^dag Rdag^-1 R^-1 P phi}
|
||||||
|
//
|
||||||
|
// NumOp == P
|
||||||
|
// DenOp == R
|
||||||
|
//
|
||||||
|
// Take phi = P^{-1} R eta ; eta = R^-1 P Phi
|
||||||
|
//
|
||||||
|
// P(eta) = e^{- eta^dag eta}
|
||||||
|
//
|
||||||
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||||
|
//
|
||||||
|
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||||
|
//
|
||||||
|
RealD scale = std::sqrt(0.5);
|
||||||
|
|
||||||
|
gaussian(pRNG,eta); eta=eta*scale;
|
||||||
|
|
||||||
|
NumOp.ProjectBoundaryBar(eta);
|
||||||
|
NumOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tol = ActionStoppingCondition;
|
||||||
|
NumOp.tol = ActionStoppingCondition;
|
||||||
|
DenOp.R(eta,tmp);
|
||||||
|
NumOp.RInv(tmp,Phi);
|
||||||
|
DumpSliceNorm("Phi",Phi);
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// S = phi^dag Pdag Rdag^-1 R^-1 P phi
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
virtual RealD S(const GaugeField &U) {
|
||||||
|
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField X(NumOp.PeriodicFermOpD.FermionGrid());
|
||||||
|
FermionField Y(NumOp.PeriodicFermOpD.FermionGrid());
|
||||||
|
|
||||||
|
NumOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tol = ActionStoppingCondition;
|
||||||
|
NumOp.tol = ActionStoppingCondition;
|
||||||
|
NumOp.R(Phi,Y);
|
||||||
|
DenOp.RInv(Y,X);
|
||||||
|
|
||||||
|
RealD action = norm2(X);
|
||||||
|
// std::cout << " DD boundary action is " <<action<<std::endl;
|
||||||
|
|
||||||
|
return action;
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU)
|
||||||
|
{
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
GridBase *fgrid = NumOp.PeriodicFermOpD.FermionGrid();
|
||||||
|
GridBase *ugrid = NumOp.PeriodicFermOpD.GaugeGrid();
|
||||||
|
|
||||||
|
FermionField X(fgrid);
|
||||||
|
FermionField Y(fgrid);
|
||||||
|
FermionField tmp(fgrid);
|
||||||
|
|
||||||
|
GaugeField force(ugrid);
|
||||||
|
|
||||||
|
FermionField DobiDdbPhi(fgrid); // Vector A in my notes
|
||||||
|
FermionField DoiDdDobiDdbPhi(fgrid); // Vector B in my notes
|
||||||
|
FermionField DiDdbP_Phi(fgrid); // Vector C in my notes
|
||||||
|
FermionField DidRinvP_Phi(fgrid); // Vector D in my notes
|
||||||
|
FermionField DdbdDidRinvP_Phi(fgrid);
|
||||||
|
FermionField DoidRinvDagRinvP_Phi(fgrid); // Vector E in my notes
|
||||||
|
FermionField DobidDddDoidRinvDagRinvP_Phi(fgrid); // Vector F in my notes
|
||||||
|
|
||||||
|
FermionField P_Phi(fgrid);
|
||||||
|
FermionField RinvP_Phi(fgrid);
|
||||||
|
FermionField RinvDagRinvP_Phi(fgrid);
|
||||||
|
FermionField PdagRinvDagRinvP_Phi(fgrid);
|
||||||
|
|
||||||
|
// RealD action = S(U);
|
||||||
|
NumOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tolinner=InnerStoppingCondition;
|
||||||
|
DenOp.tol = DerivativeStoppingCondition;
|
||||||
|
NumOp.tol = DerivativeStoppingCondition;
|
||||||
|
|
||||||
|
// P term
|
||||||
|
NumOp.dBoundaryBar(Phi,tmp);
|
||||||
|
NumOp.dOmegaBarInv(tmp,DobiDdbPhi); // Vector A
|
||||||
|
NumOp.dBoundary(DobiDdbPhi,tmp);
|
||||||
|
NumOp.dOmegaInv(tmp,DoiDdDobiDdbPhi); // Vector B
|
||||||
|
P_Phi = Phi - DoiDdDobiDdbPhi;
|
||||||
|
NumOp.ProjectBoundaryBar(P_Phi);
|
||||||
|
|
||||||
|
// R^-1 P term
|
||||||
|
DenOp.dBoundaryBar(P_Phi,tmp);
|
||||||
|
DenOp.Dinverse(tmp,DiDdbP_Phi); // Vector C
|
||||||
|
RinvP_Phi = P_Phi - DiDdbP_Phi;
|
||||||
|
DenOp.ProjectBoundaryBar(RinvP_Phi); // Correct to here
|
||||||
|
|
||||||
|
|
||||||
|
// R^-dagger R^-1 P term
|
||||||
|
DenOp.DinverseDag(RinvP_Phi,DidRinvP_Phi); // Vector D
|
||||||
|
DenOp.dBoundaryBarDag(DidRinvP_Phi,DdbdDidRinvP_Phi);
|
||||||
|
RinvDagRinvP_Phi = RinvP_Phi - DdbdDidRinvP_Phi;
|
||||||
|
DenOp.ProjectBoundaryBar(RinvDagRinvP_Phi);
|
||||||
|
|
||||||
|
|
||||||
|
// P^dag R^-dagger R^-1 P term
|
||||||
|
NumOp.dOmegaDagInv(RinvDagRinvP_Phi,DoidRinvDagRinvP_Phi); // Vector E
|
||||||
|
NumOp.dBoundaryDag(DoidRinvDagRinvP_Phi,tmp);
|
||||||
|
NumOp.dOmegaBarDagInv(tmp,DobidDddDoidRinvDagRinvP_Phi); // Vector F
|
||||||
|
NumOp.dBoundaryBarDag(DobidDddDoidRinvDagRinvP_Phi,tmp);
|
||||||
|
PdagRinvDagRinvP_Phi = RinvDagRinvP_Phi- tmp;
|
||||||
|
NumOp.ProjectBoundaryBar(PdagRinvDagRinvP_Phi);
|
||||||
|
|
||||||
|
/*
|
||||||
|
std::cout << "S eval "<< action << std::endl;
|
||||||
|
std::cout << "S - IP1 "<< innerProduct(Phi,PdagRinvDagRinvP_Phi) << std::endl;
|
||||||
|
std::cout << "S - IP2 "<< norm2(RinvP_Phi) << std::endl;
|
||||||
|
|
||||||
|
NumOp.R(Phi,tmp);
|
||||||
|
tmp = tmp - P_Phi;
|
||||||
|
std::cout << "diff1 "<<norm2(tmp) <<std::endl;
|
||||||
|
|
||||||
|
|
||||||
|
DenOp.RInv(P_Phi,tmp);
|
||||||
|
tmp = tmp - RinvP_Phi;
|
||||||
|
std::cout << "diff2 "<<norm2(tmp) <<std::endl;
|
||||||
|
|
||||||
|
DenOp.RDagInv(RinvP_Phi,tmp);
|
||||||
|
tmp = tmp - RinvDagRinvP_Phi;
|
||||||
|
std::cout << "diff3 "<<norm2(tmp) <<std::endl;
|
||||||
|
|
||||||
|
DenOp.RDag(RinvDagRinvP_Phi,tmp);
|
||||||
|
tmp = tmp - PdagRinvDagRinvP_Phi;
|
||||||
|
std::cout << "diff4 "<<norm2(tmp) <<std::endl;
|
||||||
|
*/
|
||||||
|
|
||||||
|
dSdU=Zero();
|
||||||
|
|
||||||
|
X = DobiDdbPhi;
|
||||||
|
Y = DobidDddDoidRinvDagRinvP_Phi;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||||
|
|
||||||
|
X = DoiDdDobiDdbPhi;
|
||||||
|
Y = DoidRinvDagRinvP_Phi;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||||
|
NumOp.DirichletFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||||
|
|
||||||
|
X = DiDdbP_Phi;
|
||||||
|
Y = DidRinvP_Phi;
|
||||||
|
DenOp.PeriodicFermOpD.MDeriv(force,Y,X,DaggerNo); dSdU=dSdU+force;
|
||||||
|
DenOp.PeriodicFermOpD.MDeriv(force,X,Y,DaggerYes); dSdU=dSdU+force;
|
||||||
|
|
||||||
|
dSdU *= -1.0;
|
||||||
|
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
@ -44,6 +44,10 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
// Exact one flavour implementation of DWF determinant ratio //
|
// Exact one flavour implementation of DWF determinant ratio //
|
||||||
///////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
//Note: using mixed prec CG for the heatbath solver in this action class will not work
|
||||||
|
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
|
||||||
|
// You will find that the heatbath solver simply won't converge.
|
||||||
|
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
|
||||||
{
|
{
|
||||||
@ -57,37 +61,60 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
bool use_heatbath_forecasting;
|
bool use_heatbath_forecasting;
|
||||||
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
|
||||||
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
|
||||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverHB;
|
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
|
||||||
|
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
|
||||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
|
||||||
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
|
||||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
|
||||||
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
|
||||||
FermionField Phi; // the pseudofermion field for this trajectory
|
FermionField Phi; // the pseudofermion field for this trajectory
|
||||||
|
|
||||||
|
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
|
||||||
|
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
|
||||||
public:
|
public:
|
||||||
|
|
||||||
|
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||||
|
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||||
|
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
|
||||||
|
op.RefreshShiftCoefficients(to);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//Use the same solver for L,R in all cases
|
||||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||||
AbstractEOFAFermion<Impl>& _Rop,
|
AbstractEOFAFermion<Impl>& _Rop,
|
||||||
OperatorFunction<FermionField>& CG,
|
OperatorFunction<FermionField>& CG,
|
||||||
Params& p,
|
Params& p,
|
||||||
bool use_fc=false)
|
bool use_fc=false)
|
||||||
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,p,use_fc) {};
|
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
|
||||||
|
|
||||||
|
//Use the same solver for L,R in the heatbath but different solvers elsewhere
|
||||||
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||||
AbstractEOFAFermion<Impl>& _Rop,
|
AbstractEOFAFermion<Impl>& _Rop,
|
||||||
OperatorFunction<FermionField>& HeatbathCG,
|
OperatorFunction<FermionField>& HeatbathCG,
|
||||||
|
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||||
|
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||||
|
Params& p,
|
||||||
|
bool use_fc=false)
|
||||||
|
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
|
||||||
|
|
||||||
|
//Use different solvers for L,R in all cases
|
||||||
|
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
|
||||||
|
AbstractEOFAFermion<Impl>& _Rop,
|
||||||
|
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||||
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||||
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||||
Params& p,
|
Params& p,
|
||||||
bool use_fc=false) :
|
bool use_fc=false) :
|
||||||
Lop(_Lop),
|
Lop(_Lop),
|
||||||
Rop(_Rop),
|
Rop(_Rop),
|
||||||
SolverHB(HeatbathCG,false,true),
|
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
|
||||||
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
|
||||||
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
|
||||||
Phi(_Lop.FermionGrid()),
|
Phi(_Lop.FermionGrid()),
|
||||||
param(p),
|
param(p),
|
||||||
use_heatbath_forecasting(use_fc)
|
use_heatbath_forecasting(use_fc),
|
||||||
|
initial_action(false)
|
||||||
{
|
{
|
||||||
AlgRemez remez(param.lo, param.hi, param.precision);
|
AlgRemez remez(param.lo, param.hi, param.precision);
|
||||||
|
|
||||||
@ -97,6 +124,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
PowerNegHalf.Init(remez, param.tolerance, true);
|
PowerNegHalf.Init(remez, param.tolerance, true);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const FermionField &getPhi() const{ return Phi; }
|
||||||
|
|
||||||
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
|
||||||
|
|
||||||
virtual std::string LogParameters() {
|
virtual std::string LogParameters() {
|
||||||
@ -117,6 +146,19 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||||
|
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||||
|
//
|
||||||
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||||
|
//
|
||||||
|
RealD scale = std::sqrt(0.5);
|
||||||
|
|
||||||
|
FermionField eta (Lop.FermionGrid());
|
||||||
|
gaussian(pRNG,eta); eta = eta * scale;
|
||||||
|
|
||||||
|
refresh(U,eta);
|
||||||
|
}
|
||||||
|
|
||||||
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
|
||||||
// We generate a Gaussian noise vector \eta, and then compute
|
// We generate a Gaussian noise vector \eta, and then compute
|
||||||
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
|
||||||
@ -124,12 +166,10 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
//
|
//
|
||||||
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
|
||||||
//
|
//
|
||||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||||
{
|
|
||||||
Lop.ImportGauge(U);
|
Lop.ImportGauge(U);
|
||||||
Rop.ImportGauge(U);
|
Rop.ImportGauge(U);
|
||||||
|
|
||||||
FermionField eta (Lop.FermionGrid());
|
|
||||||
FermionField CG_src (Lop.FermionGrid());
|
FermionField CG_src (Lop.FermionGrid());
|
||||||
FermionField CG_soln (Lop.FermionGrid());
|
FermionField CG_soln (Lop.FermionGrid());
|
||||||
FermionField Forecast_src(Lop.FermionGrid());
|
FermionField Forecast_src(Lop.FermionGrid());
|
||||||
@ -140,11 +180,6 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
|
||||||
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
|
||||||
|
|
||||||
// Seed with Gaussian noise vector (var = 0.5)
|
|
||||||
RealD scale = std::sqrt(0.5);
|
|
||||||
gaussian(pRNG,eta);
|
|
||||||
eta = eta * scale;
|
|
||||||
|
|
||||||
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||||
RealD N(PowerNegHalf.norm);
|
RealD N(PowerNegHalf.norm);
|
||||||
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
|
||||||
@ -160,15 +195,15 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
tmp[1] = Zero();
|
tmp[1] = Zero();
|
||||||
for(int k=0; k<param.degree; ++k){
|
for(int k=0; k<param.degree; ++k){
|
||||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||||
Lop.RefreshShiftCoefficients(-gamma_l);
|
heatbathRefreshShiftCoefficients(0, -gamma_l);
|
||||||
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
|
||||||
Lop.Mdag(CG_src, Forecast_src);
|
Lop.Mdag(CG_src, Forecast_src);
|
||||||
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
|
||||||
SolverHB(Lop, CG_src, CG_soln);
|
SolverHBL(Lop, CG_src, CG_soln);
|
||||||
prev_solns.push_back(CG_soln);
|
prev_solns.push_back(CG_soln);
|
||||||
} else {
|
} else {
|
||||||
CG_soln = Zero(); // Just use zero as the initial guess
|
CG_soln = Zero(); // Just use zero as the initial guess
|
||||||
SolverHB(Lop, CG_src, CG_soln);
|
SolverHBL(Lop, CG_src, CG_soln);
|
||||||
}
|
}
|
||||||
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||||
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
|
||||||
@ -187,15 +222,15 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
|
||||||
for(int k=0; k<param.degree; ++k){
|
for(int k=0; k<param.degree; ++k){
|
||||||
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
|
||||||
Rop.RefreshShiftCoefficients(-gamma_l*PowerNegHalf.poles[k]);
|
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
|
||||||
if(use_heatbath_forecasting){
|
if(use_heatbath_forecasting){
|
||||||
Rop.Mdag(CG_src, Forecast_src);
|
Rop.Mdag(CG_src, Forecast_src);
|
||||||
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
|
||||||
SolverHB(Rop, CG_src, CG_soln);
|
SolverHBR(Rop, CG_src, CG_soln);
|
||||||
prev_solns.push_back(CG_soln);
|
prev_solns.push_back(CG_soln);
|
||||||
} else {
|
} else {
|
||||||
CG_soln = Zero();
|
CG_soln = Zero();
|
||||||
SolverHB(Rop, CG_src, CG_soln);
|
SolverHBR(Rop, CG_src, CG_soln);
|
||||||
}
|
}
|
||||||
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||||
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
|
||||||
@ -205,49 +240,117 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
Phi = Phi + tmp[1];
|
Phi = Phi + tmp[1];
|
||||||
|
|
||||||
// Reset shift coefficients for energy and force evals
|
// Reset shift coefficients for energy and force evals
|
||||||
Lop.RefreshShiftCoefficients(0.0);
|
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||||
Rop.RefreshShiftCoefficients(-1.0);
|
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||||
|
|
||||||
|
//Mark that the next call to S is the first after refresh
|
||||||
|
initial_action = true;
|
||||||
|
|
||||||
|
|
||||||
// Bounds check
|
// Bounds check
|
||||||
RealD EtaDagEta = norm2(eta);
|
RealD EtaDagEta = norm2(eta);
|
||||||
|
norm2_eta = EtaDagEta;
|
||||||
|
|
||||||
// RealD PhiDagMPhi= norm2(eta);
|
// RealD PhiDagMPhi= norm2(eta);
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
void Meofa(const GaugeField& U,const FermionField &phi, FermionField & Mphi)
|
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
|
||||||
{
|
{
|
||||||
#if 0
|
|
||||||
Lop.ImportGauge(U);
|
Lop.ImportGauge(U);
|
||||||
Rop.ImportGauge(U);
|
Rop.ImportGauge(U);
|
||||||
|
|
||||||
FermionField spProj_Phi(Lop.FermionGrid());
|
FermionField spProj_in(Lop.FermionGrid());
|
||||||
FermionField mPhi(Lop.FermionGrid());
|
|
||||||
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||||
mPhi = phi;
|
out = in;
|
||||||
|
|
||||||
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
|
||||||
spProj(Phi, spProj_Phi, -1, Lop.Ls);
|
spProj(in, spProj_in, -1, Lop.Ls);
|
||||||
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
|
Lop.Omega(spProj_in, tmp[0], -1, 0);
|
||||||
G5R5(tmp[1], tmp[0]);
|
G5R5(tmp[1], tmp[0]);
|
||||||
tmp[0] = Zero();
|
tmp[0] = Zero();
|
||||||
SolverL(Lop, tmp[1], tmp[0]);
|
SolverL(Lop, tmp[1], tmp[0]);
|
||||||
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
|
||||||
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||||
mPhi = mPhi - Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||||
|
|
||||||
|
out = out - Lop.k * tmp[1];
|
||||||
|
|
||||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
spProj(in, spProj_in, 1, Rop.Ls);
|
||||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
Rop.Omega(spProj_in, tmp[0], 1, 0);
|
||||||
G5R5(tmp[1], tmp[0]);
|
G5R5(tmp[1], tmp[0]);
|
||||||
tmp[0] = Zero();
|
tmp[0] = Zero();
|
||||||
SolverR(Rop, tmp[1], tmp[0]);
|
SolverR(Rop, tmp[1], tmp[0]);
|
||||||
Rop.Dtilde(tmp[0], tmp[1]);
|
Rop.Dtilde(tmp[0], tmp[1]);
|
||||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||||
#endif
|
|
||||||
|
out = out + Rop.k * tmp[1];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
|
||||||
|
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
|
||||||
|
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
|
||||||
|
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
|
||||||
|
Lop.ImportGauge(U);
|
||||||
|
Rop.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField CG_src (Lop.FermionGrid());
|
||||||
|
FermionField CG_soln (Lop.FermionGrid());
|
||||||
|
std::vector<FermionField> tmp(2, Lop.FermionGrid());
|
||||||
|
|
||||||
|
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
|
||||||
|
// = 1 * \eta
|
||||||
|
out = in;
|
||||||
|
|
||||||
|
// LH terms:
|
||||||
|
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
|
||||||
|
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
|
||||||
|
spProj(in, tmp[0], -1, Lop.Ls);
|
||||||
|
Lop.Omega(tmp[0], tmp[1], -1, 0);
|
||||||
|
G5R5(CG_src, tmp[1]);
|
||||||
|
{
|
||||||
|
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
|
||||||
|
|
||||||
|
CG_soln = Zero(); // Just use zero as the initial guess
|
||||||
|
SolverHBL(Lop, CG_src, CG_soln);
|
||||||
|
|
||||||
|
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||||
|
tmp[1] = Lop.k * tmp[0];
|
||||||
|
}
|
||||||
|
Lop.Omega(tmp[1], tmp[0], -1, 1);
|
||||||
|
spProj(tmp[0], tmp[1], -1, Lop.Ls);
|
||||||
|
out = out + tmp[1];
|
||||||
|
|
||||||
|
// RH terms:
|
||||||
|
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||||
|
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
|
||||||
|
spProj(in, tmp[0], 1, Rop.Ls);
|
||||||
|
Rop.Omega(tmp[0], tmp[1], 1, 0);
|
||||||
|
G5R5(CG_src, tmp[1]);
|
||||||
|
{
|
||||||
|
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
|
||||||
|
|
||||||
|
CG_soln = Zero();
|
||||||
|
SolverHBR(Rop, CG_src, CG_soln);
|
||||||
|
|
||||||
|
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
|
||||||
|
tmp[1] = - Rop.k * tmp[0];
|
||||||
|
}
|
||||||
|
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||||
|
spProj(tmp[0], tmp[1], 1, Rop.Ls);
|
||||||
|
out = out + tmp[1];
|
||||||
|
|
||||||
|
// Reset shift coefficients for energy and force evals
|
||||||
|
heatbathRefreshShiftCoefficients(0, 0.0);
|
||||||
|
heatbathRefreshShiftCoefficients(1, -1.0);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
// EOFA action: see Eqn. (10) of arXiv:1706.05843
|
||||||
virtual RealD S(const GaugeField& U)
|
virtual RealD S(const GaugeField& U)
|
||||||
{
|
{
|
||||||
@ -271,7 +374,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||||
|
|
||||||
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
|
||||||
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{-} P_{-} |\Phi>
|
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
|
||||||
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
spProj(Phi, spProj_Phi, 1, Rop.Ls);
|
||||||
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
|
||||||
G5R5(tmp[1], tmp[0]);
|
G5R5(tmp[1], tmp[0]);
|
||||||
@ -281,6 +384,26 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
Rop.Omega(tmp[1], tmp[0], 1, 1);
|
||||||
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
|
||||||
|
|
||||||
|
if(initial_action){
|
||||||
|
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
|
||||||
|
RealD diff = action - norm2_eta;
|
||||||
|
|
||||||
|
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
|
||||||
|
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
|
||||||
|
|
||||||
|
//If approximate solution
|
||||||
|
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
|
||||||
|
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
|
||||||
|
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
|
||||||
|
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
|
||||||
|
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
|
||||||
|
|
||||||
|
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
|
||||||
|
initial_action = false;
|
||||||
|
}
|
||||||
|
|
||||||
return action;
|
return action;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -329,6 +452,40 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template<class ImplD, class ImplF>
|
||||||
|
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
|
||||||
|
public:
|
||||||
|
INHERIT_IMPL_TYPES(ImplD);
|
||||||
|
typedef OneFlavourRationalParams Params;
|
||||||
|
|
||||||
|
private:
|
||||||
|
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
|
||||||
|
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
|
||||||
|
|
||||||
|
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
|
||||||
|
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
|
||||||
|
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
|
||||||
|
op.RefreshShiftCoefficients(to);
|
||||||
|
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
|
||||||
|
}
|
||||||
|
|
||||||
|
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
|
||||||
|
AbstractEOFAFermion<ImplF>& _RopF,
|
||||||
|
AbstractEOFAFermion<ImplD>& _LopD,
|
||||||
|
AbstractEOFAFermion<ImplD>& _RopD,
|
||||||
|
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
|
||||||
|
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
|
||||||
|
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
|
||||||
|
Params& p,
|
||||||
|
bool use_fc=false) :
|
||||||
|
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
434
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
434
Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
Normal file
@ -0,0 +1,434 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||||
|
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_H
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
/////////////////////////////////////////////////////////
|
||||||
|
// Generic rational approximation for ratios of operators
|
||||||
|
/////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
/* S_f = -log( det( [M^dag M]/[V^dag V] )^{1/inv_pow} )
|
||||||
|
= chi^dag ( [M^dag M]/[V^dag V] )^{-1/inv_pow} chi\
|
||||||
|
= chi^dag ( [V^dag V]^{-1/2} [M^dag M] [V^dag V]^{-1/2} )^{-1/inv_pow} chi\
|
||||||
|
= chi^dag [V^dag V]^{1/(2*inv_pow)} [M^dag M]^{-1/inv_pow} [V^dag V]^{1/(2*inv_pow)} chi\
|
||||||
|
|
||||||
|
S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||||
|
|
||||||
|
BIG WARNING:
|
||||||
|
Here V^dag V is referred to in this code as the "numerator" operator and M^dag M is the *denominator* operator.
|
||||||
|
this refers to their position in the pseudofermion action, which is the *inverse* of what appears in the determinant
|
||||||
|
Thus for DWF the numerator operator is the Pauli-Villars operator
|
||||||
|
|
||||||
|
Here P/Q \sim R_{1/(2*inv_pow)} ~ (V^dagV)^{1/(2*inv_pow)}
|
||||||
|
Here N/D \sim R_{-1/inv_pow} ~ (M^dagM)^{-1/inv_pow}
|
||||||
|
*/
|
||||||
|
|
||||||
|
template<class Impl>
|
||||||
|
class GeneralEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||||
|
public:
|
||||||
|
|
||||||
|
INHERIT_IMPL_TYPES(Impl);
|
||||||
|
|
||||||
|
typedef RationalActionParams Params;
|
||||||
|
Params param;
|
||||||
|
RealD RefreshAction;
|
||||||
|
//For action evaluation
|
||||||
|
MultiShiftFunction ApproxPowerAction ; //rational approx for X^{1/inv_pow}
|
||||||
|
MultiShiftFunction ApproxNegPowerAction; //rational approx for X^{-1/inv_pow}
|
||||||
|
MultiShiftFunction ApproxHalfPowerAction; //rational approx for X^{1/(2*inv_pow)}
|
||||||
|
MultiShiftFunction ApproxNegHalfPowerAction; //rational approx for X^{-1/(2*inv_pow)}
|
||||||
|
|
||||||
|
//For the MD integration
|
||||||
|
MultiShiftFunction ApproxPowerMD ; //rational approx for X^{1/inv_pow}
|
||||||
|
MultiShiftFunction ApproxNegPowerMD; //rational approx for X^{-1/inv_pow}
|
||||||
|
MultiShiftFunction ApproxHalfPowerMD; //rational approx for X^{1/(2*inv_pow)}
|
||||||
|
MultiShiftFunction ApproxNegHalfPowerMD; //rational approx for X^{-1/(2*inv_pow)}
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
FermionOperator<Impl> & NumOp;// the basic operator
|
||||||
|
FermionOperator<Impl> & DenOp;// the basic operator
|
||||||
|
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||||
|
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||||
|
|
||||||
|
//Generate the approximation to x^{1/inv_pow} (->approx) and x^{-1/inv_pow} (-> approx_inv) by an approx_degree degree rational approximation
|
||||||
|
//CG_tolerance is used to issue a warning if the approximation error is larger than the tolerance of the CG and is otherwise just stored in the MultiShiftFunction for use by the multi-shift
|
||||||
|
static void generateApprox(MultiShiftFunction &approx, MultiShiftFunction &approx_inv, int inv_pow, int approx_degree, double CG_tolerance, AlgRemez &remez){
|
||||||
|
std::cout<<GridLogMessage << "Generating degree "<< approx_degree<<" approximation for x^(1/" << inv_pow << ")"<<std::endl;
|
||||||
|
double error = remez.generateApprox(approx_degree,1,inv_pow);
|
||||||
|
if(error > CG_tolerance)
|
||||||
|
std::cout<<GridLogMessage << "WARNING: Remez approximation has a larger error " << error << " than the CG tolerance " << CG_tolerance << "! Try increasing the number of poles" << std::endl;
|
||||||
|
|
||||||
|
approx.Init(remez, CG_tolerance,false);
|
||||||
|
approx_inv.Init(remez, CG_tolerance,true);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
protected:
|
||||||
|
static constexpr bool Numerator = true;
|
||||||
|
static constexpr bool Denominator = false;
|
||||||
|
|
||||||
|
//Allow derived classes to override the multishift CG
|
||||||
|
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, FermionField &out){
|
||||||
|
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||||
|
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||||
|
msCG(schurOp,in, out);
|
||||||
|
}
|
||||||
|
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionField &in, std::vector<FermionField> &out_elems, FermionField &out){
|
||||||
|
SchurDifferentiableOperator<Impl> schurOp(numerator ? NumOp : DenOp);
|
||||||
|
ConjugateGradientMultiShift<FermionField> msCG(MaxIter, approx);
|
||||||
|
msCG(schurOp,in, out_elems, out);
|
||||||
|
}
|
||||||
|
//Allow derived classes to override the gauge import
|
||||||
|
virtual void ImportGauge(const GaugeField &U){
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
// allow non-uniform tolerances
|
||||||
|
void SetTolerances(std::vector<RealD> action_tolerance,std::vector<RealD> md_tolerance)
|
||||||
|
{
|
||||||
|
assert(action_tolerance.size()==ApproxPowerAction.tolerances.size());
|
||||||
|
assert( md_tolerance.size()==ApproxPowerMD.tolerances.size());
|
||||||
|
|
||||||
|
// Fix up the tolerances
|
||||||
|
for(int i=0;i<ApproxPowerAction.tolerances.size();i++){
|
||||||
|
ApproxPowerAction.tolerances[i] = action_tolerance[i];
|
||||||
|
ApproxNegPowerAction.tolerances[i] = action_tolerance[i];
|
||||||
|
ApproxHalfPowerAction.tolerances[i] = action_tolerance[i];
|
||||||
|
ApproxNegHalfPowerAction.tolerances[i]= action_tolerance[i];
|
||||||
|
}
|
||||||
|
for(int i=0;i<ApproxPowerMD.tolerances.size();i++){
|
||||||
|
ApproxPowerMD.tolerances[i] = md_tolerance[i];
|
||||||
|
ApproxNegPowerMD.tolerances[i] = md_tolerance[i];
|
||||||
|
ApproxHalfPowerMD.tolerances[i] = md_tolerance[i];
|
||||||
|
ApproxNegHalfPowerMD.tolerances[i]= md_tolerance[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Print out - could deprecate
|
||||||
|
for(int i=0;i<ApproxPowerMD.tolerances.size();i++) {
|
||||||
|
std::cout<<GridLogMessage << " ApproxPowerMD shift["<<i<<"] "
|
||||||
|
<<" pole "<<ApproxPowerMD.poles[i]
|
||||||
|
<<" residue "<<ApproxPowerMD.residues[i]
|
||||||
|
<<" tol "<<ApproxPowerMD.tolerances[i]<<std::endl;
|
||||||
|
}
|
||||||
|
/*
|
||||||
|
for(int i=0;i<ApproxNegPowerMD.tolerances.size();i++) {
|
||||||
|
std::cout<<GridLogMessage << " ApproxNegPowerMD shift["<<i<<"] "
|
||||||
|
<<" pole "<<ApproxNegPowerMD.poles[i]
|
||||||
|
<<" residue "<<ApproxNegPowerMD.residues[i]
|
||||||
|
<<" tol "<<ApproxNegPowerMD.tolerances[i]<<std::endl;
|
||||||
|
}
|
||||||
|
for(int i=0;i<ApproxHalfPowerMD.tolerances.size();i++) {
|
||||||
|
std::cout<<GridLogMessage << " ApproxHalfPowerMD shift["<<i<<"] "
|
||||||
|
<<" pole "<<ApproxHalfPowerMD.poles[i]
|
||||||
|
<<" residue "<<ApproxHalfPowerMD.residues[i]
|
||||||
|
<<" tol "<<ApproxHalfPowerMD.tolerances[i]<<std::endl;
|
||||||
|
}
|
||||||
|
for(int i=0;i<ApproxNegHalfPowerMD.tolerances.size();i++) {
|
||||||
|
std::cout<<GridLogMessage << " ApproxNegHalfPowerMD shift["<<i<<"] "
|
||||||
|
<<" pole "<<ApproxNegHalfPowerMD.poles[i]
|
||||||
|
<<" residue "<<ApproxNegHalfPowerMD.residues[i]
|
||||||
|
<<" tol "<<ApproxNegHalfPowerMD.tolerances[i]<<std::endl;
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
GeneralEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||||
|
FermionOperator<Impl> &_DenOp,
|
||||||
|
const Params & p
|
||||||
|
) :
|
||||||
|
NumOp(_NumOp),
|
||||||
|
DenOp(_DenOp),
|
||||||
|
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
||||||
|
PhiEven(_NumOp.FermionRedBlackGrid()),
|
||||||
|
param(p)
|
||||||
|
{
|
||||||
|
std::cout<<GridLogMessage << action_name() << " initialize: starting" << std::endl;
|
||||||
|
AlgRemez remez(param.lo,param.hi,param.precision);
|
||||||
|
|
||||||
|
//Generate approximations for action eval
|
||||||
|
generateApprox(ApproxPowerAction, ApproxNegPowerAction, param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||||
|
generateApprox(ApproxHalfPowerAction, ApproxNegHalfPowerAction, 2*param.inv_pow, param.action_degree, param.action_tolerance, remez);
|
||||||
|
|
||||||
|
//Generate approximations for MD
|
||||||
|
if(param.md_degree != param.action_degree){ //note the CG tolerance is unrelated to the stopping condition of the Remez algorithm
|
||||||
|
generateApprox(ApproxPowerMD, ApproxNegPowerMD, param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||||
|
generateApprox(ApproxHalfPowerMD, ApproxNegHalfPowerMD, 2*param.inv_pow, param.md_degree, param.md_tolerance, remez);
|
||||||
|
}else{
|
||||||
|
std::cout<<GridLogMessage << "Using same rational approximations for MD as for action evaluation" << std::endl;
|
||||||
|
ApproxPowerMD = ApproxPowerAction;
|
||||||
|
ApproxNegPowerMD = ApproxNegPowerAction;
|
||||||
|
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||||
|
ApproxNegPowerMD.tolerances[i] = ApproxPowerMD.tolerances[i] = param.md_tolerance; //used for multishift
|
||||||
|
|
||||||
|
ApproxHalfPowerMD = ApproxHalfPowerAction;
|
||||||
|
ApproxNegHalfPowerMD = ApproxNegHalfPowerAction;
|
||||||
|
for(int i=0;i<ApproxPowerMD.tolerances.size();i++)
|
||||||
|
ApproxNegHalfPowerMD.tolerances[i] = ApproxHalfPowerMD.tolerances[i] = param.md_tolerance;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<RealD> action_tolerance(ApproxHalfPowerAction.tolerances.size(),param.action_tolerance);
|
||||||
|
std::vector<RealD> md_tolerance (ApproxHalfPowerMD.tolerances.size(),param.md_tolerance);
|
||||||
|
|
||||||
|
SetTolerances(action_tolerance, md_tolerance);
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage << action_name() << " initialize: complete" << std::endl;
|
||||||
|
};
|
||||||
|
|
||||||
|
virtual std::string action_name(){return "GeneralEvenOddRatioRationalPseudoFermionAction";}
|
||||||
|
|
||||||
|
virtual std::string LogParameters(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Power : 1/" << param.inv_pow << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (Action) :" << param.action_tolerance << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Degree (Action) :" << param.action_degree << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance (MD) :" << param.md_tolerance << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Degree (MD) :" << param.md_degree << std::endl;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
//Access the fermion field
|
||||||
|
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||||
|
|
||||||
|
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||||
|
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||||
|
FermionField eta(NumOp.FermionGrid());
|
||||||
|
|
||||||
|
// P(eta) \propto e^{- eta^dag eta}
|
||||||
|
//
|
||||||
|
// The gaussian function draws from P(x) \propto e^{- x^2 / 2 } [i.e. sigma=1]
|
||||||
|
// Thus eta = x/sqrt{2} = x * sqrt(1/2)
|
||||||
|
RealD scale = std::sqrt(0.5);
|
||||||
|
gaussian(pRNG,eta); eta=eta*scale;
|
||||||
|
|
||||||
|
refresh(U,eta);
|
||||||
|
}
|
||||||
|
|
||||||
|
//Allow for manual specification of random field for testing
|
||||||
|
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||||
|
|
||||||
|
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||||
|
//
|
||||||
|
// P(phi) = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/inv_pow (VdagV)^1/(2*inv_pow) phi}
|
||||||
|
// = e^{- phi^dag (VdagV)^1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (MdagM)^-1/(2*inv_pow) (VdagV)^1/(2*inv_pow) phi}
|
||||||
|
//
|
||||||
|
// Phi = (VdagV)^-1/(2*inv_pow) Mdag^{1/(2*inv_pow)} eta
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage << action_name() << " refresh: starting" << std::endl;
|
||||||
|
|
||||||
|
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||||
|
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||||
|
FermionField tmp(NumOp.FermionRedBlackGrid());
|
||||||
|
|
||||||
|
pickCheckerboard(Even,etaEven,eta);
|
||||||
|
pickCheckerboard(Odd,etaOdd,eta);
|
||||||
|
|
||||||
|
ImportGauge(U);
|
||||||
|
|
||||||
|
// MdagM^1/(2*inv_pow) eta
|
||||||
|
std::cout<<GridLogMessage << action_name() << " refresh: doing (M^dag M)^{1/" << 2*param.inv_pow << "} eta" << std::endl;
|
||||||
|
multiShiftInverse(Denominator, ApproxHalfPowerAction, param.MaxIter, etaOdd, tmp);
|
||||||
|
|
||||||
|
// VdagV^-1/(2*inv_pow) MdagM^1/(2*inv_pow) eta
|
||||||
|
std::cout<<GridLogMessage << action_name() << " refresh: doing (V^dag V)^{-1/" << 2*param.inv_pow << "} ( (M^dag M)^{1/" << 2*param.inv_pow << "} eta)" << std::endl;
|
||||||
|
multiShiftInverse(Numerator, ApproxNegHalfPowerAction, param.MaxIter, tmp, PhiOdd);
|
||||||
|
|
||||||
|
assert(NumOp.ConstEE() == 1);
|
||||||
|
assert(DenOp.ConstEE() == 1);
|
||||||
|
PhiEven = Zero();
|
||||||
|
|
||||||
|
RefreshAction = norm2( etaOdd );
|
||||||
|
std::cout<<GridLogMessage << action_name() << " refresh: action is " << RefreshAction << std::endl;
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
virtual RealD Sinitial(const GaugeField &U) {
|
||||||
|
std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
|
||||||
|
return RefreshAction;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual RealD S(const GaugeField &U) {
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: starting" << std::endl;
|
||||||
|
ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField X(NumOp.FermionRedBlackGrid());
|
||||||
|
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||||
|
|
||||||
|
// VdagV^1/(2*inv_pow) Phi
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||||
|
multiShiftInverse(Numerator, ApproxHalfPowerAction, param.MaxIter, PhiOdd,X);
|
||||||
|
|
||||||
|
// MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: doing (M^dag M)^{-1/" << 2*param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||||
|
multiShiftInverse(Denominator, ApproxNegHalfPowerAction, param.MaxIter, X,Y);
|
||||||
|
|
||||||
|
// Randomly apply rational bounds checks.
|
||||||
|
int rcheck = rand();
|
||||||
|
auto grid = NumOp.FermionGrid();
|
||||||
|
auto r=rand();
|
||||||
|
grid->Broadcast(0,r);
|
||||||
|
|
||||||
|
if ( param.BoundsCheckFreq != 0 && (r % param.BoundsCheckFreq)==0 ) {
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: doing bounds check" << std::endl;
|
||||||
|
FermionField gauss(NumOp.FermionRedBlackGrid());
|
||||||
|
gauss = PhiOdd;
|
||||||
|
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: checking high bounds" << std::endl;
|
||||||
|
HighBoundCheck(MdagM,gauss,param.hi);
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: full approximation" << std::endl;
|
||||||
|
InversePowerBoundsCheck(param.inv_pow,param.MaxIter,param.action_tolerance*100,MdagM,gauss,ApproxNegPowerAction);
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: bounds check complete" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Phidag VdagV^1/(2*inv_pow) MdagM^-1/(2*inv_pow) MdagM^-1/(2*inv_pow) VdagV^1/(2*inv_pow) Phi
|
||||||
|
RealD action = norm2(Y);
|
||||||
|
std::cout<<GridLogMessage << action_name() << " compute action: complete" << std::endl;
|
||||||
|
|
||||||
|
return action;
|
||||||
|
};
|
||||||
|
|
||||||
|
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
||||||
|
//
|
||||||
|
// Here, M is some 5D operator and V is the Pauli-Villars field
|
||||||
|
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
||||||
|
//
|
||||||
|
// Need
|
||||||
|
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
||||||
|
// + chi^dag P/Q d[N/D] P/Q chi
|
||||||
|
// + chi^dag P/Q N/D d[P/Q] chi
|
||||||
|
//
|
||||||
|
// P/Q is expressed as partial fraction expansion:
|
||||||
|
//
|
||||||
|
// a0 + \sum_k ak/(V^dagV + bk)
|
||||||
|
//
|
||||||
|
// d[P/Q] is then
|
||||||
|
//
|
||||||
|
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
||||||
|
//
|
||||||
|
// and similar for N/D.
|
||||||
|
//
|
||||||
|
// Need
|
||||||
|
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
||||||
|
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
||||||
|
//
|
||||||
|
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
||||||
|
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
||||||
|
//
|
||||||
|
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
||||||
|
//
|
||||||
|
|
||||||
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: starting" << std::endl;
|
||||||
|
const int n_f = ApproxNegPowerMD.poles.size();
|
||||||
|
const int n_pv = ApproxHalfPowerMD.poles.size();
|
||||||
|
|
||||||
|
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
||||||
|
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
||||||
|
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
||||||
|
|
||||||
|
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
||||||
|
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||||
|
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
||||||
|
FermionField Y(NumOp.FermionRedBlackGrid());
|
||||||
|
|
||||||
|
GaugeField tmp(NumOp.GaugeGrid());
|
||||||
|
|
||||||
|
ImportGauge(U);
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} Phi" << std::endl;
|
||||||
|
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, PhiOdd,MpvPhi_k,MpvPhi);
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: doing (M^dag M)^{-1/" << param.inv_pow << "} ( (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||||
|
multiShiftInverse(Denominator, ApproxNegPowerMD, param.MaxIter, MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||||
|
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: doing (V^dag V)^{1/" << 2*param.inv_pow << "} ( (M^dag M)^{-1/" << param.inv_pow << "} (V^dag V)^{1/" << 2*param.inv_pow << "} Phi)" << std::endl;
|
||||||
|
multiShiftInverse(Numerator, ApproxHalfPowerMD, param.MaxIter, MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
||||||
|
|
||||||
|
|
||||||
|
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
||||||
|
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
||||||
|
|
||||||
|
|
||||||
|
RealD ak;
|
||||||
|
|
||||||
|
dSdU = Zero();
|
||||||
|
|
||||||
|
// With these building blocks
|
||||||
|
//
|
||||||
|
// dS/dU =
|
||||||
|
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
||||||
|
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
||||||
|
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
||||||
|
|
||||||
|
//(1)
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (1)" << std::endl;
|
||||||
|
for(int k=0;k<n_f;k++){
|
||||||
|
ak = ApproxNegPowerMD.residues[k];
|
||||||
|
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
||||||
|
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
||||||
|
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
||||||
|
}
|
||||||
|
|
||||||
|
//(2)
|
||||||
|
//(3)
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: doing dS/dU part (2)+(3)" << std::endl;
|
||||||
|
for(int k=0;k<n_pv;k++){
|
||||||
|
|
||||||
|
ak = ApproxHalfPowerMD.residues[k];
|
||||||
|
|
||||||
|
VdagV.Mpc(MpvPhi_k[k],Y);
|
||||||
|
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
||||||
|
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||||
|
|
||||||
|
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
||||||
|
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
||||||
|
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
//dSdU = Ta(dSdU);
|
||||||
|
std::cout<<GridLogMessage << action_name() << " deriv: complete" << std::endl;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
#endif
|
@ -0,0 +1,133 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#ifndef QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||||
|
#define QCD_PSEUDOFERMION_GENERAL_EVEN_ODD_RATIONAL_RATIO_MIXED_PREC_H
|
||||||
|
|
||||||
|
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h>
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Generic rational approximation for ratios of operators utilizing the mixed precision multishift algorithm
|
||||||
|
// cf. GeneralEvenOddRational.h for details
|
||||||
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
template<class ImplD, class ImplF, class ImplD2>
|
||||||
|
class GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<ImplD> {
|
||||||
|
private:
|
||||||
|
typedef typename ImplD2::FermionField FermionFieldD2;
|
||||||
|
typedef typename ImplD::FermionField FermionFieldD;
|
||||||
|
typedef typename ImplF::FermionField FermionFieldF;
|
||||||
|
|
||||||
|
FermionOperator<ImplD> & NumOpD;
|
||||||
|
FermionOperator<ImplD> & DenOpD;
|
||||||
|
|
||||||
|
FermionOperator<ImplD2> & NumOpD2;
|
||||||
|
FermionOperator<ImplD2> & DenOpD2;
|
||||||
|
|
||||||
|
FermionOperator<ImplF> & NumOpF;
|
||||||
|
FermionOperator<ImplF> & DenOpF;
|
||||||
|
|
||||||
|
Integer ReliableUpdateFreq;
|
||||||
|
protected:
|
||||||
|
|
||||||
|
//Allow derived classes to override the multishift CG
|
||||||
|
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, FermionFieldD &out){
|
||||||
|
#if 0
|
||||||
|
SchurDifferentiableOperator<ImplD> schurOp(numerator ? NumOpD : DenOpD);
|
||||||
|
ConjugateGradientMultiShift<FermionFieldD> msCG(MaxIter, approx);
|
||||||
|
msCG(schurOp,in, out);
|
||||||
|
#else
|
||||||
|
SchurDifferentiableOperator<ImplD2> schurOpD2(numerator ? NumOpD2 : DenOpD2);
|
||||||
|
SchurDifferentiableOperator<ImplF> schurOpF(numerator ? NumOpF : DenOpF);
|
||||||
|
FermionFieldD2 inD2(NumOpD2.FermionRedBlackGrid());
|
||||||
|
FermionFieldD2 outD2(NumOpD2.FermionRedBlackGrid());
|
||||||
|
|
||||||
|
// Action better with higher precision?
|
||||||
|
ConjugateGradientMultiShiftMixedPrec<FermionFieldD2, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||||
|
precisionChange(inD2,in);
|
||||||
|
std::cout << "msCG single solve "<<norm2(inD2)<<" " <<norm2(in)<<std::endl;
|
||||||
|
msCG(schurOpD2, inD2, outD2);
|
||||||
|
precisionChange(out,outD2);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
virtual void multiShiftInverse(bool numerator, const MultiShiftFunction &approx, const Integer MaxIter, const FermionFieldD &in, std::vector<FermionFieldD> &out_elems, FermionFieldD &out){
|
||||||
|
SchurDifferentiableOperator<ImplD2> schurOpD2(numerator ? NumOpD2 : DenOpD2);
|
||||||
|
SchurDifferentiableOperator<ImplF> schurOpF (numerator ? NumOpF : DenOpF);
|
||||||
|
|
||||||
|
FermionFieldD2 inD2(NumOpD2.FermionRedBlackGrid());
|
||||||
|
FermionFieldD2 outD2(NumOpD2.FermionRedBlackGrid());
|
||||||
|
std::vector<FermionFieldD2> out_elemsD2(out_elems.size(),NumOpD2.FermionRedBlackGrid());
|
||||||
|
ConjugateGradientMultiShiftMixedPrecCleanup<FermionFieldD2, FermionFieldF> msCG(MaxIter, approx, NumOpF.FermionRedBlackGrid(), schurOpF, ReliableUpdateFreq);
|
||||||
|
precisionChange(inD2,in);
|
||||||
|
std::cout << "msCG in "<<norm2(inD2)<<" " <<norm2(in)<<std::endl;
|
||||||
|
msCG(schurOpD2, inD2, out_elemsD2, outD2);
|
||||||
|
precisionChange(out,outD2);
|
||||||
|
for(int i=0;i<out_elems.size();i++){
|
||||||
|
precisionChange(out_elems[i],out_elemsD2[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//Allow derived classes to override the gauge import
|
||||||
|
virtual void ImportGauge(const typename ImplD::GaugeField &Ud){
|
||||||
|
|
||||||
|
typename ImplF::GaugeField Uf(NumOpF.GaugeGrid());
|
||||||
|
typename ImplD2::GaugeField Ud2(NumOpD2.GaugeGrid());
|
||||||
|
precisionChange(Uf, Ud);
|
||||||
|
precisionChange(Ud2, Ud);
|
||||||
|
|
||||||
|
std::cout << "Importing "<<norm2(Ud)<<" "<< norm2(Uf)<<" " << norm2(Ud2)<<std::endl;
|
||||||
|
|
||||||
|
NumOpD.ImportGauge(Ud);
|
||||||
|
DenOpD.ImportGauge(Ud);
|
||||||
|
|
||||||
|
NumOpF.ImportGauge(Uf);
|
||||||
|
DenOpF.ImportGauge(Uf);
|
||||||
|
|
||||||
|
NumOpD2.ImportGauge(Ud2);
|
||||||
|
DenOpD2.ImportGauge(Ud2);
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<ImplD> &_NumOpD, FermionOperator<ImplD> &_DenOpD,
|
||||||
|
FermionOperator<ImplF> &_NumOpF, FermionOperator<ImplF> &_DenOpF,
|
||||||
|
FermionOperator<ImplD2> &_NumOpD2, FermionOperator<ImplD2> &_DenOpD2,
|
||||||
|
const RationalActionParams & p, Integer _ReliableUpdateFreq
|
||||||
|
) : GeneralEvenOddRatioRationalPseudoFermionAction<ImplD>(_NumOpD, _DenOpD, p),
|
||||||
|
ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||||
|
NumOpD(_NumOpD), DenOpD(_DenOpD),
|
||||||
|
NumOpF(_NumOpF), DenOpF(_DenOpF),
|
||||||
|
NumOpD2(_NumOpD2), DenOpD2(_DenOpD2)
|
||||||
|
{}
|
||||||
|
|
||||||
|
virtual std::string action_name(){return "GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction";}
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
#endif
|
@ -40,249 +40,64 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
// Here N/D \sim R_{-1/2} ~ (M^dagM)^{-1/2}
|
||||||
|
|
||||||
template<class Impl>
|
template<class Impl>
|
||||||
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
class OneFlavourEvenOddRatioRationalPseudoFermionAction : public GeneralEvenOddRatioRationalPseudoFermionAction<Impl> {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
INHERIT_IMPL_TYPES(Impl);
|
|
||||||
|
|
||||||
typedef OneFlavourRationalParams Params;
|
typedef OneFlavourRationalParams Params;
|
||||||
Params param;
|
|
||||||
|
|
||||||
MultiShiftFunction PowerHalf ;
|
|
||||||
MultiShiftFunction PowerNegHalf;
|
|
||||||
MultiShiftFunction PowerQuarter;
|
|
||||||
MultiShiftFunction PowerNegQuarter;
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
static RationalActionParams transcribe(const Params &in){
|
||||||
FermionOperator<Impl> & NumOp;// the basic operator
|
RationalActionParams out;
|
||||||
FermionOperator<Impl> & DenOp;// the basic operator
|
out.inv_pow = 2;
|
||||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
out.lo = in.lo;
|
||||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
out.hi = in.hi;
|
||||||
|
out.MaxIter = in.MaxIter;
|
||||||
|
out.action_tolerance = out.md_tolerance = in.tolerance;
|
||||||
|
out.action_degree = out.md_degree = in.degree;
|
||||||
|
out.precision = in.precision;
|
||||||
|
out.BoundsCheckFreq = in.BoundsCheckFreq;
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
OneFlavourEvenOddRatioRationalPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||||
FermionOperator<Impl> &_DenOp,
|
FermionOperator<Impl> &_DenOp,
|
||||||
Params & p
|
const Params & p
|
||||||
) :
|
) :
|
||||||
NumOp(_NumOp),
|
GeneralEvenOddRatioRationalPseudoFermionAction<Impl>(_NumOp, _DenOp, transcribe(p)){}
|
||||||
DenOp(_DenOp),
|
|
||||||
PhiOdd (_NumOp.FermionRedBlackGrid()),
|
|
||||||
PhiEven(_NumOp.FermionRedBlackGrid()),
|
|
||||||
param(p)
|
|
||||||
{
|
|
||||||
AlgRemez remez(param.lo,param.hi,param.precision);
|
|
||||||
|
|
||||||
// MdagM^(+- 1/2)
|
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/2)"<<std::endl;
|
};
|
||||||
remez.generateApprox(param.degree,1,2);
|
|
||||||
PowerHalf.Init(remez,param.tolerance,false);
|
|
||||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
|
||||||
|
|
||||||
// MdagM^(+- 1/4)
|
template<class Impl,class ImplF,class ImplD2>
|
||||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
class OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction
|
||||||
remez.generateApprox(param.degree,1,4);
|
: public GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF,ImplD2> {
|
||||||
PowerQuarter.Init(remez,param.tolerance,false);
|
public:
|
||||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
typedef OneFlavourRationalParams Params;
|
||||||
};
|
private:
|
||||||
|
static RationalActionParams transcribe(const Params &in){
|
||||||
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
RationalActionParams out;
|
||||||
|
out.inv_pow = 2;
|
||||||
virtual std::string LogParameters(){
|
out.lo = in.lo;
|
||||||
std::stringstream sstream;
|
out.hi = in.hi;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
out.MaxIter = in.MaxIter;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
out.action_tolerance = out.md_tolerance = in.tolerance;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
out.action_degree = out.md_degree = in.degree;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
out.precision = in.precision;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
out.BoundsCheckFreq = in.BoundsCheckFreq;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
return out;
|
||||||
return sstream.str();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
|
||||||
|
|
||||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
public:
|
||||||
//
|
OneFlavourEvenOddRatioRationalMixedPrecPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||||
// P(phi) = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/2 (VdagV)^1/4 phi}
|
FermionOperator<Impl> &_DenOp,
|
||||||
// = e^{- phi^dag (VdagV)^1/4 (MdagM)^-1/4 (MdagM)^-1/4 (VdagV)^1/4 phi}
|
FermionOperator<ImplF> &_NumOpF,
|
||||||
//
|
FermionOperator<ImplF> &_DenOpF,
|
||||||
// Phi = (VdagV)^-1/4 Mdag^{1/4} eta
|
FermionOperator<ImplD2> &_NumOpD2,
|
||||||
//
|
FermionOperator<ImplD2> &_DenOpD2,
|
||||||
// P(eta) = e^{- eta^dag eta}
|
const Params & p, Integer ReliableUpdateFreq
|
||||||
//
|
) :
|
||||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
GeneralEvenOddRatioRationalMixedPrecPseudoFermionAction<Impl,ImplF,ImplD2>(_NumOp, _DenOp,_NumOpF, _DenOpF,_NumOpD2, _DenOpD2, transcribe(p),ReliableUpdateFreq){}
|
||||||
//
|
|
||||||
// So eta should be of width sig = 1/sqrt(2).
|
|
||||||
|
|
||||||
RealD scale = std::sqrt(0.5);
|
virtual std::string action_name(){return "OneFlavourEvenOddRatioRationalPseudoFermionAction";}
|
||||||
|
|
||||||
FermionField eta(NumOp.FermionGrid());
|
|
||||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
|
||||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
|
||||||
FermionField tmp(NumOp.FermionRedBlackGrid());
|
|
||||||
|
|
||||||
gaussian(pRNG,eta); eta=eta*scale;
|
|
||||||
|
|
||||||
pickCheckerboard(Even,etaEven,eta);
|
|
||||||
pickCheckerboard(Odd,etaOdd,eta);
|
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
|
||||||
DenOp.ImportGauge(U);
|
|
||||||
|
|
||||||
|
|
||||||
// MdagM^1/4 eta
|
|
||||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerQuarter);
|
|
||||||
msCG_M(MdagM,etaOdd,tmp);
|
|
||||||
|
|
||||||
// VdagV^-1/4 MdagM^1/4 eta
|
|
||||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerNegQuarter);
|
|
||||||
msCG_V(VdagV,tmp,PhiOdd);
|
|
||||||
|
|
||||||
assert(NumOp.ConstEE() == 1);
|
|
||||||
assert(DenOp.ConstEE() == 1);
|
|
||||||
PhiEven = Zero();
|
|
||||||
|
|
||||||
};
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
|
||||||
//////////////////////////////////////////////////////
|
|
||||||
virtual RealD S(const GaugeField &U) {
|
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
|
||||||
DenOp.ImportGauge(U);
|
|
||||||
|
|
||||||
FermionField X(NumOp.FermionRedBlackGrid());
|
|
||||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
|
||||||
|
|
||||||
// VdagV^1/4 Phi
|
|
||||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
|
||||||
msCG_V(VdagV,PhiOdd,X);
|
|
||||||
|
|
||||||
// MdagM^-1/4 VdagV^1/4 Phi
|
|
||||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegQuarter);
|
|
||||||
msCG_M(MdagM,X,Y);
|
|
||||||
|
|
||||||
// Randomly apply rational bounds checks.
|
|
||||||
auto grid = NumOp.FermionGrid();
|
|
||||||
auto r=rand();
|
|
||||||
grid->Broadcast(0,r);
|
|
||||||
if ( (r%param.BoundsCheckFreq)==0 ) {
|
|
||||||
FermionField gauss(NumOp.FermionRedBlackGrid());
|
|
||||||
gauss = PhiOdd;
|
|
||||||
HighBoundCheck(MdagM,gauss,param.hi);
|
|
||||||
InverseSqrtBoundsCheck(param.MaxIter,param.tolerance*100,MdagM,gauss,PowerNegHalf);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Phidag VdagV^1/4 MdagM^-1/4 MdagM^-1/4 VdagV^1/4 Phi
|
|
||||||
RealD action = norm2(Y);
|
|
||||||
|
|
||||||
return action;
|
|
||||||
};
|
|
||||||
|
|
||||||
// S_f = chi^dag* P(V^dag*V)/Q(V^dag*V)* N(M^dag*M)/D(M^dag*M)* P(V^dag*V)/Q(V^dag*V)* chi
|
|
||||||
//
|
|
||||||
// Here, M is some 5D operator and V is the Pauli-Villars field
|
|
||||||
// N and D makeup the rat. poly of the M term and P and & makeup the rat.poly of the denom term
|
|
||||||
//
|
|
||||||
// Need
|
|
||||||
// dS_f/dU = chi^dag d[P/Q] N/D P/Q chi
|
|
||||||
// + chi^dag P/Q d[N/D] P/Q chi
|
|
||||||
// + chi^dag P/Q N/D d[P/Q] chi
|
|
||||||
//
|
|
||||||
// P/Q is expressed as partial fraction expansion:
|
|
||||||
//
|
|
||||||
// a0 + \sum_k ak/(V^dagV + bk)
|
|
||||||
//
|
|
||||||
// d[P/Q] is then
|
|
||||||
//
|
|
||||||
// \sum_k -ak [V^dagV+bk]^{-1} [ dV^dag V + V^dag dV ] [V^dag V + bk]^{-1}
|
|
||||||
//
|
|
||||||
// and similar for N/D.
|
|
||||||
//
|
|
||||||
// Need
|
|
||||||
// MpvPhi_k = [Vdag V + bk]^{-1} chi
|
|
||||||
// MpvPhi = {a0 + \sum_k ak [Vdag V + bk]^{-1} }chi
|
|
||||||
//
|
|
||||||
// MfMpvPhi_k = [MdagM+bk]^{-1} MpvPhi
|
|
||||||
// MfMpvPhi = {a0 + \sum_k ak [Mdag M + bk]^{-1} } MpvPhi
|
|
||||||
//
|
|
||||||
// MpvMfMpvPhi_k = [Vdag V + bk]^{-1} MfMpvchi
|
|
||||||
//
|
|
||||||
|
|
||||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
|
||||||
|
|
||||||
const int n_f = PowerNegHalf.poles.size();
|
|
||||||
const int n_pv = PowerQuarter.poles.size();
|
|
||||||
|
|
||||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionRedBlackGrid());
|
|
||||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionRedBlackGrid());
|
|
||||||
std::vector<FermionField> MfMpvPhi_k (n_f ,NumOp.FermionRedBlackGrid());
|
|
||||||
|
|
||||||
FermionField MpvPhi(NumOp.FermionRedBlackGrid());
|
|
||||||
FermionField MfMpvPhi(NumOp.FermionRedBlackGrid());
|
|
||||||
FermionField MpvMfMpvPhi(NumOp.FermionRedBlackGrid());
|
|
||||||
FermionField Y(NumOp.FermionRedBlackGrid());
|
|
||||||
|
|
||||||
GaugeField tmp(NumOp.GaugeGrid());
|
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
|
||||||
DenOp.ImportGauge(U);
|
|
||||||
|
|
||||||
SchurDifferentiableOperator<Impl> VdagV(NumOp);
|
|
||||||
SchurDifferentiableOperator<Impl> MdagM(DenOp);
|
|
||||||
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
|
||||||
|
|
||||||
msCG_V(VdagV,PhiOdd,MpvPhi_k,MpvPhi);
|
|
||||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
|
||||||
msCG_V(VdagV,MfMpvPhi,MpvMfMpvPhi_k,MpvMfMpvPhi);
|
|
||||||
|
|
||||||
RealD ak;
|
|
||||||
|
|
||||||
dSdU = Zero();
|
|
||||||
|
|
||||||
// With these building blocks
|
|
||||||
//
|
|
||||||
// dS/dU =
|
|
||||||
// \sum_k -ak MfMpvPhi_k^dag [ dM^dag M + M^dag dM ] MfMpvPhi_k (1)
|
|
||||||
// + \sum_k -ak MpvMfMpvPhi_k^\dag [ dV^dag V + V^dag dV ] MpvPhi_k (2)
|
|
||||||
// -ak MpvPhi_k^dag [ dV^dag V + V^dag dV ] MpvMfMpvPhi_k (3)
|
|
||||||
|
|
||||||
//(1)
|
|
||||||
for(int k=0;k<n_f;k++){
|
|
||||||
ak = PowerNegHalf.residues[k];
|
|
||||||
MdagM.Mpc(MfMpvPhi_k[k],Y);
|
|
||||||
MdagM.MpcDagDeriv(tmp , MfMpvPhi_k[k], Y ); dSdU=dSdU+ak*tmp;
|
|
||||||
MdagM.MpcDeriv(tmp , Y, MfMpvPhi_k[k] ); dSdU=dSdU+ak*tmp;
|
|
||||||
}
|
|
||||||
|
|
||||||
//(2)
|
|
||||||
//(3)
|
|
||||||
for(int k=0;k<n_pv;k++){
|
|
||||||
|
|
||||||
ak = PowerQuarter.residues[k];
|
|
||||||
|
|
||||||
VdagV.Mpc(MpvPhi_k[k],Y);
|
|
||||||
VdagV.MpcDagDeriv(tmp,MpvMfMpvPhi_k[k],Y); dSdU=dSdU+ak*tmp;
|
|
||||||
VdagV.MpcDeriv (tmp,Y,MpvMfMpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
|
||||||
|
|
||||||
VdagV.Mpc(MpvMfMpvPhi_k[k],Y); // V as we take Ydag
|
|
||||||
VdagV.MpcDeriv (tmp,Y, MpvPhi_k[k]); dSdU=dSdU+ak*tmp;
|
|
||||||
VdagV.MpcDagDeriv(tmp,MpvPhi_k[k], Y); dSdU=dSdU+ak*tmp;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
//dSdU = Ta(dSdU);
|
|
||||||
|
|
||||||
};
|
|
||||||
};
|
};
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
@ -49,10 +49,12 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
Params param;
|
Params param;
|
||||||
|
|
||||||
MultiShiftFunction PowerHalf ;
|
MultiShiftFunction PowerHalf ;
|
||||||
MultiShiftFunction PowerNegHalf;
|
|
||||||
MultiShiftFunction PowerQuarter;
|
MultiShiftFunction PowerQuarter;
|
||||||
|
MultiShiftFunction PowerNegHalf;
|
||||||
MultiShiftFunction PowerNegQuarter;
|
MultiShiftFunction PowerNegQuarter;
|
||||||
|
|
||||||
|
MultiShiftFunction MDPowerQuarter;
|
||||||
|
MultiShiftFunction MDPowerNegHalf;
|
||||||
private:
|
private:
|
||||||
|
|
||||||
FermionOperator<Impl> & NumOp;// the basic operator
|
FermionOperator<Impl> & NumOp;// the basic operator
|
||||||
@ -73,15 +75,22 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
remez.generateApprox(param.degree,1,2);
|
remez.generateApprox(param.degree,1,2);
|
||||||
PowerHalf.Init(remez,param.tolerance,false);
|
PowerHalf.Init(remez,param.tolerance,false);
|
||||||
PowerNegHalf.Init(remez,param.tolerance,true);
|
PowerNegHalf.Init(remez,param.tolerance,true);
|
||||||
|
MDPowerNegHalf.Init(remez,param.mdtolerance,true);
|
||||||
|
|
||||||
// MdagM^(+- 1/4)
|
// MdagM^(+- 1/4)
|
||||||
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
std::cout<<GridLogMessage << "Generating degree "<<param.degree<<" for x^(1/4)"<<std::endl;
|
||||||
remez.generateApprox(param.degree,1,4);
|
remez.generateApprox(param.degree,1,4);
|
||||||
PowerQuarter.Init(remez,param.tolerance,false);
|
PowerQuarter.Init(remez,param.tolerance,false);
|
||||||
|
MDPowerQuarter.Init(remez,param.mdtolerance,false);
|
||||||
PowerNegQuarter.Init(remez,param.tolerance,true);
|
PowerNegQuarter.Init(remez,param.tolerance,true);
|
||||||
};
|
};
|
||||||
|
|
||||||
virtual std::string action_name(){return "OneFlavourRatioRationalPseudoFermionAction";}
|
virtual std::string action_name(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
sstream<<"OneFlavourRatioRationalPseudoFermionAction("
|
||||||
|
<<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
virtual std::string LogParameters(){
|
virtual std::string LogParameters(){
|
||||||
std::stringstream sstream;
|
std::stringstream sstream;
|
||||||
@ -204,8 +213,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||||
|
|
||||||
const int n_f = PowerNegHalf.poles.size();
|
const int n_f = MDPowerNegHalf.poles.size();
|
||||||
const int n_pv = PowerQuarter.poles.size();
|
const int n_pv = MDPowerQuarter.poles.size();
|
||||||
|
|
||||||
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
|
std::vector<FermionField> MpvPhi_k (n_pv,NumOp.FermionGrid());
|
||||||
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
|
std::vector<FermionField> MpvMfMpvPhi_k(n_pv,NumOp.FermionGrid());
|
||||||
@ -224,8 +233,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagM(DenOp);
|
||||||
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> VdagV(NumOp);
|
||||||
|
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,PowerQuarter);
|
ConjugateGradientMultiShift<FermionField> msCG_V(param.MaxIter,MDPowerQuarter);
|
||||||
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,PowerNegHalf);
|
ConjugateGradientMultiShift<FermionField> msCG_M(param.MaxIter,MDPowerNegHalf);
|
||||||
|
|
||||||
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
|
msCG_V(VdagV,Phi,MpvPhi_k,MpvPhi);
|
||||||
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
msCG_M(MdagM,MpvPhi,MfMpvPhi_k,MfMpvPhi);
|
||||||
@ -244,7 +253,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
|
|
||||||
//(1)
|
//(1)
|
||||||
for(int k=0;k<n_f;k++){
|
for(int k=0;k<n_f;k++){
|
||||||
ak = PowerNegHalf.residues[k];
|
ak = MDPowerNegHalf.residues[k];
|
||||||
DenOp.M(MfMpvPhi_k[k],Y);
|
DenOp.M(MfMpvPhi_k[k],Y);
|
||||||
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
|
DenOp.MDeriv(tmp , MfMpvPhi_k[k], Y,DaggerYes ); dSdU=dSdU+ak*tmp;
|
||||||
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
|
DenOp.MDeriv(tmp , Y, MfMpvPhi_k[k], DaggerNo ); dSdU=dSdU+ak*tmp;
|
||||||
@ -254,7 +263,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
//(3)
|
//(3)
|
||||||
for(int k=0;k<n_pv;k++){
|
for(int k=0;k<n_pv;k++){
|
||||||
|
|
||||||
ak = PowerQuarter.residues[k];
|
ak = MDPowerQuarter.residues[k];
|
||||||
|
|
||||||
NumOp.M(MpvPhi_k[k],Y);
|
NumOp.M(MpvPhi_k[k],Y);
|
||||||
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
NumOp.MDeriv(tmp,MpvMfMpvPhi_k[k],Y,DaggerYes); dSdU=dSdU+ak*tmp;
|
||||||
|
@ -40,6 +40,8 @@ directory
|
|||||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
|
#include <Grid/qcd/action/pseudofermion/OneFlavourRational.h>
|
||||||
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
#include <Grid/qcd/action/pseudofermion/OneFlavourRationalRatio.h>
|
||||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRational.h>
|
||||||
|
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatio.h>
|
||||||
|
#include <Grid/qcd/action/pseudofermion/GeneralEvenOddRationalRatioMixedPrec.h>
|
||||||
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
#include <Grid/qcd/action/pseudofermion/OneFlavourEvenOddRationalRatio.h>
|
||||||
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
#include <Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h>
|
||||||
|
|
||||||
|
@ -38,7 +38,7 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
class TwoFlavourEvenOddRatioPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||||
public:
|
public:
|
||||||
INHERIT_IMPL_TYPES(Impl);
|
INHERIT_IMPL_TYPES(Impl);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
FermionOperator<Impl> & NumOp;// the basic operator
|
FermionOperator<Impl> & NumOp;// the basic operator
|
||||||
FermionOperator<Impl> & DenOp;// the basic operator
|
FermionOperator<Impl> & DenOp;// the basic operator
|
||||||
@ -50,6 +50,8 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
||||||
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
||||||
|
|
||||||
|
RealD RefreshAction;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
TwoFlavourEvenOddRatioPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||||
FermionOperator<Impl> &_DenOp,
|
FermionOperator<Impl> &_DenOp,
|
||||||
@ -75,24 +77,22 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
|
conformable(_NumOp.GaugeRedBlackGrid(), _DenOp.GaugeRedBlackGrid());
|
||||||
};
|
};
|
||||||
|
|
||||||
virtual std::string action_name(){return "TwoFlavourEvenOddRatioPseudoFermionAction";}
|
virtual std::string action_name(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
sstream<<"TwoFlavourEvenOddRatioPseudoFermionAction det("<<DenOp.Mass()<<") / det("<<NumOp.Mass()<<")";
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
virtual std::string LogParameters(){
|
virtual std::string LogParameters(){
|
||||||
std::stringstream sstream;
|
std::stringstream sstream;
|
||||||
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
sstream<< GridLogMessage << "["<<action_name()<<"] -- No further parameters "<<std::endl;
|
||||||
return sstream.str();
|
return sstream.str();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
const FermionField &getPhiOdd() const{ return PhiOdd; }
|
||||||
|
|
||||||
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||||
//
|
|
||||||
// NumOp == V
|
|
||||||
// DenOp == M
|
|
||||||
//
|
|
||||||
// Take phi_o = Vpcdag^{-1} Mpcdag eta_o ; eta_o = Mpcdag^{-1} Vpcdag Phi
|
|
||||||
//
|
|
||||||
// P(eta_o) = e^{- eta_o^dag eta_o}
|
// P(eta_o) = e^{- eta_o^dag eta_o}
|
||||||
//
|
//
|
||||||
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||||
@ -100,39 +100,59 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
RealD scale = std::sqrt(0.5);
|
RealD scale = std::sqrt(0.5);
|
||||||
|
|
||||||
FermionField eta (NumOp.FermionGrid());
|
FermionField eta (NumOp.FermionGrid());
|
||||||
|
gaussian(pRNG,eta); eta = eta * scale;
|
||||||
|
|
||||||
|
refresh(U,eta);
|
||||||
|
}
|
||||||
|
|
||||||
|
void refresh(const GaugeField &U, const FermionField &eta) {
|
||||||
|
|
||||||
|
// P(phi) = e^{- phi^dag Vpc (MpcdagMpc)^-1 Vpcdag phi}
|
||||||
|
//
|
||||||
|
// NumOp == V
|
||||||
|
// DenOp == M
|
||||||
|
//
|
||||||
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
FermionField etaOdd (NumOp.FermionRedBlackGrid());
|
||||||
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
FermionField etaEven(NumOp.FermionRedBlackGrid());
|
||||||
FermionField tmp (NumOp.FermionRedBlackGrid());
|
FermionField tmp (NumOp.FermionRedBlackGrid());
|
||||||
|
|
||||||
gaussian(pRNG,eta);
|
|
||||||
|
|
||||||
pickCheckerboard(Even,etaEven,eta);
|
pickCheckerboard(Even,etaEven,eta);
|
||||||
pickCheckerboard(Odd,etaOdd,eta);
|
pickCheckerboard(Odd,etaOdd,eta);
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
NumOp.ImportGauge(U);
|
||||||
DenOp.ImportGauge(U);
|
DenOp.ImportGauge(U);
|
||||||
|
std::cout << " TwoFlavourRefresh: Imported gauge "<<std::endl;
|
||||||
|
|
||||||
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
SchurDifferentiableOperator<Impl> Mpc(DenOp);
|
||||||
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
SchurDifferentiableOperator<Impl> Vpc(NumOp);
|
||||||
|
|
||||||
|
std::cout << " TwoFlavourRefresh: Diff ops "<<std::endl;
|
||||||
// Odd det factors
|
// Odd det factors
|
||||||
Mpc.MpcDag(etaOdd,PhiOdd);
|
Mpc.MpcDag(etaOdd,PhiOdd);
|
||||||
|
std::cout << " TwoFlavourRefresh: MpcDag "<<std::endl;
|
||||||
tmp=Zero();
|
tmp=Zero();
|
||||||
|
std::cout << " TwoFlavourRefresh: Zero() guess "<<std::endl;
|
||||||
HeatbathSolver(Vpc,PhiOdd,tmp);
|
HeatbathSolver(Vpc,PhiOdd,tmp);
|
||||||
|
std::cout << " TwoFlavourRefresh: Heatbath solver "<<std::endl;
|
||||||
Vpc.Mpc(tmp,PhiOdd);
|
Vpc.Mpc(tmp,PhiOdd);
|
||||||
|
std::cout << " TwoFlavourRefresh: Mpc "<<std::endl;
|
||||||
|
|
||||||
// Even det factors
|
// Even det factors
|
||||||
DenOp.MooeeDag(etaEven,tmp);
|
DenOp.MooeeDag(etaEven,tmp);
|
||||||
NumOp.MooeeInvDag(tmp,PhiEven);
|
NumOp.MooeeInvDag(tmp,PhiEven);
|
||||||
|
std::cout << " TwoFlavourRefresh: Mee "<<std::endl;
|
||||||
|
|
||||||
PhiOdd =PhiOdd*scale;
|
RefreshAction = norm2(etaEven)+norm2(etaOdd);
|
||||||
PhiEven=PhiEven*scale;
|
std::cout << " refresh " <<action_name()<< " action "<<RefreshAction<<std::endl;
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
// S = phi^dag V (Mdag M)^-1 Vdag phi
|
// S = phi^dag V (Mdag M)^-1 Vdag phi
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
|
virtual RealD Sinitial(const GaugeField &U) {
|
||||||
|
std::cout << GridLogMessage << "Returning stored two flavour refresh action "<<RefreshAction<<std::endl;
|
||||||
|
return RefreshAction;
|
||||||
|
}
|
||||||
virtual RealD S(const GaugeField &U) {
|
virtual RealD S(const GaugeField &U) {
|
||||||
|
|
||||||
NumOp.ImportGauge(U);
|
NumOp.ImportGauge(U);
|
||||||
|
203
Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
Normal file
203
Grid/qcd/action/pseudofermion/TwoFlavourRatioEO4DPseudoFermion.h
Normal file
@ -0,0 +1,203 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/qcd/action/pseudofermion/TwoFlavourRatio.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||||
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Two flavour ratio
|
||||||
|
///////////////////////////////////////
|
||||||
|
template<class Impl>
|
||||||
|
class TwoFlavourRatioEO4DPseudoFermionAction : public Action<typename Impl::GaugeField> {
|
||||||
|
public:
|
||||||
|
INHERIT_IMPL_TYPES(Impl);
|
||||||
|
|
||||||
|
private:
|
||||||
|
typedef FermionOperator<Impl> FermOp;
|
||||||
|
FermionOperator<Impl> & NumOp;// the basic operator
|
||||||
|
FermionOperator<Impl> & DenOp;// the basic operator
|
||||||
|
|
||||||
|
OperatorFunction<FermionField> &DerivativeSolver;
|
||||||
|
OperatorFunction<FermionField> &DerivativeDagSolver;
|
||||||
|
OperatorFunction<FermionField> &ActionSolver;
|
||||||
|
OperatorFunction<FermionField> &HeatbathSolver;
|
||||||
|
|
||||||
|
FermionField phi4; // the pseudo fermion field for this trajectory
|
||||||
|
|
||||||
|
public:
|
||||||
|
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||||
|
FermionOperator<Impl> &_DenOp,
|
||||||
|
OperatorFunction<FermionField> & DS,
|
||||||
|
OperatorFunction<FermionField> & AS ) :
|
||||||
|
TwoFlavourRatioEO4DPseudoFermionAction(_NumOp,_DenOp, DS,DS,AS,AS) {};
|
||||||
|
TwoFlavourRatioEO4DPseudoFermionAction(FermionOperator<Impl> &_NumOp,
|
||||||
|
FermionOperator<Impl> &_DenOp,
|
||||||
|
OperatorFunction<FermionField> & DS,
|
||||||
|
OperatorFunction<FermionField> & DDS,
|
||||||
|
OperatorFunction<FermionField> & AS,
|
||||||
|
OperatorFunction<FermionField> & HS
|
||||||
|
) : NumOp(_NumOp),
|
||||||
|
DenOp(_DenOp),
|
||||||
|
DerivativeSolver(DS),
|
||||||
|
DerivativeDagSolver(DDS),
|
||||||
|
ActionSolver(AS),
|
||||||
|
HeatbathSolver(HS),
|
||||||
|
phi4(_NumOp.GaugeGrid())
|
||||||
|
{};
|
||||||
|
|
||||||
|
virtual std::string action_name(){return "TwoFlavourRatioEO4DPseudoFermionAction";}
|
||||||
|
|
||||||
|
virtual std::string LogParameters(){
|
||||||
|
std::stringstream sstream;
|
||||||
|
sstream << GridLogMessage << "["<<action_name()<<"] has no parameters" << std::endl;
|
||||||
|
return sstream.str();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
|
||||||
|
|
||||||
|
// P(phi) = e^{- phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi}
|
||||||
|
//
|
||||||
|
// NumOp == V
|
||||||
|
// DenOp == M
|
||||||
|
//
|
||||||
|
// Take phi = (V^{-1} M)_11 eta ; eta = (M^{-1} V)_11 Phi
|
||||||
|
//
|
||||||
|
// P(eta) = e^{- eta^dag eta}
|
||||||
|
//
|
||||||
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
||||||
|
//
|
||||||
|
// So eta should be of width sig = 1/sqrt(2) and must multiply by 0.707....
|
||||||
|
//
|
||||||
|
RealD scale = std::sqrt(0.5);
|
||||||
|
|
||||||
|
FermionField eta4(NumOp.GaugeGrid());
|
||||||
|
FermionField eta5(NumOp.FermionGrid());
|
||||||
|
FermionField tmp(NumOp.FermionGrid());
|
||||||
|
FermionField phi5(NumOp.FermionGrid());
|
||||||
|
|
||||||
|
gaussian(pRNG,eta4);
|
||||||
|
NumOp.ImportFourDimPseudoFermion(eta4,eta5);
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(HeatbathSolver);
|
||||||
|
|
||||||
|
DenOp.M(eta5,tmp); // M eta
|
||||||
|
PrecSolve(NumOp,tmp,phi5); // phi = V^-1 M eta
|
||||||
|
phi5=phi5*scale;
|
||||||
|
std::cout << GridLogMessage << "4d pf refresh "<< norm2(phi5)<<"\n";
|
||||||
|
// Project to 4d
|
||||||
|
NumOp.ExportFourDimPseudoFermion(phi5,phi4);
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// S = phi^dag (V^dag M^-dag)_11 (M^-1 V)_11 phi
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
virtual RealD S(const GaugeField &U) {
|
||||||
|
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField Y4(NumOp.GaugeGrid());
|
||||||
|
FermionField X(NumOp.FermionGrid());
|
||||||
|
FermionField Y(NumOp.FermionGrid());
|
||||||
|
FermionField phi5(NumOp.FermionGrid());
|
||||||
|
|
||||||
|
MdagMLinearOperator<FermionOperator<Impl> ,FermionField> MdagMOp(DenOp);
|
||||||
|
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(ActionSolver);
|
||||||
|
|
||||||
|
NumOp.ImportFourDimPseudoFermion(phi4,phi5);
|
||||||
|
NumOp.M(phi5,X); // X= V phi
|
||||||
|
PrecSolve(DenOp,X,Y); // Y= (MdagM)^-1 Mdag Vdag phi = M^-1 V phi
|
||||||
|
NumOp.ExportFourDimPseudoFermion(Y,Y4);
|
||||||
|
|
||||||
|
RealD action = norm2(Y4);
|
||||||
|
|
||||||
|
return action;
|
||||||
|
};
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
// dS/du = 2 Re phi^dag (V^dag M^-dag)_11 (M^-1 d V)_11 phi
|
||||||
|
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||||
|
//////////////////////////////////////////////////////
|
||||||
|
virtual void deriv(const GaugeField &U,GaugeField & dSdU) {
|
||||||
|
|
||||||
|
NumOp.ImportGauge(U);
|
||||||
|
DenOp.ImportGauge(U);
|
||||||
|
|
||||||
|
FermionField X(NumOp.FermionGrid());
|
||||||
|
FermionField Y(NumOp.FermionGrid());
|
||||||
|
FermionField phi(NumOp.FermionGrid());
|
||||||
|
FermionField Vphi(NumOp.FermionGrid());
|
||||||
|
FermionField MinvVphi(NumOp.FermionGrid());
|
||||||
|
FermionField tmp4(NumOp.GaugeGrid());
|
||||||
|
FermionField MdagInvMinvVphi(NumOp.FermionGrid());
|
||||||
|
|
||||||
|
GaugeField force(NumOp.GaugeGrid());
|
||||||
|
|
||||||
|
//Y=V phi
|
||||||
|
//X = (Mdag V phi
|
||||||
|
//Y = (Mdag M)^-1 Mdag V phi = M^-1 V Phi
|
||||||
|
NumOp.ImportFourDimPseudoFermion(phi4,phi);
|
||||||
|
NumOp.M(phi,Vphi); // V phi
|
||||||
|
SchurRedBlackDiagMooeeSolve<FermionField> PrecSolve(DerivativeSolver);
|
||||||
|
PrecSolve(DenOp,Vphi,MinvVphi);// M^-1 V phi
|
||||||
|
std::cout << GridLogMessage << "4d deriv solve "<< norm2(MinvVphi)<<"\n";
|
||||||
|
|
||||||
|
// Projects onto the physical space and back
|
||||||
|
NumOp.ExportFourDimPseudoFermion(MinvVphi,tmp4);
|
||||||
|
NumOp.ImportFourDimPseudoFermion(tmp4,Y);
|
||||||
|
|
||||||
|
SchurRedBlackDiagMooeeDagSolve<FermionField> PrecDagSolve(DerivativeDagSolver);
|
||||||
|
// X = proj M^-dag V phi
|
||||||
|
// Need an adjoint solve
|
||||||
|
PrecDagSolve(DenOp,Y,MdagInvMinvVphi);
|
||||||
|
std::cout << GridLogMessage << "4d deriv solve dag "<< norm2(MdagInvMinvVphi)<<"\n";
|
||||||
|
|
||||||
|
// phi^dag (Vdag Mdag^-1) (M^-1 dV) phi
|
||||||
|
NumOp.MDeriv(force ,MdagInvMinvVphi , phi, DaggerNo ); dSdU=force;
|
||||||
|
|
||||||
|
// phi^dag (dVdag Mdag^-1) (M^-1 V) phi
|
||||||
|
NumOp.MDeriv(force , phi, MdagInvMinvVphi ,DaggerYes ); dSdU=dSdU+force;
|
||||||
|
|
||||||
|
// - 2 Re phi^dag (dV^dag M^-dag)_11 (M^-1 dM M^-1 V)_11 phi
|
||||||
|
DenOp.MDeriv(force,MdagInvMinvVphi,MinvVphi,DaggerNo); dSdU=dSdU-force;
|
||||||
|
DenOp.MDeriv(force,MinvVphi,MdagInvMinvVphi,DaggerYes); dSdU=dSdU-force;
|
||||||
|
|
||||||
|
dSdU *= -1.0;
|
||||||
|
//dSdU = - Ta(dSdU);
|
||||||
|
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|
@ -47,7 +47,7 @@ private:
|
|||||||
const unsigned int N = Impl::Group::Dimension;
|
const unsigned int N = Impl::Group::Dimension;
|
||||||
|
|
||||||
typedef typename Field::vector_object vobj;
|
typedef typename Field::vector_object vobj;
|
||||||
typedef CartesianStencil<vobj, vobj,int> Stencil;
|
typedef CartesianStencil<vobj, vobj,DefaultImplParams> Stencil;
|
||||||
|
|
||||||
SimpleCompressor<vobj> compressor;
|
SimpleCompressor<vobj> compressor;
|
||||||
int npoint = 2 * Ndim;
|
int npoint = 2 * Ndim;
|
||||||
@ -82,7 +82,7 @@ public:
|
|||||||
virtual RealD S(const Field &p)
|
virtual RealD S(const Field &p)
|
||||||
{
|
{
|
||||||
assert(p.Grid()->Nd() == Ndim);
|
assert(p.Grid()->Nd() == Ndim);
|
||||||
static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements,0);
|
static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements);
|
||||||
phiStencil.HaloExchange(p, compressor);
|
phiStencil.HaloExchange(p, compressor);
|
||||||
Field action(p.Grid()), pshift(p.Grid()), phisquared(p.Grid());
|
Field action(p.Grid()), pshift(p.Grid()), phisquared(p.Grid());
|
||||||
phisquared = p * p;
|
phisquared = p * p;
|
||||||
@ -133,7 +133,7 @@ public:
|
|||||||
double interm_t = usecond();
|
double interm_t = usecond();
|
||||||
|
|
||||||
// move this outside
|
// move this outside
|
||||||
static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements,0);
|
static Stencil phiStencil(p.Grid(), npoint, 0, directions, displacements);
|
||||||
|
|
||||||
phiStencil.HaloExchange(p, compressor);
|
phiStencil.HaloExchange(p, compressor);
|
||||||
double halo_t = usecond();
|
double halo_t = usecond();
|
||||||
|
6
Grid/qcd/gparity/Gparity.h
Normal file
6
Grid/qcd/gparity/Gparity.h
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
#ifndef GRID_GPARITY_H_
|
||||||
|
#define GRID_GPARITY_H_
|
||||||
|
|
||||||
|
#include<Grid/qcd/gparity/GparityFlavour.h>
|
||||||
|
|
||||||
|
#endif
|
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
34
Grid/qcd/gparity/GparityFlavour.cc
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
#include <Grid/Grid.h>
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
const std::array<const GparityFlavour, 3> GparityFlavour::sigma_mu = {{
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaZ)
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<const GparityFlavour, 6> GparityFlavour::sigma_all = {{
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::Identity),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaX),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaY),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::SigmaZ),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::ProjPlus),
|
||||||
|
GparityFlavour(GparityFlavour::Algebra::ProjMinus)
|
||||||
|
}};
|
||||||
|
|
||||||
|
const std::array<const char *, GparityFlavour::nSigma> GparityFlavour::name = {{
|
||||||
|
"SigmaX",
|
||||||
|
"MinusSigmaX",
|
||||||
|
"SigmaY",
|
||||||
|
"MinusSigmaY",
|
||||||
|
"SigmaZ",
|
||||||
|
"MinusSigmaZ",
|
||||||
|
"Identity",
|
||||||
|
"MinusIdentity",
|
||||||
|
"ProjPlus",
|
||||||
|
"MinusProjPlus",
|
||||||
|
"ProjMinus",
|
||||||
|
"MinusProjMinus"}};
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
475
Grid/qcd/gparity/GparityFlavour.h
Normal file
@ -0,0 +1,475 @@
|
|||||||
|
#ifndef GRID_QCD_GPARITY_FLAVOUR_H
|
||||||
|
#define GRID_QCD_GPARITY_FLAVOUR_H
|
||||||
|
|
||||||
|
//Support for flavour-matrix operations acting on the G-parity flavour index
|
||||||
|
|
||||||
|
#include <array>
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
class GparityFlavour {
|
||||||
|
public:
|
||||||
|
GRID_SERIALIZABLE_ENUM(Algebra, undef,
|
||||||
|
SigmaX, 0,
|
||||||
|
MinusSigmaX, 1,
|
||||||
|
SigmaY, 2,
|
||||||
|
MinusSigmaY, 3,
|
||||||
|
SigmaZ, 4,
|
||||||
|
MinusSigmaZ, 5,
|
||||||
|
Identity, 6,
|
||||||
|
MinusIdentity, 7,
|
||||||
|
ProjPlus, 8,
|
||||||
|
MinusProjPlus, 9,
|
||||||
|
ProjMinus, 10,
|
||||||
|
MinusProjMinus, 11
|
||||||
|
);
|
||||||
|
static constexpr unsigned int nSigma = 12;
|
||||||
|
static const std::array<const char *, nSigma> name;
|
||||||
|
static const std::array<const GparityFlavour, 3> sigma_mu;
|
||||||
|
static const std::array<const GparityFlavour, 6> sigma_all;
|
||||||
|
Algebra g;
|
||||||
|
public:
|
||||||
|
accelerator GparityFlavour(Algebra initg): g(initg) {}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// 0 1 x vector
|
||||||
|
// 1 0
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = rhs(1);
|
||||||
|
ret(1) = rhs(0);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(1,0);
|
||||||
|
ret(0,1) = rhs(1,1);
|
||||||
|
ret(1,0) = rhs(0,0);
|
||||||
|
ret(1,1) = rhs(0,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,1);
|
||||||
|
ret(0,1) = rhs(0,0);
|
||||||
|
ret(1,0) = rhs(1,1);
|
||||||
|
ret(1,1) = rhs(1,0);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusSigmaX(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -rhs(1);
|
||||||
|
ret(1) = -rhs(0);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(1,0);
|
||||||
|
ret(0,1) = -rhs(1,1);
|
||||||
|
ret(1,0) = -rhs(0,0);
|
||||||
|
ret(1,1) = -rhs(0,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusSigmaX(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,1);
|
||||||
|
ret(0,1) = -rhs(0,0);
|
||||||
|
ret(1,0) = -rhs(1,1);
|
||||||
|
ret(1,1) = -rhs(1,0);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// 0 -i x vector
|
||||||
|
// i 0
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = timesMinusI(rhs(1));
|
||||||
|
ret(1) = timesI(rhs(0));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesMinusI(rhs(1,0));
|
||||||
|
ret(0,1) = timesMinusI(rhs(1,1));
|
||||||
|
ret(1,0) = timesI(rhs(0,0));
|
||||||
|
ret(1,1) = timesI(rhs(0,1));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesI(rhs(0,1));
|
||||||
|
ret(0,1) = timesMinusI(rhs(0,0));
|
||||||
|
ret(1,0) = timesI(rhs(1,1));
|
||||||
|
ret(1,1) = timesMinusI(rhs(1,0));
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusSigmaY(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = timesI(rhs(1));
|
||||||
|
ret(1) = timesMinusI(rhs(0));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesI(rhs(1,0));
|
||||||
|
ret(0,1) = timesI(rhs(1,1));
|
||||||
|
ret(1,0) = timesMinusI(rhs(0,0));
|
||||||
|
ret(1,1) = timesMinusI(rhs(0,1));
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusSigmaY(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = timesMinusI(rhs(0,1));
|
||||||
|
ret(0,1) = timesI(rhs(0,0));
|
||||||
|
ret(1,0) = timesMinusI(rhs(1,1));
|
||||||
|
ret(1,1) = timesI(rhs(1,0));
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// 1 0 x vector
|
||||||
|
// 0 -1
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = rhs(0);
|
||||||
|
ret(1) = -rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusSigmaZ(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -rhs(0);
|
||||||
|
ret(1) = rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusSigmaZ(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = rhs(0);
|
||||||
|
ret(1) = rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = rhs(0,0);
|
||||||
|
ret(0,1) = rhs(0,1);
|
||||||
|
ret(1,0) = rhs(1,0);
|
||||||
|
ret(1,1) = rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusIdentity(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -rhs(0);
|
||||||
|
ret(1) = -rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusIdentity(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -rhs(0,0);
|
||||||
|
ret(0,1) = -rhs(0,1);
|
||||||
|
ret(1,0) = -rhs(1,0);
|
||||||
|
ret(1,1) = -rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
//G-parity flavour projection 1/2(1+\sigma_2)
|
||||||
|
//1 -i
|
||||||
|
//i 1
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = 0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesI(rhs(0)) + 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||||
|
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusProjPlus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesMinusI(rhs(0)) - 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||||
|
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusProjPlus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
//G-parity flavour projection 1/2(1-\sigma_2)
|
||||||
|
//1 i
|
||||||
|
//-i 1
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = 0.5*rhs(0) + 0.5*timesI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesMinusI(rhs(0)) + 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesI(rhs(1,0));
|
||||||
|
ret(0,1) = 0.5*rhs(0,1) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesMinusI(rhs(0,0)) + 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(0,1)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = 0.5*rhs(0,0) + 0.5*timesMinusI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesI(rhs(0,0)) + 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = 0.5*rhs(1,0) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(1,0)) + 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void multFlavourMinusProjMinus(iVector<vtype, Ngp> &ret, const iVector<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0) = -0.5*rhs(0) + 0.5*timesMinusI(rhs(1));
|
||||||
|
ret(1) = 0.5*timesI(rhs(0)) - 0.5*rhs(1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void lmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesMinusI(rhs(1,0));
|
||||||
|
ret(0,1) = -0.5*rhs(0,1) + 0.5*timesMinusI(rhs(1,1));
|
||||||
|
ret(1,0) = 0.5*timesI(rhs(0,0)) - 0.5*rhs(1,0);
|
||||||
|
ret(1,1) = 0.5*timesI(rhs(0,1)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline void rmultFlavourMinusProjMinus(iMatrix<vtype, Ngp> &ret, const iMatrix<vtype, Ngp> &rhs)
|
||||||
|
{
|
||||||
|
ret(0,0) = -0.5*rhs(0,0) + 0.5*timesI(rhs(0,1));
|
||||||
|
ret(0,1) = 0.5*timesMinusI(rhs(0,0)) - 0.5*rhs(0,1);
|
||||||
|
ret(1,0) = -0.5*rhs(1,0) + 0.5*timesI(rhs(1,1));
|
||||||
|
ret(1,1) = 0.5*timesMinusI(rhs(1,0)) - 0.5*rhs(1,1);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline auto operator*(const GparityFlavour &G, const iVector<vtype, Ngp> &arg)
|
||||||
|
->typename std::enable_if<matchGridTensorIndex<iVector<vtype, Ngp>, GparityFlavourTensorIndex>::value, iVector<vtype, Ngp>>::type
|
||||||
|
{
|
||||||
|
iVector<vtype, Ngp> ret;
|
||||||
|
|
||||||
|
switch (G.g)
|
||||||
|
{
|
||||||
|
case GparityFlavour::Algebra::SigmaX:
|
||||||
|
multFlavourSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaX:
|
||||||
|
multFlavourMinusSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaY:
|
||||||
|
multFlavourSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaY:
|
||||||
|
multFlavourMinusSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaZ:
|
||||||
|
multFlavourSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||||
|
multFlavourMinusSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::Identity:
|
||||||
|
multFlavourIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusIdentity:
|
||||||
|
multFlavourMinusIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjPlus:
|
||||||
|
multFlavourProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjPlus:
|
||||||
|
multFlavourMinusProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjMinus:
|
||||||
|
multFlavourProjMinus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjMinus:
|
||||||
|
multFlavourMinusProjMinus(ret, arg); break;
|
||||||
|
default: assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline auto operator*(const GparityFlavour &G, const iMatrix<vtype, Ngp> &arg)
|
||||||
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||||
|
{
|
||||||
|
iMatrix<vtype, Ngp> ret;
|
||||||
|
|
||||||
|
switch (G.g)
|
||||||
|
{
|
||||||
|
case GparityFlavour::Algebra::SigmaX:
|
||||||
|
lmultFlavourSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaX:
|
||||||
|
lmultFlavourMinusSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaY:
|
||||||
|
lmultFlavourSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaY:
|
||||||
|
lmultFlavourMinusSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaZ:
|
||||||
|
lmultFlavourSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||||
|
lmultFlavourMinusSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::Identity:
|
||||||
|
lmultFlavourIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusIdentity:
|
||||||
|
lmultFlavourMinusIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjPlus:
|
||||||
|
lmultFlavourProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjPlus:
|
||||||
|
lmultFlavourMinusProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjMinus:
|
||||||
|
lmultFlavourProjMinus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjMinus:
|
||||||
|
lmultFlavourMinusProjMinus(ret, arg); break;
|
||||||
|
default: assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<class vtype>
|
||||||
|
accelerator_inline auto operator*(const iMatrix<vtype, Ngp> &arg, const GparityFlavour &G)
|
||||||
|
->typename std::enable_if<matchGridTensorIndex<iMatrix<vtype, Ngp>, GparityFlavourTensorIndex>::value, iMatrix<vtype, Ngp>>::type
|
||||||
|
{
|
||||||
|
iMatrix<vtype, Ngp> ret;
|
||||||
|
|
||||||
|
switch (G.g)
|
||||||
|
{
|
||||||
|
case GparityFlavour::Algebra::SigmaX:
|
||||||
|
rmultFlavourSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaX:
|
||||||
|
rmultFlavourMinusSigmaX(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaY:
|
||||||
|
rmultFlavourSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaY:
|
||||||
|
rmultFlavourMinusSigmaY(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::SigmaZ:
|
||||||
|
rmultFlavourSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusSigmaZ:
|
||||||
|
rmultFlavourMinusSigmaZ(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::Identity:
|
||||||
|
rmultFlavourIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusIdentity:
|
||||||
|
rmultFlavourMinusIdentity(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjPlus:
|
||||||
|
rmultFlavourProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjPlus:
|
||||||
|
rmultFlavourMinusProjPlus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::ProjMinus:
|
||||||
|
rmultFlavourProjMinus(ret, arg); break;
|
||||||
|
case GparityFlavour::Algebra::MinusProjMinus:
|
||||||
|
rmultFlavourMinusProjMinus(ret, arg); break;
|
||||||
|
default: assert(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
#endif // include guard
|
@ -129,18 +129,10 @@ public:
|
|||||||
Runner(S);
|
Runner(S);
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////////////
|
//Use the checkpointer to initialize the RNGs and the gauge field, writing the resulting gauge field into U.
|
||||||
|
//This is called automatically by Run but may be useful elsewhere, e.g. for integrator tuning experiments
|
||||||
private:
|
void initializeGaugeFieldAndRNGs(Field &U){
|
||||||
template <class SmearingPolicy>
|
if(!Resources.haveRNGs()) Resources.AddRNGs();
|
||||||
void Runner(SmearingPolicy &Smearing) {
|
|
||||||
auto UGrid = Resources.GetCartesian();
|
|
||||||
Resources.AddRNGs();
|
|
||||||
Field U(UGrid);
|
|
||||||
|
|
||||||
// Can move this outside?
|
|
||||||
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
|
||||||
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
|
||||||
|
|
||||||
if (Parameters.StartingType == "HotStart") {
|
if (Parameters.StartingType == "HotStart") {
|
||||||
// Hot start
|
// Hot start
|
||||||
@ -159,14 +151,43 @@ private:
|
|||||||
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||||
Resources.GetSerialRNG(),
|
Resources.GetSerialRNG(),
|
||||||
Resources.GetParallelRNG());
|
Resources.GetParallelRNG());
|
||||||
|
} else if (Parameters.StartingType == "CheckpointStartReseed") {
|
||||||
|
// Same as CheckpointRestart but reseed the RNGs using the fixed integer seeding used for ColdStart and HotStart
|
||||||
|
// Useful for creating new evolution streams from an existing stream
|
||||||
|
|
||||||
|
// WARNING: Unfortunately because the checkpointer doesn't presently allow us to separately restore the RNG and gauge fields we have to load
|
||||||
|
// an existing RNG checkpoint first; make sure one is available and named correctly
|
||||||
|
Resources.GetCheckPointer()->CheckpointRestore(Parameters.StartTrajectory, U,
|
||||||
|
Resources.GetSerialRNG(),
|
||||||
|
Resources.GetParallelRNG());
|
||||||
|
Resources.SeedFixedIntegers();
|
||||||
} else {
|
} else {
|
||||||
// others
|
// others
|
||||||
std::cout << GridLogError << "Unrecognized StartingType\n";
|
std::cout << GridLogError << "Unrecognized StartingType\n";
|
||||||
std::cout
|
std::cout
|
||||||
<< GridLogError
|
<< GridLogError
|
||||||
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart]\n";
|
<< "Valid [HotStart, ColdStart, TepidStart, CheckpointStart, CheckpointStartReseed]\n";
|
||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
private:
|
||||||
|
template <class SmearingPolicy>
|
||||||
|
void Runner(SmearingPolicy &Smearing) {
|
||||||
|
auto UGrid = Resources.GetCartesian();
|
||||||
|
Field U(UGrid);
|
||||||
|
|
||||||
|
initializeGaugeFieldAndRNGs(U);
|
||||||
|
|
||||||
|
typedef IntegratorType<SmearingPolicy> TheIntegrator;
|
||||||
|
TheIntegrator MDynamics(UGrid, Parameters.MD, TheAction, Smearing);
|
||||||
|
|
||||||
|
// Sets the momentum filter
|
||||||
|
MDynamics.setMomentumFilter(*(Resources.GetMomentumFilter()));
|
||||||
|
|
||||||
Smearing.set_Field(U);
|
Smearing.set_Field(U);
|
||||||
|
|
||||||
|
@ -34,6 +34,7 @@ directory
|
|||||||
* @brief Classes for Hybrid Monte Carlo update
|
* @brief Classes for Hybrid Monte Carlo update
|
||||||
*
|
*
|
||||||
* @author Guido Cossu
|
* @author Guido Cossu
|
||||||
|
* @author Peter Boyle
|
||||||
*/
|
*/
|
||||||
//--------------------------------------------------------------------
|
//--------------------------------------------------------------------
|
||||||
#pragma once
|
#pragma once
|
||||||
@ -52,6 +53,7 @@ struct HMCparameters: Serializable {
|
|||||||
Integer, Trajectories, /* @brief Number of sweeps in this run */
|
Integer, Trajectories, /* @brief Number of sweeps in this run */
|
||||||
bool, MetropolisTest,
|
bool, MetropolisTest,
|
||||||
Integer, NoMetropolisUntil,
|
Integer, NoMetropolisUntil,
|
||||||
|
bool, PerformRandomShift, /* @brief Randomly shift the gauge configuration at the start of a trajectory */
|
||||||
std::string, StartingType,
|
std::string, StartingType,
|
||||||
IntegratorParameters, MD)
|
IntegratorParameters, MD)
|
||||||
|
|
||||||
@ -62,6 +64,7 @@ struct HMCparameters: Serializable {
|
|||||||
StartTrajectory = 0;
|
StartTrajectory = 0;
|
||||||
Trajectories = 10;
|
Trajectories = 10;
|
||||||
StartingType = "HotStart";
|
StartingType = "HotStart";
|
||||||
|
PerformRandomShift = true;
|
||||||
/////////////////////////////////
|
/////////////////////////////////
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -82,6 +85,7 @@ struct HMCparameters: Serializable {
|
|||||||
std::cout << GridLogMessage << "[HMC parameters] Start trajectory : " << StartTrajectory << "\n";
|
std::cout << GridLogMessage << "[HMC parameters] Start trajectory : " << StartTrajectory << "\n";
|
||||||
std::cout << GridLogMessage << "[HMC parameters] Metropolis test (on/off): " << std::boolalpha << MetropolisTest << "\n";
|
std::cout << GridLogMessage << "[HMC parameters] Metropolis test (on/off): " << std::boolalpha << MetropolisTest << "\n";
|
||||||
std::cout << GridLogMessage << "[HMC parameters] Thermalization trajs : " << NoMetropolisUntil << "\n";
|
std::cout << GridLogMessage << "[HMC parameters] Thermalization trajs : " << NoMetropolisUntil << "\n";
|
||||||
|
std::cout << GridLogMessage << "[HMC parameters] Doing random shift : " << std::boolalpha << PerformRandomShift << "\n";
|
||||||
std::cout << GridLogMessage << "[HMC parameters] Starting type : " << StartingType << "\n";
|
std::cout << GridLogMessage << "[HMC parameters] Starting type : " << StartingType << "\n";
|
||||||
MD.print_parameters();
|
MD.print_parameters();
|
||||||
}
|
}
|
||||||
@ -94,6 +98,7 @@ private:
|
|||||||
const HMCparameters Params;
|
const HMCparameters Params;
|
||||||
|
|
||||||
typedef typename IntegratorType::Field Field;
|
typedef typename IntegratorType::Field Field;
|
||||||
|
typedef typename IntegratorType::FieldImplementation FieldImplementation;
|
||||||
typedef std::vector< HmcObservable<Field> * > ObsListType;
|
typedef std::vector< HmcObservable<Field> * > ObsListType;
|
||||||
|
|
||||||
//pass these from the resource manager
|
//pass these from the resource manager
|
||||||
@ -115,22 +120,17 @@ private:
|
|||||||
|
|
||||||
random(sRNG, rn_test);
|
random(sRNG, rn_test);
|
||||||
|
|
||||||
std::cout << GridLogMessage
|
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||||
<< "--------------------------------------------------\n";
|
std::cout << GridLogHMC << "exp(-dH) = " << prob << " Random = " << rn_test << "\n";
|
||||||
std::cout << GridLogMessage << "exp(-dH) = " << prob
|
std::cout << GridLogHMC << "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
||||||
<< " Random = " << rn_test << "\n";
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "Acc. Probability = " << ((prob < 1.0) ? prob : 1.0) << "\n";
|
|
||||||
|
|
||||||
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
if ((prob > 1.0) || (rn_test <= prob)) { // accepted
|
||||||
std::cout << GridLogMessage << "Metropolis_test -- ACCEPTED\n";
|
std::cout << GridLogHMC << "Metropolis_test -- ACCEPTED\n";
|
||||||
std::cout << GridLogMessage
|
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||||
<< "--------------------------------------------------\n";
|
|
||||||
return true;
|
return true;
|
||||||
} else { // rejected
|
} else { // rejected
|
||||||
std::cout << GridLogMessage << "Metropolis_test -- REJECTED\n";
|
std::cout << GridLogHMC << "Metropolis_test -- REJECTED\n";
|
||||||
std::cout << GridLogMessage
|
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||||
<< "--------------------------------------------------\n";
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -139,19 +139,80 @@ private:
|
|||||||
// Evolution
|
// Evolution
|
||||||
/////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////
|
||||||
RealD evolve_hmc_step(Field &U) {
|
RealD evolve_hmc_step(Field &U) {
|
||||||
TheIntegrator.refresh(U, sRNG, pRNG); // set U and initialize P and phi's
|
|
||||||
|
|
||||||
RealD H0 = TheIntegrator.S(U); // initial state action
|
GridBase *Grid = U.Grid();
|
||||||
|
|
||||||
|
if(Params.PerformRandomShift){
|
||||||
|
#if 0
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Mainly for DDHMC perform a random translation of U modulo volume
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
std::cout << GridLogMessage << "Random shifting gauge field by [";
|
||||||
|
|
||||||
|
std::vector<typename FieldImplementation::GaugeLinkField> Umu(Grid->Nd(), U.Grid());
|
||||||
|
for(int mu=0;mu<Grid->Nd();mu++) Umu[mu] = PeekIndex<LorentzIndex>(U, mu);
|
||||||
|
|
||||||
|
for(int d=0;d<Grid->Nd();d++) {
|
||||||
|
|
||||||
|
int L = Grid->GlobalDimensions()[d];
|
||||||
|
|
||||||
|
RealD rn_uniform; random(sRNG, rn_uniform);
|
||||||
|
|
||||||
|
int shift = (int) (rn_uniform*L);
|
||||||
|
|
||||||
|
std::cout << shift;
|
||||||
|
if(d<Grid->Nd()-1) std::cout <<",";
|
||||||
|
else std::cout <<"]\n";
|
||||||
|
|
||||||
|
//shift all fields together in a way that respects the gauge BCs
|
||||||
|
for(int mu=0; mu < Grid->Nd(); mu++)
|
||||||
|
Umu[mu] = FieldImplementation::CshiftLink(Umu[mu],d,shift);
|
||||||
|
|
||||||
|
for(int mu=0;mu<Grid->Nd();mu++) PokeIndex<LorentzIndex>(U,Umu[mu],mu);
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
TheIntegrator.reset_timer();
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// set U and initialize P and phi's
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
std::cout << GridLogMessage << "Refresh momenta and pseudofermions";
|
||||||
|
TheIntegrator.refresh(U, sRNG, pRNG);
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// initial state action
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
std::cout << GridLogMessage << "Compute initial action";
|
||||||
|
RealD H0 = TheIntegrator.Sinitial(U);
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
|
||||||
std::streamsize current_precision = std::cout.precision();
|
std::streamsize current_precision = std::cout.precision();
|
||||||
std::cout.precision(15);
|
std::cout.precision(15);
|
||||||
std::cout << GridLogMessage << "Total H before trajectory = " << H0 << "\n";
|
std::cout << GridLogHMC << "Total H before trajectory = " << H0 << "\n";
|
||||||
std::cout.precision(current_precision);
|
std::cout.precision(current_precision);
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
std::cout << GridLogMessage << " Molecular Dynamics evolution ";
|
||||||
TheIntegrator.integrate(U);
|
TheIntegrator.integrate(U);
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
|
||||||
RealD H1 = TheIntegrator.S(U); // updated state action
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
// updated state action
|
||||||
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
std::cout << GridLogMessage << "Compute final action";
|
||||||
|
RealD H1 = TheIntegrator.S(U);
|
||||||
|
std::cout << GridLogMessage << "--------------------------------------------------\n";
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////
|
||||||
if(0){
|
if(0){
|
||||||
std::cout << "------------------------- Reversibility test" << std::endl;
|
std::cout << "------------------------- Reversibility test" << std::endl;
|
||||||
@ -163,17 +224,16 @@ private:
|
|||||||
}
|
}
|
||||||
///////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
std::cout.precision(15);
|
std::cout.precision(15);
|
||||||
std::cout << GridLogMessage << "Total H after trajectory = " << H1
|
|
||||||
<< " dH = " << H1 - H0 << "\n";
|
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||||
|
std::cout << GridLogHMC << "Total H after trajectory = " << H1 << " dH = " << H1 - H0 << "\n";
|
||||||
|
std::cout << GridLogHMC << "--------------------------------------------------\n";
|
||||||
|
|
||||||
std::cout.precision(current_precision);
|
std::cout.precision(current_precision);
|
||||||
|
|
||||||
return (H1 - H0);
|
return (H1 - H0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
/////////////////////////////////////////
|
/////////////////////////////////////////
|
||||||
@ -195,10 +255,13 @@ public:
|
|||||||
|
|
||||||
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
// Actual updates (evolve a copy Ucopy then copy back eventually)
|
||||||
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
|
unsigned int FinalTrajectory = Params.Trajectories + Params.NoMetropolisUntil + Params.StartTrajectory;
|
||||||
|
|
||||||
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
|
for (int traj = Params.StartTrajectory; traj < FinalTrajectory; ++traj) {
|
||||||
std::cout << GridLogMessage << "-- # Trajectory = " << traj << "\n";
|
|
||||||
|
std::cout << GridLogHMC << "-- # Trajectory = " << traj << "\n";
|
||||||
|
|
||||||
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
|
if (traj < Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||||
std::cout << GridLogMessage << "-- Thermalization" << std::endl;
|
std::cout << GridLogHMC << "-- Thermalization" << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
double t0=usecond();
|
double t0=usecond();
|
||||||
@ -207,20 +270,19 @@ public:
|
|||||||
DeltaH = evolve_hmc_step(Ucopy);
|
DeltaH = evolve_hmc_step(Ucopy);
|
||||||
// Metropolis-Hastings test
|
// Metropolis-Hastings test
|
||||||
bool accept = true;
|
bool accept = true;
|
||||||
if (traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
if (Params.MetropolisTest && traj >= Params.StartTrajectory + Params.NoMetropolisUntil) {
|
||||||
accept = metropolis_test(DeltaH);
|
accept = metropolis_test(DeltaH);
|
||||||
} else {
|
} else {
|
||||||
std::cout << GridLogMessage << "Skipping Metropolis test" << std::endl;
|
std::cout << GridLogHMC << "Skipping Metropolis test" << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (accept)
|
if (accept)
|
||||||
Ucur = Ucopy;
|
Ucur = Ucopy;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
double t1=usecond();
|
double t1=usecond();
|
||||||
std::cout << GridLogMessage << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
std::cout << GridLogHMC << "Total time for trajectory (s): " << (t1-t0)/1e6 << std::endl;
|
||||||
|
|
||||||
|
TheIntegrator.print_timer();
|
||||||
|
|
||||||
for (int obs = 0; obs < Observables.size(); obs++) {
|
for (int obs = 0; obs < Observables.size(); obs++) {
|
||||||
std::cout << GridLogDebug << "Observables # " << obs << std::endl;
|
std::cout << GridLogDebug << "Observables # " << obs << std::endl;
|
||||||
@ -228,7 +290,7 @@ public:
|
|||||||
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
|
std::cout << GridLogDebug << "Observables pointer " << Observables[obs] << std::endl;
|
||||||
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
|
Observables[obs]->TrajectoryComplete(traj + 1, Ucur, sRNG, pRNG);
|
||||||
}
|
}
|
||||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
std::cout << GridLogHMC << ":::::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -80,7 +80,9 @@ public:
|
|||||||
std::cout << GridLogError << "Seeds not initialized" << std::endl;
|
std::cout << GridLogError << "Seeds not initialized" << std::endl;
|
||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
|
std::cout << GridLogMessage << "Reseeding serial RNG with seed vector " << SerialSeeds << std::endl;
|
||||||
sRNG_.SeedFixedIntegers(SerialSeeds);
|
sRNG_.SeedFixedIntegers(SerialSeeds);
|
||||||
|
std::cout << GridLogMessage << "Reseeding parallel RNG with seed vector " << ParallelSeeds << std::endl;
|
||||||
pRNG_->SeedFixedIntegers(ParallelSeeds);
|
pRNG_->SeedFixedIntegers(ParallelSeeds);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@ -72,6 +72,8 @@ class HMCResourceManager {
|
|||||||
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
|
typedef HMCModuleBase< BaseHmcCheckpointer<ImplementationPolicy> > CheckpointerBaseModule;
|
||||||
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
|
typedef HMCModuleBase< HmcObservable<typename ImplementationPolicy::Field> > ObservableBaseModule;
|
||||||
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
|
typedef ActionModuleBase< Action<typename ImplementationPolicy::Field>, GridModule > ActionBaseModule;
|
||||||
|
typedef typename ImplementationPolicy::Field MomentaField;
|
||||||
|
typedef typename ImplementationPolicy::Field Field;
|
||||||
|
|
||||||
// Named storage for grid pairs (std + red-black)
|
// Named storage for grid pairs (std + red-black)
|
||||||
std::unordered_map<std::string, GridModule> Grids;
|
std::unordered_map<std::string, GridModule> Grids;
|
||||||
@ -80,6 +82,9 @@ class HMCResourceManager {
|
|||||||
// SmearingModule<ImplementationPolicy> Smearing;
|
// SmearingModule<ImplementationPolicy> Smearing;
|
||||||
std::unique_ptr<CheckpointerBaseModule> CP;
|
std::unique_ptr<CheckpointerBaseModule> CP;
|
||||||
|
|
||||||
|
// Momentum filter
|
||||||
|
std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> > Filter;
|
||||||
|
|
||||||
// A vector of HmcObservable modules
|
// A vector of HmcObservable modules
|
||||||
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
|
std::vector<std::unique_ptr<ObservableBaseModule> > ObservablesList;
|
||||||
|
|
||||||
@ -90,6 +95,7 @@ class HMCResourceManager {
|
|||||||
|
|
||||||
bool have_RNG;
|
bool have_RNG;
|
||||||
bool have_CheckPointer;
|
bool have_CheckPointer;
|
||||||
|
bool have_Filter;
|
||||||
|
|
||||||
// NOTE: operator << is not overloaded for std::vector<string>
|
// NOTE: operator << is not overloaded for std::vector<string>
|
||||||
// so this function is necessary
|
// so this function is necessary
|
||||||
@ -101,7 +107,7 @@ class HMCResourceManager {
|
|||||||
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
HMCResourceManager() : have_RNG(false), have_CheckPointer(false) {}
|
HMCResourceManager() : have_RNG(false), have_CheckPointer(false), have_Filter(false) {}
|
||||||
|
|
||||||
template <class ReaderClass, class vector_type = vComplex >
|
template <class ReaderClass, class vector_type = vComplex >
|
||||||
void initialize(ReaderClass &Read){
|
void initialize(ReaderClass &Read){
|
||||||
@ -129,6 +135,7 @@ public:
|
|||||||
RNGModuleParameters RNGpar(Read);
|
RNGModuleParameters RNGpar(Read);
|
||||||
SetRNGSeeds(RNGpar);
|
SetRNGSeeds(RNGpar);
|
||||||
|
|
||||||
|
|
||||||
// Observables
|
// Observables
|
||||||
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
|
auto &ObsFactory = HMC_ObservablesModuleFactory<observable_string, typename ImplementationPolicy::Field, ReaderClass>::getInstance();
|
||||||
Read.push(observable_string);// here must check if existing...
|
Read.push(observable_string);// here must check if existing...
|
||||||
@ -208,6 +215,16 @@ public:
|
|||||||
AddGrid(s, Mod);
|
AddGrid(s, Mod);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void SetMomentumFilter( MomentumFilterBase<typename ImplementationPolicy::Field> * MomFilter) {
|
||||||
|
assert(have_Filter==false);
|
||||||
|
Filter = std::unique_ptr<MomentumFilterBase<typename ImplementationPolicy::Field> >(MomFilter);
|
||||||
|
have_Filter = true;
|
||||||
|
}
|
||||||
|
MomentumFilterBase<typename ImplementationPolicy::Field> *GetMomentumFilter(void) {
|
||||||
|
if ( !have_Filter)
|
||||||
|
SetMomentumFilter(new MomentumFilterNone<typename ImplementationPolicy::Field>());
|
||||||
|
return Filter.get();
|
||||||
|
}
|
||||||
|
|
||||||
GridCartesian* GetCartesian(std::string s = "") {
|
GridCartesian* GetCartesian(std::string s = "") {
|
||||||
if (s.empty()) s = Grids.begin()->first;
|
if (s.empty()) s = Grids.begin()->first;
|
||||||
@ -226,6 +243,9 @@ public:
|
|||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
// Random number generators
|
// Random number generators
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
//Return true if the RNG objects have been instantiated
|
||||||
|
bool haveRNGs() const{ return have_RNG; }
|
||||||
|
|
||||||
void AddRNGs(std::string s = "") {
|
void AddRNGs(std::string s = "") {
|
||||||
// Couple the RNGs to the GridModule tagged by s
|
// Couple the RNGs to the GridModule tagged by s
|
||||||
|
@ -33,7 +33,6 @@ directory
|
|||||||
#define INTEGRATOR_INCLUDED
|
#define INTEGRATOR_INCLUDED
|
||||||
|
|
||||||
#include <memory>
|
#include <memory>
|
||||||
#include "MomentumFilter.h"
|
|
||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
@ -64,9 +63,10 @@ public:
|
|||||||
};
|
};
|
||||||
|
|
||||||
/*! @brief Class for Molecular Dynamics management */
|
/*! @brief Class for Molecular Dynamics management */
|
||||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy>
|
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy>
|
||||||
class Integrator {
|
class Integrator {
|
||||||
protected:
|
protected:
|
||||||
|
typedef FieldImplementation_ FieldImplementation;
|
||||||
typedef typename FieldImplementation::Field MomentaField; //for readability
|
typedef typename FieldImplementation::Field MomentaField; //for readability
|
||||||
typedef typename FieldImplementation::Field Field;
|
typedef typename FieldImplementation::Field Field;
|
||||||
|
|
||||||
@ -119,36 +119,65 @@ protected:
|
|||||||
}
|
}
|
||||||
} update_P_hireps{};
|
} update_P_hireps{};
|
||||||
|
|
||||||
|
|
||||||
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
|
void update_P(MomentaField& Mom, Field& U, int level, double ep) {
|
||||||
// input U actually not used in the fundamental case
|
// input U actually not used in the fundamental case
|
||||||
// Fundamental updates, include smearing
|
// Fundamental updates, include smearing
|
||||||
|
|
||||||
for (int a = 0; a < as[level].actions.size(); ++a) {
|
for (int a = 0; a < as[level].actions.size(); ++a) {
|
||||||
|
|
||||||
double start_full = usecond();
|
double start_full = usecond();
|
||||||
Field force(U.Grid());
|
Field force(U.Grid());
|
||||||
conformable(U.Grid(), Mom.Grid());
|
conformable(U.Grid(), Mom.Grid());
|
||||||
|
|
||||||
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
|
Field& Us = Smearer.get_U(as[level].actions.at(a)->is_smeared);
|
||||||
double start_force = usecond();
|
double start_force = usecond();
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] before"<<std::endl;
|
||||||
|
|
||||||
|
as[level].actions.at(a)->deriv_timer_start();
|
||||||
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
|
as[level].actions.at(a)->deriv(Us, force); // deriv should NOT include Ta
|
||||||
|
as[level].actions.at(a)->deriv_timer_stop();
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "AuditForce["<<level<<"]["<<a<<"] after"<<std::endl;
|
||||||
|
|
||||||
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
|
std::cout << GridLogIntegrator << "Smearing (on/off): " << as[level].actions.at(a)->is_smeared << std::endl;
|
||||||
|
auto name = as[level].actions.at(a)->action_name();
|
||||||
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
if (as[level].actions.at(a)->is_smeared) Smearer.smeared_force(force);
|
||||||
|
|
||||||
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
force = FieldImplementation::projectForce(force); // Ta for gauge fields
|
||||||
double end_force = usecond();
|
double end_force = usecond();
|
||||||
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites());
|
|
||||||
std::cout << GridLogIntegrator << "["<<level<<"]["<<a<<"] Force average: " << force_abs << std::endl;
|
// DumpSliceNorm("force ",force,Nd-1);
|
||||||
|
MomFilter->applyFilter(force);
|
||||||
|
std::cout << GridLogIntegrator << " update_P : Level [" << level <<"]["<<a <<"] "<<name<<" dt "<<ep<< std::endl;
|
||||||
|
DumpSliceNorm("force filtered ",force,Nd-1);
|
||||||
|
|
||||||
|
Real force_abs = std::sqrt(norm2(force)/U.Grid()->gSites()); //average per-site norm. nb. norm2(latt) = \sum_x norm2(latt[x])
|
||||||
|
Real impulse_abs = force_abs * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||||
|
|
||||||
|
Real force_max = std::sqrt(maxLocalNorm2(force));
|
||||||
|
Real impulse_max = force_max * ep * HMC_MOMENTUM_DENOMINATOR;
|
||||||
|
|
||||||
|
as[level].actions.at(a)->deriv_log(force_abs,force_max,impulse_abs,impulse_max);
|
||||||
|
|
||||||
|
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] dt : " << ep <<" "<<name<<std::endl;
|
||||||
|
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force average: " << force_abs <<" "<<name<<std::endl;
|
||||||
|
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Force max : " << force_max <<" "<<name<<std::endl;
|
||||||
|
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt average : " << impulse_abs <<" "<<name<<std::endl;
|
||||||
|
std::cout << GridLogIntegrator<< "["<<level<<"]["<<a<<"] Fdt max : " << impulse_max <<" "<<name<<std::endl;
|
||||||
|
|
||||||
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
Mom -= force * ep* HMC_MOMENTUM_DENOMINATOR;;
|
||||||
double end_full = usecond();
|
double end_full = usecond();
|
||||||
double time_full = (end_full - start_full) / 1e3;
|
double time_full = (end_full - start_full) / 1e3;
|
||||||
double time_force = (end_force - start_force) / 1e3;
|
double time_force = (end_force - start_force) / 1e3;
|
||||||
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
std::cout << GridLogMessage << "["<<level<<"]["<<a<<"] P update elapsed time: " << time_full << " ms (force: " << time_force << " ms)" << std::endl;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Force from the other representations
|
// Force from the other representations
|
||||||
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
|
as[level].apply(update_P_hireps, Representations, Mom, U, ep);
|
||||||
|
|
||||||
MomFilter->applyFilter(Mom);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void update_U(Field& U, double ep)
|
void update_U(Field& U, double ep)
|
||||||
@ -162,8 +191,12 @@ protected:
|
|||||||
|
|
||||||
void update_U(MomentaField& Mom, Field& U, double ep)
|
void update_U(MomentaField& Mom, Field& U, double ep)
|
||||||
{
|
{
|
||||||
|
MomentaField MomFiltered(Mom.Grid());
|
||||||
|
MomFiltered = Mom;
|
||||||
|
MomFilter->applyFilter(MomFiltered);
|
||||||
|
|
||||||
// exponential of Mom*U in the gauge fields case
|
// exponential of Mom*U in the gauge fields case
|
||||||
FieldImplementation::update_field(Mom, U, ep);
|
FieldImplementation::update_field(MomFiltered, U, ep);
|
||||||
|
|
||||||
// Update the smeared fields, can be implemented as observer
|
// Update the smeared fields, can be implemented as observer
|
||||||
Smearer.set_Field(U);
|
Smearer.set_Field(U);
|
||||||
@ -206,6 +239,77 @@ public:
|
|||||||
const MomentaField & getMomentum() const{ return P; }
|
const MomentaField & getMomentum() const{ return P; }
|
||||||
|
|
||||||
|
|
||||||
|
void reset_timer(void)
|
||||||
|
{
|
||||||
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
as[level].actions.at(actionID)->reset_timer();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void print_timer(void)
|
||||||
|
{
|
||||||
|
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::" << std::endl;
|
||||||
|
std::cout << GridLogMessage << " Refresh cumulative timings "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||||
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< as[level].actions.at(actionID)->action_name()
|
||||||
|
<<"["<<level<<"]["<< actionID<<"] "
|
||||||
|
<< as[level].actions.at(actionID)->refresh_us*1.0e-6<<" s"<< std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << " Action cumulative timings "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||||
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< as[level].actions.at(actionID)->action_name()
|
||||||
|
<<"["<<level<<"]["<< actionID<<"] "
|
||||||
|
<< as[level].actions.at(actionID)->S_us*1.0e-6<<" s"<< std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << " Force cumulative timings "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "------------------------- "<<std::endl;
|
||||||
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< as[level].actions.at(actionID)->action_name()
|
||||||
|
<<"["<<level<<"]["<< actionID<<"] "
|
||||||
|
<< as[level].actions.at(actionID)->deriv_us*1.0e-6<<" s"<< std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << " Dslash counts "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "------------------------- "<<std::endl;
|
||||||
|
uint64_t full, partial, dirichlet;
|
||||||
|
DslashGetCounts(dirichlet,partial,full);
|
||||||
|
std::cout << GridLogMessage << " Full BCs : "<<full<<std::endl;
|
||||||
|
std::cout << GridLogMessage << " Partial dirichlet BCs : "<<partial<<std::endl;
|
||||||
|
std::cout << GridLogMessage << " Dirichlet BCs : "<<dirichlet<<std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "--------------------------- "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << " Force average size "<<std::endl;
|
||||||
|
std::cout << GridLogMessage << "------------------------- "<<std::endl;
|
||||||
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< as[level].actions.at(actionID)->action_name()
|
||||||
|
<<"["<<level<<"]["<< actionID<<"] :\n\t\t "
|
||||||
|
<<" force max " << as[level].actions.at(actionID)->deriv_max_average()
|
||||||
|
<<" norm " << as[level].actions.at(actionID)->deriv_norm_average()
|
||||||
|
<<" Fdt max " << as[level].actions.at(actionID)->Fdt_max_average()
|
||||||
|
<<" Fdt norm " << as[level].actions.at(actionID)->Fdt_norm_average()
|
||||||
|
<<" calls " << as[level].actions.at(actionID)->deriv_num
|
||||||
|
<< std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
void print_parameters()
|
void print_parameters()
|
||||||
{
|
{
|
||||||
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
|
std::cout << GridLogMessage << "[Integrator] Name : "<< integrator_name() << std::endl;
|
||||||
@ -224,7 +328,6 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
std::cout << GridLogMessage << ":::::::::::::::::::::::::::::::::::::::::"<< std::endl;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void reverse_momenta()
|
void reverse_momenta()
|
||||||
@ -249,15 +352,19 @@ public:
|
|||||||
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
|
void refresh(Field& U, GridSerialRNG & sRNG, GridParallelRNG& pRNG)
|
||||||
{
|
{
|
||||||
assert(P.Grid() == U.Grid());
|
assert(P.Grid() == U.Grid());
|
||||||
std::cout << GridLogIntegrator << "Integrator refresh\n";
|
std::cout << GridLogIntegrator << "Integrator refresh" << std::endl;
|
||||||
|
|
||||||
|
std::cout << GridLogIntegrator << "Generating momentum" << std::endl;
|
||||||
FieldImplementation::generate_momenta(P, sRNG, pRNG);
|
FieldImplementation::generate_momenta(P, sRNG, pRNG);
|
||||||
|
|
||||||
// Update the smeared fields, can be implemented as observer
|
// Update the smeared fields, can be implemented as observer
|
||||||
// necessary to keep the fields updated even after a reject
|
// necessary to keep the fields updated even after a reject
|
||||||
// of the Metropolis
|
// of the Metropolis
|
||||||
|
std::cout << GridLogIntegrator << "Updating smeared fields" << std::endl;
|
||||||
Smearer.set_Field(U);
|
Smearer.set_Field(U);
|
||||||
// Set the (eventual) representations gauge fields
|
// Set the (eventual) representations gauge fields
|
||||||
|
|
||||||
|
std::cout << GridLogIntegrator << "Updating representations" << std::endl;
|
||||||
Representations.update(U);
|
Representations.update(U);
|
||||||
|
|
||||||
// The Smearer is attached to a pointer of the gauge field
|
// The Smearer is attached to a pointer of the gauge field
|
||||||
@ -267,15 +374,24 @@ public:
|
|||||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
// get gauge field from the SmearingPolicy and
|
// get gauge field from the SmearingPolicy and
|
||||||
// based on the boolean is_smeared in actionID
|
// based on the boolean is_smeared in actionID
|
||||||
|
auto name = as[level].actions.at(actionID)->action_name();
|
||||||
|
std::cout << GridLogMessage << "refresh [" << level << "][" << actionID << "] "<<name << std::endl;
|
||||||
|
|
||||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] before"<<std::endl;
|
||||||
|
|
||||||
|
as[level].actions.at(actionID)->refresh_timer_start();
|
||||||
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
|
as[level].actions.at(actionID)->refresh(Us, sRNG, pRNG);
|
||||||
|
as[level].actions.at(actionID)->refresh_timer_stop();
|
||||||
|
std::cout << GridLogMessage << "AuditRefresh["<<level<<"]["<<actionID<<"] after"<<std::endl;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Refresh the higher representation actions
|
// Refresh the higher representation actions
|
||||||
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
|
as[level].apply(refresh_hireps, Representations, sRNG, pRNG);
|
||||||
}
|
}
|
||||||
|
|
||||||
MomFilter->applyFilter(P);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// to be used by the actionlevel class to iterate
|
// to be used by the actionlevel class to iterate
|
||||||
@ -306,13 +422,17 @@ public:
|
|||||||
// Actions
|
// Actions
|
||||||
for (int level = 0; level < as.size(); ++level) {
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
|
||||||
// get gauge field from the SmearingPolicy and
|
// get gauge field from the SmearingPolicy and
|
||||||
// based on the boolean is_smeared in actionID
|
// based on the boolean is_smeared in actionID
|
||||||
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||||
|
as[level].actions.at(actionID)->S_timer_start();
|
||||||
Hterm = as[level].actions.at(actionID)->S(Us);
|
Hterm = as[level].actions.at(actionID)->S(Us);
|
||||||
|
as[level].actions.at(actionID)->S_timer_stop();
|
||||||
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||||
H += Hterm;
|
H += Hterm;
|
||||||
|
|
||||||
}
|
}
|
||||||
as[level].apply(S_hireps, Representations, level, H);
|
as[level].apply(S_hireps, Representations, level, H);
|
||||||
}
|
}
|
||||||
@ -320,6 +440,52 @@ public:
|
|||||||
return H;
|
return H;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct _Sinitial {
|
||||||
|
template <class FieldType, class Repr>
|
||||||
|
void operator()(std::vector<Action<FieldType>*> repr_set, Repr& Rep, int level, RealD& H) {
|
||||||
|
|
||||||
|
for (int a = 0; a < repr_set.size(); ++a) {
|
||||||
|
|
||||||
|
RealD Hterm = repr_set.at(a)->Sinitial(Rep.U);
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "Sinitial Level " << level << " term " << a << " H Hirep = " << Hterm << std::endl;
|
||||||
|
H += Hterm;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} Sinitial_hireps{};
|
||||||
|
|
||||||
|
RealD Sinitial(Field& U)
|
||||||
|
{ // here also U not used
|
||||||
|
|
||||||
|
std::cout << GridLogIntegrator << "Integrator initial action\n";
|
||||||
|
|
||||||
|
RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom
|
||||||
|
|
||||||
|
RealD Hterm;
|
||||||
|
|
||||||
|
// Actions
|
||||||
|
for (int level = 0; level < as.size(); ++level) {
|
||||||
|
for (int actionID = 0; actionID < as[level].actions.size(); ++actionID) {
|
||||||
|
// get gauge field from the SmearingPolicy and
|
||||||
|
// based on the boolean is_smeared in actionID
|
||||||
|
Field& Us = Smearer.get_U(as[level].actions.at(actionID)->is_smeared);
|
||||||
|
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] action eval " << std::endl;
|
||||||
|
as[level].actions.at(actionID)->S_timer_start();
|
||||||
|
|
||||||
|
Hterm = as[level].actions.at(actionID)->Sinitial(Us);
|
||||||
|
as[level].actions.at(actionID)->S_timer_stop();
|
||||||
|
|
||||||
|
std::cout << GridLogMessage << "S [" << level << "][" << actionID << "] H = " << Hterm << std::endl;
|
||||||
|
H += Hterm;
|
||||||
|
}
|
||||||
|
as[level].apply(Sinitial_hireps, Representations, level, H);
|
||||||
|
}
|
||||||
|
|
||||||
|
return H;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
void integrate(Field& U)
|
void integrate(Field& U)
|
||||||
{
|
{
|
||||||
// reset the clocks
|
// reset the clocks
|
||||||
|
@ -92,10 +92,11 @@ NAMESPACE_BEGIN(Grid);
|
|||||||
* P 1/2 P 1/2
|
* P 1/2 P 1/2
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
||||||
class LeapFrog : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
class LeapFrog : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
typedef FieldImplementation_ FieldImplementation;
|
||||||
typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy> Algorithm;
|
typedef LeapFrog<FieldImplementation, SmearingPolicy, RepresentationPolicy> Algorithm;
|
||||||
INHERIT_FIELD_TYPES(FieldImplementation);
|
INHERIT_FIELD_TYPES(FieldImplementation);
|
||||||
|
|
||||||
@ -135,13 +136,14 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
||||||
class MinimumNorm2 : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
class MinimumNorm2 : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy>
|
||||||
{
|
{
|
||||||
private:
|
private:
|
||||||
const RealD lambda = 0.1931833275037836;
|
const RealD lambda = 0.1931833275037836;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
typedef FieldImplementation_ FieldImplementation;
|
||||||
INHERIT_FIELD_TYPES(FieldImplementation);
|
INHERIT_FIELD_TYPES(FieldImplementation);
|
||||||
|
|
||||||
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
|
MinimumNorm2(GridBase* grid, IntegratorParameters Par, ActionSet<Field, RepresentationPolicy>& Aset, SmearingPolicy& Sm)
|
||||||
@ -192,8 +194,8 @@ public:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template <class FieldImplementation, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
template <class FieldImplementation_, class SmearingPolicy, class RepresentationPolicy = Representations<FundamentalRepresentation> >
|
||||||
class ForceGradient : public Integrator<FieldImplementation, SmearingPolicy, RepresentationPolicy>
|
class ForceGradient : public Integrator<FieldImplementation_, SmearingPolicy, RepresentationPolicy>
|
||||||
{
|
{
|
||||||
private:
|
private:
|
||||||
const RealD lambda = 1.0 / 6.0;
|
const RealD lambda = 1.0 / 6.0;
|
||||||
@ -202,6 +204,7 @@ private:
|
|||||||
const RealD theta = 0.0;
|
const RealD theta = 0.0;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
typedef FieldImplementation_ FieldImplementation;
|
||||||
INHERIT_FIELD_TYPES(FieldImplementation);
|
INHERIT_FIELD_TYPES(FieldImplementation);
|
||||||
|
|
||||||
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
|
// Looks like dH scales as dt^4. tested wilson/wilson 2 level.
|
||||||
@ -227,7 +230,8 @@ public:
|
|||||||
// Presently 4 force evals, and should have 3, so 1.33x too expensive.
|
// Presently 4 force evals, and should have 3, so 1.33x too expensive.
|
||||||
// could reduce this with sloppy CG to perhaps 1.15x too expensive
|
// could reduce this with sloppy CG to perhaps 1.15x too expensive
|
||||||
// even without prediction.
|
// even without prediction.
|
||||||
this->update_P(Pfg, Ufg, level, 1.0);
|
this->update_P(Pfg, Ufg, level, fg_dt);
|
||||||
|
Pfg = Pfg*(1.0/fg_dt);
|
||||||
this->update_U(Pfg, Ufg, fg_dt);
|
this->update_U(Pfg, Ufg, fg_dt);
|
||||||
this->update_P(Ufg, level, ep);
|
this->update_P(Ufg, level, ep);
|
||||||
}
|
}
|
||||||
|
@ -78,13 +78,13 @@ static Registrar<OneFlavourRatioEOFModule<FermionImplementationPolicy>,
|
|||||||
// Now a specific registration with a fermion field
|
// Now a specific registration with a fermion field
|
||||||
// here must instantiate CG and CR for every new fermion field type (macro!!)
|
// here must instantiate CG and CR for every new fermion field type (macro!!)
|
||||||
|
|
||||||
static Registrar< ConjugateGradientModule<WilsonFermionR::FermionField>,
|
static Registrar< ConjugateGradientModule<WilsonFermionD::FermionField>,
|
||||||
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient");
|
HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __CGWFmodXMLInit("ConjugateGradient");
|
||||||
|
|
||||||
static Registrar< BiCGSTABModule<WilsonFermionR::FermionField>,
|
static Registrar< BiCGSTABModule<WilsonFermionD::FermionField>,
|
||||||
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __BiCGWFmodXMLInit("BiCGSTAB");
|
HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __BiCGWFmodXMLInit("BiCGSTAB");
|
||||||
static Registrar< ConjugateResidualModule<WilsonFermionR::FermionField>,
|
static Registrar< ConjugateResidualModule<WilsonFermionD::FermionField>,
|
||||||
HMC_SolverModuleFactory<solver_string, WilsonFermionR::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual");
|
HMC_SolverModuleFactory<solver_string, WilsonFermionD::FermionField, Serialiser> > __CRWFmodXMLInit("ConjugateResidual");
|
||||||
|
|
||||||
// add the staggered, scalar versions here
|
// add the staggered, scalar versions here
|
||||||
|
|
||||||
|
@ -31,15 +31,16 @@ directory
|
|||||||
|
|
||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
|
||||||
struct TopologySmearingParameters : Serializable {
|
struct TopologySmearingParameters : Serializable {
|
||||||
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
|
GRID_SERIALIZABLE_CLASS_MEMBERS(TopologySmearingParameters,
|
||||||
int, steps,
|
|
||||||
float, step_size,
|
|
||||||
int, meas_interval,
|
int, meas_interval,
|
||||||
float, maxTau);
|
float, init_step_size,
|
||||||
|
float, maxTau,
|
||||||
|
float, tolerance);
|
||||||
|
|
||||||
TopologySmearingParameters(int s = 0, float ss = 0.0f, int mi = 0, float mT = 0.0f):
|
TopologySmearingParameters(float ss = 0.0f, int mi = 0, float mT = 0.0f, float tol = 1e-4):
|
||||||
steps(s), step_size(ss), meas_interval(mi), maxTau(mT){}
|
init_step_size(ss), meas_interval(mi), maxTau(mT), tolerance(tol){}
|
||||||
|
|
||||||
template < class ReaderClass >
|
template < class ReaderClass >
|
||||||
TopologySmearingParameters(Reader<ReaderClass>& Reader){
|
TopologySmearingParameters(Reader<ReaderClass>& Reader){
|
||||||
@ -97,9 +98,9 @@ public:
|
|||||||
|
|
||||||
if (Pars.do_smearing){
|
if (Pars.do_smearing){
|
||||||
// using wilson flow by default here
|
// using wilson flow by default here
|
||||||
WilsonFlow<PeriodicGimplR> WF(Pars.Smearing.steps, Pars.Smearing.step_size, Pars.Smearing.meas_interval);
|
WilsonFlowAdaptive<PeriodicGimplR> WF(Pars.Smearing.init_step_size, Pars.Smearing.maxTau, Pars.Smearing.tolerance, Pars.Smearing.meas_interval);
|
||||||
WF.smear_adaptive(Usmear, U, Pars.Smearing.maxTau);
|
WF.smear(Usmear, U);
|
||||||
Real T0 = WF.energyDensityPlaquette(Usmear);
|
Real T0 = WF.energyDensityPlaquette(Pars.Smearing.maxTau, Usmear);
|
||||||
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
std::cout << GridLogMessage << std::setprecision(std::numeric_limits<Real>::digits10 + 1)
|
||||||
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
<< "T0 : [ " << traj << " ] "<< T0 << std::endl;
|
||||||
}
|
}
|
||||||
|
@ -7,6 +7,7 @@ Source file: ./lib/qcd/modules/plaquette.h
|
|||||||
Copyright (C) 2017
|
Copyright (C) 2017
|
||||||
|
|
||||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||||
|
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||||
|
|
||||||
This program is free software; you can redistribute it and/or modify
|
This program is free software; you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
@ -32,177 +33,318 @@ directory
|
|||||||
NAMESPACE_BEGIN(Grid);
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
class WilsonFlow: public Smear<Gimpl>{
|
class WilsonFlowBase: public Smear<Gimpl>{
|
||||||
unsigned int Nstep;
|
public:
|
||||||
unsigned int measure_interval;
|
//Store generic measurements to take during smearing process using std::function
|
||||||
mutable RealD epsilon, taus;
|
typedef std::function<void(int, RealD, const typename Gimpl::GaugeField &)> FunctionType; //int: step, RealD: flow time, GaugeField : the gauge field
|
||||||
|
|
||||||
|
protected:
|
||||||
|
std::vector< std::pair<int, FunctionType> > functions; //The int maps to the measurement frequency
|
||||||
|
|
||||||
mutable WilsonGaugeAction<Gimpl> SG;
|
mutable WilsonGaugeAction<Gimpl> SG;
|
||||||
|
|
||||||
void evolve_step(typename Gimpl::GaugeField&) const;
|
|
||||||
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
|
|
||||||
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
INHERIT_GIMPL_TYPES(Gimpl)
|
INHERIT_GIMPL_TYPES(Gimpl)
|
||||||
|
|
||||||
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
explicit WilsonFlowBase(unsigned int meas_interval =1):
|
||||||
Nstep(Nstep),
|
|
||||||
epsilon(epsilon),
|
|
||||||
measure_interval(interval),
|
|
||||||
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
||||||
// WilsonGaugeAction with beta 3.0
|
// WilsonGaugeAction with beta 3.0
|
||||||
assert(epsilon > 0.0);
|
setDefaultMeasurements(meas_interval);
|
||||||
LogMessage();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void resetActions(){ functions.clear(); }
|
||||||
|
|
||||||
void LogMessage() {
|
void addMeasurement(int meas_interval, FunctionType meas){ functions.push_back({meas_interval, meas}); }
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
|
||||||
std::cout << GridLogMessage
|
|
||||||
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
virtual void smear(GaugeField&, const GaugeField&) const;
|
//Set the class to perform the default measurements:
|
||||||
|
//the plaquette energy density every step
|
||||||
|
//the plaquette topological charge every 'topq_meas_interval' steps
|
||||||
|
//and output to stdout
|
||||||
|
void setDefaultMeasurements(int topq_meas_interval = 1);
|
||||||
|
|
||||||
virtual void derivative(GaugeField&, const GaugeField&, const GaugeField&) const {
|
void derivative(GaugeField&, const GaugeField&, const GaugeField&) const override{
|
||||||
assert(0);
|
assert(0);
|
||||||
// undefined for WilsonFlow
|
// undefined for WilsonFlow
|
||||||
}
|
}
|
||||||
|
|
||||||
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
|
//Compute t^2 <E(t)> for time t from the plaquette
|
||||||
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
|
static RealD energyDensityPlaquette(const RealD t, const GaugeField& U);
|
||||||
RealD energyDensityPlaquette(const GaugeField& U) const;
|
|
||||||
|
//Compute t^2 <E(t)> for time t from the 1x1 cloverleaf form
|
||||||
|
//t is the Wilson flow time
|
||||||
|
static RealD energyDensityCloverleaf(const RealD t, const GaugeField& U);
|
||||||
|
|
||||||
|
//Evolve the gauge field by Nstep steps of epsilon and return the energy density computed every interval steps
|
||||||
|
//The smeared field is output as V
|
||||||
|
std::vector<RealD> flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||||
|
|
||||||
|
//Version that does not return the smeared field
|
||||||
|
std::vector<RealD> flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval = 1);
|
||||||
|
|
||||||
|
|
||||||
|
//Evolve the gauge field by Nstep steps of epsilon and return the Cloverleaf energy density computed every interval steps
|
||||||
|
//The smeared field is output as V
|
||||||
|
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval = 1);
|
||||||
|
|
||||||
|
//Version that does not return the smeared field
|
||||||
|
std::vector<RealD> flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval = 1);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
//Basic iterative Wilson flow
|
||||||
|
template <class Gimpl>
|
||||||
|
class WilsonFlow: public WilsonFlowBase<Gimpl>{
|
||||||
|
private:
|
||||||
|
int Nstep; //number of steps
|
||||||
|
RealD epsilon; //step size
|
||||||
|
|
||||||
|
//Evolve the gauge field by 1 step of size eps and update tau
|
||||||
|
void evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const;
|
||||||
|
|
||||||
|
public:
|
||||||
|
INHERIT_GIMPL_TYPES(Gimpl)
|
||||||
|
|
||||||
|
//Integrate the Wilson flow for Nstep steps of size epsilon
|
||||||
|
WilsonFlow(const RealD epsilon, const int Nstep, unsigned int meas_interval = 1): WilsonFlowBase<Gimpl>(meas_interval), Nstep(Nstep), epsilon(epsilon){}
|
||||||
|
|
||||||
|
void smear(GaugeField& out, const GaugeField& in) const override;
|
||||||
|
};
|
||||||
|
|
||||||
|
//Wilson flow with adaptive step size
|
||||||
|
template <class Gimpl>
|
||||||
|
class WilsonFlowAdaptive: public WilsonFlowBase<Gimpl>{
|
||||||
|
private:
|
||||||
|
RealD init_epsilon; //initial step size
|
||||||
|
RealD maxTau; //integrate to t=maxTau
|
||||||
|
RealD tolerance; //integration error tolerance
|
||||||
|
|
||||||
|
//Evolve the gauge field by 1 step and update tau and the current time step eps
|
||||||
|
//
|
||||||
|
//If the step size eps is too large that a significant integration error results,
|
||||||
|
//the gauge field (U) and tau will not be updated and the function will return 0; eps will be adjusted to a smaller
|
||||||
|
//value for the next iteration.
|
||||||
|
//
|
||||||
|
//For a successful integration step the function will return 1
|
||||||
|
int evolve_step_adaptive(typename Gimpl::GaugeField&U, RealD &tau, RealD &eps) const;
|
||||||
|
|
||||||
|
public:
|
||||||
|
INHERIT_GIMPL_TYPES(Gimpl)
|
||||||
|
|
||||||
|
WilsonFlowAdaptive(const RealD init_epsilon, const RealD maxTau, const RealD tolerance, unsigned int meas_interval = 1):
|
||||||
|
WilsonFlowBase<Gimpl>(meas_interval), init_epsilon(init_epsilon), maxTau(maxTau), tolerance(tolerance){}
|
||||||
|
|
||||||
|
void smear(GaugeField& out, const GaugeField& in) const override;
|
||||||
|
};
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
// Implementations
|
// Implementations
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
RealD WilsonFlowBase<Gimpl>::energyDensityPlaquette(const RealD t, const GaugeField& U){
|
||||||
|
static WilsonGaugeAction<Gimpl> SG(3.0);
|
||||||
|
return 2.0 * t * t * SG.S(U)/U.Grid()->gSites();
|
||||||
|
}
|
||||||
|
|
||||||
|
//Compute t^2 <E(t)> for time from the 1x1 cloverleaf form
|
||||||
|
template <class Gimpl>
|
||||||
|
RealD WilsonFlowBase<Gimpl>::energyDensityCloverleaf(const RealD t, const GaugeField& U){
|
||||||
|
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||||
|
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||||
|
|
||||||
|
assert(Nd == 4);
|
||||||
|
//E = 1/2 tr( F_munu F_munu )
|
||||||
|
//However as F_numu = -F_munu, only need to sum the trace of the squares of the following 6 field strengths:
|
||||||
|
//F_01 F_02 F_03 F_12 F_13 F_23
|
||||||
|
GaugeMat F(U.Grid());
|
||||||
|
LatticeComplexD R(U.Grid());
|
||||||
|
R = Zero();
|
||||||
|
|
||||||
|
for(int mu=0;mu<3;mu++){
|
||||||
|
for(int nu=mu+1;nu<4;nu++){
|
||||||
|
WilsonLoops<Gimpl>::FieldStrength(F, U, mu, nu);
|
||||||
|
R = R + trace(F*F);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ComplexD out = sum(R);
|
||||||
|
out = t*t*out / RealD(U.Grid()->gSites());
|
||||||
|
return -real(out); //minus sign necessary for +ve energy
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||||
|
std::vector<RealD> out;
|
||||||
|
resetActions();
|
||||||
|
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Computing plaquette energy density for step " << step << std::endl;
|
||||||
|
out.push_back( energyDensityPlaquette(t,U) );
|
||||||
|
});
|
||||||
|
smear(V,U);
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityPlaquette(const GaugeField& U, int measure_interval){
|
||||||
|
GaugeField V(U);
|
||||||
|
return flowMeasureEnergyDensityPlaquette(V,U, measure_interval);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(GaugeField &V, const GaugeField& U, int measure_interval){
|
||||||
|
std::vector<RealD> out;
|
||||||
|
resetActions();
|
||||||
|
addMeasurement(measure_interval, [&out](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Computing Cloverleaf energy density for step " << step << std::endl;
|
||||||
|
out.push_back( energyDensityCloverleaf(t,U) );
|
||||||
|
});
|
||||||
|
smear(V,U);
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
std::vector<RealD> WilsonFlowBase<Gimpl>::flowMeasureEnergyDensityCloverleaf(const GaugeField& U, int measure_interval){
|
||||||
|
GaugeField V(U);
|
||||||
|
return flowMeasureEnergyDensityCloverleaf(V,U, measure_interval);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
void WilsonFlowBase<Gimpl>::setDefaultMeasurements(int topq_meas_interval){
|
||||||
|
addMeasurement(1, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : " << step << " " << t << " " << energyDensityPlaquette(t,U) << std::endl;
|
||||||
|
});
|
||||||
|
addMeasurement(topq_meas_interval, [](int step, RealD t, const typename Gimpl::GaugeField &U){
|
||||||
|
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : " << step << " " << WilsonLoops<Gimpl>::TopologicalCharge(U) << std::endl;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U, RealD &tau) const{
|
||||||
GaugeField Z(U.Grid());
|
GaugeField Z(U.Grid());
|
||||||
GaugeField tmp(U.Grid());
|
GaugeField tmp(U.Grid());
|
||||||
SG.deriv(U, Z);
|
this->SG.deriv(U, Z);
|
||||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
||||||
|
|
||||||
Z *= -17.0/8.0;
|
Z *= -17.0/8.0;
|
||||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
this->SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
||||||
|
|
||||||
Z *= -4.0/3.0;
|
Z *= -4.0/3.0;
|
||||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
this->SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
||||||
|
tau += epsilon;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
|
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||||
if (maxTau - taus < epsilon){
|
std::cout << GridLogMessage
|
||||||
epsilon = maxTau-taus;
|
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
||||||
}
|
std::cout << GridLogMessage
|
||||||
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
||||||
GaugeField Z(U.Grid());
|
std::cout << GridLogMessage
|
||||||
GaugeField Zprime(U.Grid());
|
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
||||||
GaugeField tmp(U.Grid()), Uprime(U.Grid());
|
|
||||||
Uprime = U;
|
|
||||||
SG.deriv(U, Z);
|
|
||||||
Zprime = -Z;
|
|
||||||
Z *= 0.25; // Z0 = 1/4 * F(U)
|
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
|
||||||
|
|
||||||
Z *= -17.0/8.0;
|
|
||||||
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
|
||||||
Zprime += 2.0*tmp;
|
|
||||||
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
|
||||||
|
|
||||||
|
|
||||||
Z *= -4.0/3.0;
|
|
||||||
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
|
||||||
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
|
||||||
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
|
||||||
|
|
||||||
// Ramos
|
|
||||||
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
|
|
||||||
// Compute distance as norm^2 of the difference
|
|
||||||
GaugeField diffU = U - Uprime;
|
|
||||||
RealD diff = norm2(diffU);
|
|
||||||
// adjust integration step
|
|
||||||
|
|
||||||
taus += epsilon;
|
|
||||||
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
|
||||||
|
|
||||||
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
|
||||||
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class Gimpl>
|
|
||||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
|
|
||||||
RealD td = tau(step);
|
|
||||||
return 2.0 * td * td * SG.S(U)/U.Grid()->gSites();
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class Gimpl>
|
|
||||||
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
|
|
||||||
return 2.0 * taus * taus * SG.S(U)/U.Grid()->gSites();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//#define WF_TIMING
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Gimpl>
|
|
||||||
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
|
|
||||||
out = in;
|
out = in;
|
||||||
for (unsigned int step = 1; step <= Nstep; step++) {
|
RealD taus = 0.;
|
||||||
|
for (unsigned int step = 1; step <= Nstep; step++) { //step indicates the number of smearing steps applied at the time of measurement
|
||||||
auto start = std::chrono::high_resolution_clock::now();
|
auto start = std::chrono::high_resolution_clock::now();
|
||||||
evolve_step(out);
|
evolve_step(out, taus);
|
||||||
auto end = std::chrono::high_resolution_clock::now();
|
auto end = std::chrono::high_resolution_clock::now();
|
||||||
std::chrono::duration<double> diff = end - start;
|
std::chrono::duration<double> diff = end - start;
|
||||||
#ifdef WF_TIMING
|
#ifdef WF_TIMING
|
||||||
std::cout << "Time to evolve " << diff.count() << " s\n";
|
std::cout << "Time to evolve " << diff.count() << " s\n";
|
||||||
#endif
|
#endif
|
||||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
//Perform measurements
|
||||||
<< step << " " << tau(step) << " "
|
for(auto const &meas : this->functions)
|
||||||
<< energyDensityPlaquette(step,out) << std::endl;
|
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||||
if( step % measure_interval == 0){
|
|
||||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
|
||||||
<< step << " "
|
|
||||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template <class Gimpl>
|
template <class Gimpl>
|
||||||
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
|
int WilsonFlowAdaptive<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD &tau, RealD &eps) const{
|
||||||
|
if (maxTau - tau < eps){
|
||||||
|
eps = maxTau-tau;
|
||||||
|
}
|
||||||
|
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
||||||
|
GaugeField Z(U.Grid());
|
||||||
|
GaugeField Zprime(U.Grid());
|
||||||
|
GaugeField tmp(U.Grid()), Uprime(U.Grid()), Usave(U.Grid());
|
||||||
|
Uprime = U;
|
||||||
|
Usave = U;
|
||||||
|
|
||||||
|
this->SG.deriv(U, Z);
|
||||||
|
Zprime = -Z;
|
||||||
|
Z *= 0.25; // Z0 = 1/4 * F(U)
|
||||||
|
Gimpl::update_field(Z, U, -2.0*eps); // U = W1 = exp(ep*Z0)*W0
|
||||||
|
|
||||||
|
Z *= -17.0/8.0;
|
||||||
|
this->SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
||||||
|
Zprime += 2.0*tmp;
|
||||||
|
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
||||||
|
Gimpl::update_field(Z, U, -2.0*eps); // U_= W2 = exp(ep*Z)*W1
|
||||||
|
|
||||||
|
|
||||||
|
Z *= -4.0/3.0;
|
||||||
|
this->SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
||||||
|
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
||||||
|
Gimpl::update_field(Z, U, -2.0*eps); // V(t+e) = exp(ep*Z)*W2
|
||||||
|
|
||||||
|
// Ramos arXiv:1301.4388
|
||||||
|
Gimpl::update_field(Zprime, Uprime, -2.0*eps); // V'(t+e) = exp(ep*Z')*W0
|
||||||
|
|
||||||
|
// Compute distance using Ramos' definition
|
||||||
|
GaugeField diffU = U - Uprime;
|
||||||
|
RealD max_dist = 0;
|
||||||
|
|
||||||
|
for(int mu=0;mu<Nd;mu++){
|
||||||
|
typename Gimpl::GaugeLinkField diffU_mu = PeekIndex<LorentzIndex>(diffU, mu);
|
||||||
|
RealD dist_mu = sqrt( maxLocalNorm2(diffU_mu) ) /Nc/Nc; //maximize over sites
|
||||||
|
max_dist = std::max(max_dist, dist_mu); //maximize over mu
|
||||||
|
}
|
||||||
|
|
||||||
|
int ret;
|
||||||
|
if(max_dist < tolerance) {
|
||||||
|
tau += eps;
|
||||||
|
ret = 1;
|
||||||
|
} else {
|
||||||
|
U = Usave;
|
||||||
|
ret = 0;
|
||||||
|
}
|
||||||
|
eps = eps*0.95*std::pow(tolerance/max_dist,1./3.);
|
||||||
|
std::cout << GridLogMessage << "Adaptive smearing : Distance: "<< max_dist <<" Step successful: " << ret << " New epsilon: " << eps << std::endl;
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class Gimpl>
|
||||||
|
void WilsonFlowAdaptive<Gimpl>::smear(GaugeField& out, const GaugeField& in) const{
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "[WilsonFlow] initial epsilon : " << init_epsilon << std::endl;
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "[WilsonFlow] full trajectory : " << maxTau << std::endl;
|
||||||
|
std::cout << GridLogMessage
|
||||||
|
<< "[WilsonFlow] tolerance : " << tolerance << std::endl;
|
||||||
out = in;
|
out = in;
|
||||||
taus = epsilon;
|
RealD taus = 0.;
|
||||||
|
RealD eps = init_epsilon;
|
||||||
unsigned int step = 0;
|
unsigned int step = 0;
|
||||||
do{
|
do{
|
||||||
step++;
|
int step_success = evolve_step_adaptive(out, taus, eps);
|
||||||
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
step += step_success; //step will not be incremented if the integration step fails
|
||||||
evolve_step_adaptive(out, maxTau);
|
|
||||||
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
//Perform measurements
|
||||||
<< step << " " << taus << " "
|
if(step_success)
|
||||||
<< energyDensityPlaquette(out) << std::endl;
|
for(auto const &meas : this->functions)
|
||||||
if( step % measure_interval == 0){
|
if( step % meas.first == 0 ) meas.second(step,taus,out);
|
||||||
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
|
||||||
<< step << " "
|
|
||||||
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
|
||||||
}
|
|
||||||
} while (taus < maxTau);
|
} while (taus < maxTau);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
NAMESPACE_END(Grid);
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
@ -88,6 +88,12 @@ namespace PeriodicBC {
|
|||||||
return CovShiftBackward(Link,mu,arg);
|
return CovShiftBackward(Link,mu,arg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||||
|
template<class gauge> Lattice<gauge>
|
||||||
|
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||||
|
{
|
||||||
|
return Cshift(Link, mu, shift);
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -158,6 +164,9 @@ namespace ConjugateBC {
|
|||||||
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
// std::cout<<"Gparity::CovCshiftBackward mu="<<mu<<std::endl;
|
||||||
return Cshift(tmp,mu,-1);// moves towards positive mu
|
return Cshift(tmp,mu,-1);// moves towards positive mu
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Out(x) = U^dag_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U^T_\mu(L-1) | x_\mu == 0
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
CovShiftIdentityBackward(const Lattice<gauge> &Link, int mu) {
|
||||||
GridBase *grid = Link.Grid();
|
GridBase *grid = Link.Grid();
|
||||||
@ -176,6 +185,9 @@ namespace ConjugateBC {
|
|||||||
return Link;
|
return Link;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Out(x) = S_\mu(x+\hat\mu) | x_\mu != L-1
|
||||||
|
// = S*_\mu(0) | x_\mu == L-1
|
||||||
|
//Note: While this is used for Staples it is also applicable for shifting gauge links or gauge transformation matrices
|
||||||
template<class gauge> Lattice<gauge>
|
template<class gauge> Lattice<gauge>
|
||||||
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
ShiftStaple(const Lattice<gauge> &Link, int mu)
|
||||||
{
|
{
|
||||||
@ -208,6 +220,47 @@ namespace ConjugateBC {
|
|||||||
return CovShiftBackward(Link,mu,arg);
|
return CovShiftBackward(Link,mu,arg);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Boundary-aware C-shift of gauge links / gauge transformation matrices
|
||||||
|
//shift = 1
|
||||||
|
//Out(x) = U_\mu(x+\hat\mu) | x_\mu != L-1
|
||||||
|
// = U*_\mu(0) | x_\mu == L-1
|
||||||
|
//shift = -1
|
||||||
|
//Out(x) = U_\mu(x-mu) | x_\mu != 0
|
||||||
|
// = U*_\mu(L-1) | x_\mu == 0
|
||||||
|
//shift = 2
|
||||||
|
//Out(x) = U_\mu(x+2\hat\mu) | x_\mu < L-2
|
||||||
|
// = U*_\mu(1) | x_\mu == L-1
|
||||||
|
// = U*_\mu(0) | x_\mu == L-2
|
||||||
|
//shift = -2
|
||||||
|
//Out(x) = U_\mu(x-2mu) | x_\mu > 1
|
||||||
|
// = U*_\mu(L-2) | x_\mu == 0
|
||||||
|
// = U*_\mu(L-1) | x_\mu == 1
|
||||||
|
//etc
|
||||||
|
template<class gauge> Lattice<gauge>
|
||||||
|
CshiftLink(const Lattice<gauge> &Link, int mu, int shift)
|
||||||
|
{
|
||||||
|
GridBase *grid = Link.Grid();
|
||||||
|
int Lmu = grid->GlobalDimensions()[mu];
|
||||||
|
assert(abs(shift) < Lmu && "Invalid shift value");
|
||||||
|
|
||||||
|
Lattice<iScalar<vInteger>> coor(grid);
|
||||||
|
LatticeCoordinate(coor, mu);
|
||||||
|
|
||||||
|
Lattice<gauge> tmp(grid);
|
||||||
|
if(shift > 0){
|
||||||
|
tmp = Cshift(Link, mu, shift);
|
||||||
|
tmp = where(coor >= Lmu-shift, conjugate(tmp), tmp);
|
||||||
|
return tmp;
|
||||||
|
}else if(shift < 0){
|
||||||
|
tmp = Link;
|
||||||
|
tmp = where(coor >= Lmu+shift, conjugate(tmp), tmp);
|
||||||
|
return Cshift(tmp, mu, shift);
|
||||||
|
}
|
||||||
|
|
||||||
|
//shift == 0
|
||||||
|
return Link;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -40,27 +40,45 @@ public:
|
|||||||
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
typedef typename Gimpl::GaugeLinkField GaugeMat;
|
||||||
typedef typename Gimpl::GaugeField GaugeLorentz;
|
typedef typename Gimpl::GaugeField GaugeLorentz;
|
||||||
|
|
||||||
static void GaugeLinkToLieAlgebraField(const std::vector<GaugeMat> &U,std::vector<GaugeMat> &A) {
|
//A_\mu(x) = -i Ta(U_\mu(x) ) where Ta(U) = 1/2( U - U^dag ) - 1/2N tr(U - U^dag) is the traceless antihermitian part. This is an O(A^3) approximation to the logarithm of U
|
||||||
for(int mu=0;mu<Nd;mu++){
|
static void GaugeLinkToLieAlgebraField(const GaugeMat &U, GaugeMat &A) {
|
||||||
Complex cmi(0.0,-1.0);
|
Complex cmi(0.0,-1.0);
|
||||||
A[mu] = Ta(U[mu]) * cmi;
|
A = Ta(U) * cmi;
|
||||||
}
|
|
||||||
}
|
}
|
||||||
static void DmuAmu(const std::vector<GaugeMat> &A,GaugeMat &dmuAmu,int orthog) {
|
|
||||||
|
//The derivative of the Lie algebra field
|
||||||
|
static void DmuAmu(const std::vector<GaugeMat> &U, GaugeMat &dmuAmu,int orthog) {
|
||||||
|
GridBase* grid = U[0].Grid();
|
||||||
|
GaugeMat Ax(grid);
|
||||||
|
GaugeMat Axm1(grid);
|
||||||
|
GaugeMat Utmp(grid);
|
||||||
|
|
||||||
dmuAmu=Zero();
|
dmuAmu=Zero();
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
if ( mu != orthog ) {
|
if ( mu != orthog ) {
|
||||||
dmuAmu = dmuAmu + A[mu] - Cshift(A[mu],mu,-1);
|
//Rather than define functionality to work out how the BCs apply to A_\mu we simply use the BC-aware Cshift to the gauge links and compute A_\mu(x) and A_\mu(x-1) separately
|
||||||
|
//Ax = A_\mu(x)
|
||||||
|
GaugeLinkToLieAlgebraField(U[mu], Ax);
|
||||||
|
|
||||||
|
//Axm1 = A_\mu(x_\mu-1)
|
||||||
|
Utmp = Gimpl::CshiftLink(U[mu], mu, -1);
|
||||||
|
GaugeLinkToLieAlgebraField(Utmp, Axm1);
|
||||||
|
|
||||||
|
//Derivative
|
||||||
|
dmuAmu = dmuAmu + Ax - Axm1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
//Fix the gauge field Umu
|
||||||
|
//0 < alpha < 1 is related to the step size, cf https://arxiv.org/pdf/1405.5812.pdf
|
||||||
|
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
GaugeMat xform(grid);
|
GaugeMat xform(grid);
|
||||||
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
|
SteepestDescentGaugeFix(Umu,xform,alpha,maxiter,Omega_tol,Phi_tol,Fourier,orthog,err_on_no_converge);
|
||||||
}
|
}
|
||||||
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real & alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
static void SteepestDescentGaugeFix(GaugeLorentz &Umu,GaugeMat &xform,Real alpha,int maxiter,Real Omega_tol, Real Phi_tol,bool Fourier=false,int orthog=-1,bool err_on_no_converge=true) {
|
||||||
|
//Fix the gauge field Umu and also return the gauge transformation from the original gauge field, xform
|
||||||
|
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
|
|
||||||
@ -123,28 +141,25 @@ public:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
|
std::cout << GridLogError << "Gauge fixing did not converge in " << maxiter << " iterations." << std::endl;
|
||||||
if (err_on_no_converge) assert(0);
|
if (err_on_no_converge)
|
||||||
|
assert(0 && "Gauge fixing did not converge within the specified number of iterations");
|
||||||
};
|
};
|
||||||
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
static Real SteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||||
GridBase *grid = U[0].Grid();
|
GridBase *grid = U[0].Grid();
|
||||||
|
|
||||||
std::vector<GaugeMat> A(Nd,grid);
|
|
||||||
GaugeMat g(grid);
|
GaugeMat g(grid);
|
||||||
|
ExpiAlphaDmuAmu(U,g,alpha,dmuAmu,orthog);
|
||||||
GaugeLinkToLieAlgebraField(U,A);
|
|
||||||
ExpiAlphaDmuAmu(A,g,alpha,dmuAmu,orthog);
|
|
||||||
|
|
||||||
|
|
||||||
Real vol = grid->gSites();
|
Real vol = grid->gSites();
|
||||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||||
|
|
||||||
xform = g*xform ;
|
xform = g*xform ;
|
||||||
SU<Nc>::GaugeTransform(U,g);
|
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||||
|
|
||||||
return trG;
|
return trG;
|
||||||
}
|
}
|
||||||
|
|
||||||
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform,Real & alpha, GaugeMat & dmuAmu,int orthog) {
|
static Real FourierAccelSteepestDescentStep(std::vector<GaugeMat> &U,GaugeMat &xform, Real alpha, GaugeMat & dmuAmu,int orthog) {
|
||||||
|
|
||||||
GridBase *grid = U[0].Grid();
|
GridBase *grid = U[0].Grid();
|
||||||
|
|
||||||
@ -159,11 +174,7 @@ public:
|
|||||||
|
|
||||||
GaugeMat g(grid);
|
GaugeMat g(grid);
|
||||||
GaugeMat dmuAmu_p(grid);
|
GaugeMat dmuAmu_p(grid);
|
||||||
std::vector<GaugeMat> A(Nd,grid);
|
DmuAmu(U,dmuAmu,orthog);
|
||||||
|
|
||||||
GaugeLinkToLieAlgebraField(U,A);
|
|
||||||
|
|
||||||
DmuAmu(A,dmuAmu,orthog);
|
|
||||||
|
|
||||||
std::vector<int> mask(Nd,1);
|
std::vector<int> mask(Nd,1);
|
||||||
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
for(int mu=0;mu<Nd;mu++) if (mu==orthog) mask[mu]=0;
|
||||||
@ -207,16 +218,16 @@ public:
|
|||||||
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
Real trG = TensorRemove(sum(trace(g))).real()/vol/Nc;
|
||||||
|
|
||||||
xform = g*xform ;
|
xform = g*xform ;
|
||||||
SU<Nc>::GaugeTransform(U,g);
|
SU<Nc>::GaugeTransform<Gimpl>(U,g);
|
||||||
|
|
||||||
return trG;
|
return trG;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &A,GaugeMat &g,Real & alpha, GaugeMat &dmuAmu,int orthog) {
|
static void ExpiAlphaDmuAmu(const std::vector<GaugeMat> &U,GaugeMat &g, Real alpha, GaugeMat &dmuAmu,int orthog) {
|
||||||
GridBase *grid = g.Grid();
|
GridBase *grid = g.Grid();
|
||||||
Complex cialpha(0.0,-alpha);
|
Complex cialpha(0.0,-alpha);
|
||||||
GaugeMat ciadmam(grid);
|
GaugeMat ciadmam(grid);
|
||||||
DmuAmu(A,dmuAmu,orthog);
|
DmuAmu(U,dmuAmu,orthog);
|
||||||
ciadmam = dmuAmu*cialpha;
|
ciadmam = dmuAmu*cialpha;
|
||||||
SU<Nc>::taExp(ciadmam,g);
|
SU<Nc>::taExp(ciadmam,g);
|
||||||
}
|
}
|
||||||
|
@ -615,7 +615,6 @@ public:
|
|||||||
GridBase *grid = out.Grid();
|
GridBase *grid = out.Grid();
|
||||||
|
|
||||||
typedef typename LatticeMatrixType::vector_type vector_type;
|
typedef typename LatticeMatrixType::vector_type vector_type;
|
||||||
typedef typename LatticeMatrixType::scalar_type scalar_type;
|
|
||||||
|
|
||||||
typedef iSinglet<vector_type> vTComplexType;
|
typedef iSinglet<vector_type> vTComplexType;
|
||||||
|
|
||||||
@ -694,32 +693,32 @@ public:
|
|||||||
* Adjoint rep gauge xform
|
* Adjoint rep gauge xform
|
||||||
*/
|
*/
|
||||||
|
|
||||||
template<typename GaugeField,typename GaugeMat>
|
template<typename Gimpl>
|
||||||
static void GaugeTransform( GaugeField &Umu, GaugeMat &g){
|
static void GaugeTransform(typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||||
GridBase *grid = Umu.Grid();
|
GridBase *grid = Umu.Grid();
|
||||||
conformable(grid,g.Grid());
|
conformable(grid,g.Grid());
|
||||||
|
|
||||||
GaugeMat U(grid);
|
typename Gimpl::GaugeLinkField U(grid);
|
||||||
GaugeMat ag(grid); ag = adj(g);
|
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||||
|
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
U= PeekIndex<LorentzIndex>(Umu,mu);
|
U= PeekIndex<LorentzIndex>(Umu,mu);
|
||||||
U = g*U*Cshift(ag, mu, 1);
|
U = g*U*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||||
PokeIndex<LorentzIndex>(Umu,U,mu);
|
PokeIndex<LorentzIndex>(Umu,U,mu);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
template<typename GaugeMat>
|
template<typename Gimpl>
|
||||||
static void GaugeTransform( std::vector<GaugeMat> &U, GaugeMat &g){
|
static void GaugeTransform( std::vector<typename Gimpl::GaugeLinkField> &U, typename Gimpl::GaugeLinkField &g){
|
||||||
GridBase *grid = g.Grid();
|
GridBase *grid = g.Grid();
|
||||||
GaugeMat ag(grid); ag = adj(g);
|
typename Gimpl::GaugeLinkField ag(grid); ag = adj(g);
|
||||||
for(int mu=0;mu<Nd;mu++){
|
for(int mu=0;mu<Nd;mu++){
|
||||||
U[mu] = g*U[mu]*Cshift(ag, mu, 1);
|
U[mu] = g*U[mu]*Gimpl::CshiftLink(ag, mu, 1); //BC-aware
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
template<typename GaugeField,typename GaugeMat>
|
template<typename Gimpl>
|
||||||
static void RandomGaugeTransform(GridParallelRNG &pRNG, GaugeField &Umu, GaugeMat &g){
|
static void RandomGaugeTransform(GridParallelRNG &pRNG, typename Gimpl::GaugeField &Umu, typename Gimpl::GaugeLinkField &g){
|
||||||
LieRandomize(pRNG,g,1.0);
|
LieRandomize(pRNG,g,1.0);
|
||||||
GaugeTransform(Umu,g);
|
GaugeTransform<Gimpl>(Umu,g);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
// Projects the algebra components a lattice matrix (of dimension ncol*ncol -1 )
|
||||||
|
@ -125,6 +125,57 @@ public:
|
|||||||
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
return sumplaq / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
// sum over all spatial planes of plaquette
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
static void siteSpatialPlaquette(ComplexField &Plaq,
|
||||||
|
const std::vector<GaugeMat> &U) {
|
||||||
|
ComplexField sitePlaq(U[0].Grid());
|
||||||
|
Plaq = Zero();
|
||||||
|
for (int mu = 1; mu < Nd-1; mu++) {
|
||||||
|
for (int nu = 0; nu < mu; nu++) {
|
||||||
|
traceDirPlaquette(sitePlaq, U, mu, nu);
|
||||||
|
Plaq = Plaq + sitePlaq;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////
|
||||||
|
// sum over all x,y,z and over all spatial planes of plaquette
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
static std::vector<RealD> timesliceSumSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||||
|
std::vector<GaugeMat> U(Nd, Umu.Grid());
|
||||||
|
// inefficient here
|
||||||
|
for (int mu = 0; mu < Nd; mu++) {
|
||||||
|
U[mu] = PeekIndex<LorentzIndex>(Umu, mu);
|
||||||
|
}
|
||||||
|
|
||||||
|
ComplexField Plaq(Umu.Grid());
|
||||||
|
|
||||||
|
siteSpatialPlaquette(Plaq, U);
|
||||||
|
typedef typename ComplexField::scalar_object sobj;
|
||||||
|
std::vector<sobj> Tq;
|
||||||
|
sliceSum(Plaq, Tq, Nd-1);
|
||||||
|
|
||||||
|
std::vector<Real> out(Tq.size());
|
||||||
|
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
// average over all x,y,z and over all spatial planes of plaquette
|
||||||
|
//////////////////////////////////////////////////
|
||||||
|
static std::vector<RealD> timesliceAvgSpatialPlaquette(const GaugeLorentz &Umu) {
|
||||||
|
std::vector<RealD> sumplaq = timesliceSumSpatialPlaquette(Umu);
|
||||||
|
int Lt = Umu.Grid()->FullDimensions()[Nd-1];
|
||||||
|
assert(sumplaq.size() == Lt);
|
||||||
|
double vol = Umu.Grid()->gSites() / Lt;
|
||||||
|
double faces = (1.0 * (Nd - 1)* (Nd - 2)) / 2.0;
|
||||||
|
for(int t=0;t<Lt;t++)
|
||||||
|
sumplaq[t] = sumplaq[t] / vol / faces / Nc; // Nd , Nc dependent... FIXME
|
||||||
|
return sumplaq;
|
||||||
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
// average over all x,y,z the temporal loop
|
// average over all x,y,z the temporal loop
|
||||||
//////////////////////////////////////////////////
|
//////////////////////////////////////////////////
|
||||||
@ -362,11 +413,11 @@ public:
|
|||||||
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
GaugeMat u = PeekIndex<LorentzIndex>(Umu, mu); // some redundant copies
|
||||||
GaugeMat vu = v*u;
|
GaugeMat vu = v*u;
|
||||||
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
//FS = 0.25*Ta(u*v + Cshift(vu, mu, -1));
|
||||||
FS = (u*v + Cshift(vu, mu, -1));
|
FS = (u*v + Gimpl::CshiftLink(vu, mu, -1));
|
||||||
FS = 0.125*(FS - adj(FS));
|
FS = 0.125*(FS - adj(FS));
|
||||||
}
|
}
|
||||||
|
|
||||||
static Real TopologicalCharge(GaugeLorentz &U){
|
static Real TopologicalCharge(const GaugeLorentz &U){
|
||||||
// 4d topological charge
|
// 4d topological charge
|
||||||
assert(Nd==4);
|
assert(Nd==4);
|
||||||
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
// Bx = -iF(y,z), By = -iF(z,y), Bz = -iF(x,y)
|
||||||
@ -389,6 +440,203 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
//Clover-leaf Wilson loop combination for arbitrary mu-extent M and nu extent N, mu >= nu
|
||||||
|
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 7 for 1x2 Wilson loop
|
||||||
|
//Clockwise ordering
|
||||||
|
static void CloverleafMxN(GaugeMat &FS, const GaugeMat &Umu, const GaugeMat &Unu, int mu, int nu, int M, int N){
|
||||||
|
#define Fmu(A) Gimpl::CovShiftForward(Umu, mu, A)
|
||||||
|
#define Bmu(A) Gimpl::CovShiftBackward(Umu, mu, A)
|
||||||
|
#define Fnu(A) Gimpl::CovShiftForward(Unu, nu, A)
|
||||||
|
#define Bnu(A) Gimpl::CovShiftBackward(Unu, nu, A)
|
||||||
|
#define FmuI Gimpl::CovShiftIdentityForward(Umu, mu)
|
||||||
|
#define BmuI Gimpl::CovShiftIdentityBackward(Umu, mu)
|
||||||
|
#define FnuI Gimpl::CovShiftIdentityForward(Unu, nu)
|
||||||
|
#define BnuI Gimpl::CovShiftIdentityBackward(Unu, nu)
|
||||||
|
|
||||||
|
//Upper right loop
|
||||||
|
GaugeMat tmp = BmuI;
|
||||||
|
for(int i=1;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
|
||||||
|
FS = tmp;
|
||||||
|
|
||||||
|
//Upper left loop
|
||||||
|
tmp = BnuI;
|
||||||
|
for(int j=1;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
|
||||||
|
FS = FS + tmp;
|
||||||
|
|
||||||
|
//Lower right loop
|
||||||
|
tmp = FnuI;
|
||||||
|
for(int j=1;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
|
||||||
|
FS = FS + tmp;
|
||||||
|
|
||||||
|
//Lower left loop
|
||||||
|
tmp = FmuI;
|
||||||
|
for(int i=1;i<M;i++)
|
||||||
|
tmp = Fmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Fnu(tmp);
|
||||||
|
for(int i=0;i<M;i++)
|
||||||
|
tmp = Bmu(tmp);
|
||||||
|
for(int j=0;j<N;j++)
|
||||||
|
tmp = Bnu(tmp);
|
||||||
|
|
||||||
|
FS = FS + tmp;
|
||||||
|
|
||||||
|
#undef Fmu
|
||||||
|
#undef Bmu
|
||||||
|
#undef Fnu
|
||||||
|
#undef Bnu
|
||||||
|
#undef FmuI
|
||||||
|
#undef BmuI
|
||||||
|
#undef FnuI
|
||||||
|
#undef BnuI
|
||||||
|
}
|
||||||
|
|
||||||
|
//Field strength from MxN Wilson loop
|
||||||
|
//Note F_numu = - F_munu
|
||||||
|
static void FieldStrengthMxN(GaugeMat &FS, const GaugeLorentz &U, int mu, int nu, int M, int N){
|
||||||
|
GaugeMat Umu = PeekIndex<LorentzIndex>(U, mu);
|
||||||
|
GaugeMat Unu = PeekIndex<LorentzIndex>(U, nu);
|
||||||
|
if(M == N){
|
||||||
|
GaugeMat F(Umu.Grid());
|
||||||
|
CloverleafMxN(F, Umu, Unu, mu, nu, M, N);
|
||||||
|
FS = 0.125 * ( F - adj(F) );
|
||||||
|
}else{
|
||||||
|
//Average over both orientations
|
||||||
|
GaugeMat horizontal(Umu.Grid()), vertical(Umu.Grid());
|
||||||
|
CloverleafMxN(horizontal, Umu, Unu, mu, nu, M, N);
|
||||||
|
CloverleafMxN(vertical, Umu, Unu, mu, nu, N, M);
|
||||||
|
FS = 0.0625 * ( horizontal - adj(horizontal) + vertical - adj(vertical) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//Topological charge contribution from MxN Wilson loops
|
||||||
|
//cf https://arxiv.org/pdf/hep-lat/9701012.pdf Eq 6
|
||||||
|
//output is the charge by timeslice: sum over timeslices to obtain the total
|
||||||
|
static std::vector<Real> TimesliceTopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||||
|
assert(Nd == 4);
|
||||||
|
std::vector<std::vector<GaugeMat*> > F(Nd,std::vector<GaugeMat*>(Nd,nullptr));
|
||||||
|
//Note F_numu = - F_munu
|
||||||
|
//hence we only need to loop over mu,nu,rho,sigma that aren't related by permuting mu,nu or rho,sigma
|
||||||
|
//Use nu > mu
|
||||||
|
for(int mu=0;mu<Nd-1;mu++){
|
||||||
|
for(int nu=mu+1; nu<Nd; nu++){
|
||||||
|
F[mu][nu] = new GaugeMat(U.Grid());
|
||||||
|
FieldStrengthMxN(*F[mu][nu], U, mu, nu, M, N);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Real coeff = -1./(32 * M_PI*M_PI * M*M * N*N); //overall sign to match CPS and Grid conventions, possibly related to time direction = 3 vs 0
|
||||||
|
|
||||||
|
static const int combs[3][4] = { {0,1,2,3}, {0,2,1,3}, {0,3,1,2} };
|
||||||
|
static const int signs[3] = { 1, -1, 1 }; //epsilon_{mu nu rho sigma}
|
||||||
|
|
||||||
|
ComplexField fsum(U.Grid());
|
||||||
|
fsum = Zero();
|
||||||
|
for(int c=0;c<3;c++){
|
||||||
|
int mu = combs[c][0], nu = combs[c][1], rho = combs[c][2], sigma = combs[c][3];
|
||||||
|
int eps = signs[c];
|
||||||
|
fsum = fsum + (8. * coeff * eps) * trace( (*F[mu][nu]) * (*F[rho][sigma]) );
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int mu=0;mu<Nd-1;mu++)
|
||||||
|
for(int nu=mu+1; nu<Nd; nu++)
|
||||||
|
delete F[mu][nu];
|
||||||
|
|
||||||
|
typedef typename ComplexField::scalar_object sobj;
|
||||||
|
std::vector<sobj> Tq;
|
||||||
|
sliceSum(fsum, Tq, Nd-1);
|
||||||
|
|
||||||
|
std::vector<Real> out(Tq.size());
|
||||||
|
for(int t=0;t<Tq.size();t++) out[t] = TensorRemove(Tq[t]).real();
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
static Real TopologicalChargeMxN(const GaugeLorentz &U, int M, int N){
|
||||||
|
std::vector<Real> Tq = TimesliceTopologicalChargeMxN(U,M,N);
|
||||||
|
Real out(0);
|
||||||
|
for(int t=0;t<Tq.size();t++) out += Tq[t];
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Generate the contributions to the 5Li topological charge from Wilson loops of the following sizes
|
||||||
|
//Use coefficients from hep-lat/9701012
|
||||||
|
//1x1 : c1=(19.-55.*c5)/9.
|
||||||
|
//2x2 : c2=(1-64.*c5)/9.
|
||||||
|
//1x2 : c3=(-64.+640.*c5)/45.
|
||||||
|
//1x3 : c4=1./5.-2.*c5
|
||||||
|
//3x3 : c5=1./20.
|
||||||
|
//Output array outer index contains the loops in the above order
|
||||||
|
//Inner index is the time coordinate
|
||||||
|
static std::vector<std::vector<Real> > TimesliceTopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||||
|
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||||
|
std::vector<std::vector<Real> > out(5);
|
||||||
|
for(int i=0;i<5;i++){
|
||||||
|
out[i] = TimesliceTopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<Real> TopologicalCharge5LiContributions(const GaugeLorentz &U){
|
||||||
|
static const int exts[5][2] = { {1,1}, {2,2}, {1,2}, {1,3}, {3,3} };
|
||||||
|
std::vector<Real> out(5);
|
||||||
|
std::cout << GridLogMessage << "Computing topological charge" << std::endl;
|
||||||
|
for(int i=0;i<5;i++){
|
||||||
|
out[i] = TopologicalChargeMxN(U,exts[i][0],exts[i][1]);
|
||||||
|
std::cout << GridLogMessage << exts[i][0] << "x" << exts[i][1] << " Wilson loop contribution " << out[i] << std::endl;
|
||||||
|
}
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Compute the 5Li topological charge
|
||||||
|
static std::vector<Real> TimesliceTopologicalCharge5Li(const GaugeLorentz &U){
|
||||||
|
std::vector<std::vector<Real> > loops = TimesliceTopologicalCharge5LiContributions(U);
|
||||||
|
|
||||||
|
double c5=1./20.;
|
||||||
|
double c4=1./5.-2.*c5;
|
||||||
|
double c3=(-64.+640.*c5)/45.;
|
||||||
|
double c2=(1-64.*c5)/9.;
|
||||||
|
double c1=(19.-55.*c5)/9.;
|
||||||
|
|
||||||
|
int Lt = loops[0].size();
|
||||||
|
std::vector<Real> out(Lt,0.);
|
||||||
|
for(int t=0;t<Lt;t++)
|
||||||
|
out[t] += c1*loops[0][t] + c2*loops[1][t] + c3*loops[2][t] + c4*loops[3][t] + c5*loops[4][t];
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
|
static Real TopologicalCharge5Li(const GaugeLorentz &U){
|
||||||
|
std::vector<Real> Qt = TimesliceTopologicalCharge5Li(U);
|
||||||
|
Real Q = 0.;
|
||||||
|
for(int t=0;t<Qt.size();t++) Q += Qt[t];
|
||||||
|
std::cout << GridLogMessage << "5Li Topological charge: " << Q << std::endl;
|
||||||
|
return Q;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
// Similar to above for rectangle is required
|
// Similar to above for rectangle is required
|
||||||
//////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////
|
||||||
|
@ -501,7 +501,7 @@ struct Conj{
|
|||||||
struct TimesMinusI{
|
struct TimesMinusI{
|
||||||
// Complex
|
// Complex
|
||||||
template <typename T>
|
template <typename T>
|
||||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
inline vec<T> operator()(vec<T> a){
|
||||||
vec<T> out;
|
vec<T> out;
|
||||||
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
|
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
|
||||||
svbool_t pg1 = acle<T>::pg1();
|
svbool_t pg1 = acle<T>::pg1();
|
||||||
@ -520,7 +520,7 @@ struct TimesMinusI{
|
|||||||
struct TimesI{
|
struct TimesI{
|
||||||
// Complex
|
// Complex
|
||||||
template <typename T>
|
template <typename T>
|
||||||
inline vec<T> operator()(vec<T> a, vec<T> b){
|
inline vec<T> operator()(vec<T> a){
|
||||||
vec<T> out;
|
vec<T> out;
|
||||||
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
|
const vec<typename acle<T>::uint> tbl_swap = acle<T>::tbl_swap();
|
||||||
svbool_t pg1 = acle<T>::pg1();
|
svbool_t pg1 = acle<T>::pg1();
|
||||||
|
@ -418,7 +418,7 @@ struct Conj{
|
|||||||
|
|
||||||
struct TimesMinusI{
|
struct TimesMinusI{
|
||||||
// Complex float
|
// Complex float
|
||||||
inline vecf operator()(vecf a, vecf b){
|
inline vecf operator()(vecf a){
|
||||||
lutf tbl_swap = acle<float>::tbl_swap();
|
lutf tbl_swap = acle<float>::tbl_swap();
|
||||||
pred pg1 = acle<float>::pg1();
|
pred pg1 = acle<float>::pg1();
|
||||||
pred pg_odd = acle<float>::pg_odd();
|
pred pg_odd = acle<float>::pg_odd();
|
||||||
@ -428,7 +428,7 @@ struct TimesMinusI{
|
|||||||
return svneg_m(a_v, pg_odd, a_v);
|
return svneg_m(a_v, pg_odd, a_v);
|
||||||
}
|
}
|
||||||
// Complex double
|
// Complex double
|
||||||
inline vecd operator()(vecd a, vecd b){
|
inline vecd operator()(vecd a){
|
||||||
lutd tbl_swap = acle<double>::tbl_swap();
|
lutd tbl_swap = acle<double>::tbl_swap();
|
||||||
pred pg1 = acle<double>::pg1();
|
pred pg1 = acle<double>::pg1();
|
||||||
pred pg_odd = acle<double>::pg_odd();
|
pred pg_odd = acle<double>::pg_odd();
|
||||||
@ -441,7 +441,7 @@ struct TimesMinusI{
|
|||||||
|
|
||||||
struct TimesI{
|
struct TimesI{
|
||||||
// Complex float
|
// Complex float
|
||||||
inline vecf operator()(vecf a, vecf b){
|
inline vecf operator()(vecf a){
|
||||||
lutf tbl_swap = acle<float>::tbl_swap();
|
lutf tbl_swap = acle<float>::tbl_swap();
|
||||||
pred pg1 = acle<float>::pg1();
|
pred pg1 = acle<float>::pg1();
|
||||||
pred pg_even = acle<float>::pg_even();
|
pred pg_even = acle<float>::pg_even();
|
||||||
@ -451,7 +451,7 @@ struct TimesI{
|
|||||||
return svneg_m(a_v, pg_even, a_v);
|
return svneg_m(a_v, pg_even, a_v);
|
||||||
}
|
}
|
||||||
// Complex double
|
// Complex double
|
||||||
inline vecd operator()(vecd a, vecd b){
|
inline vecd operator()(vecd a){
|
||||||
lutd tbl_swap = acle<double>::tbl_swap();
|
lutd tbl_swap = acle<double>::tbl_swap();
|
||||||
pred pg1 = acle<double>::pg1();
|
pred pg1 = acle<double>::pg1();
|
||||||
pred pg_even = acle<double>::pg_even();
|
pred pg_even = acle<double>::pg_even();
|
||||||
|
@ -405,12 +405,12 @@ struct Conj{
|
|||||||
|
|
||||||
struct TimesMinusI{
|
struct TimesMinusI{
|
||||||
//Complex single
|
//Complex single
|
||||||
inline __m256 operator()(__m256 in, __m256 ret){
|
inline __m256 operator()(__m256 in){
|
||||||
__m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i
|
__m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i
|
||||||
return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r
|
return _mm256_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //-i,r
|
||||||
}
|
}
|
||||||
//Complex double
|
//Complex double
|
||||||
inline __m256d operator()(__m256d in, __m256d ret){
|
inline __m256d operator()(__m256d in){
|
||||||
__m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i
|
__m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i
|
||||||
return _mm256_shuffle_pd(tmp,tmp,0x5);
|
return _mm256_shuffle_pd(tmp,tmp,0x5);
|
||||||
}
|
}
|
||||||
@ -418,12 +418,12 @@ struct TimesMinusI{
|
|||||||
|
|
||||||
struct TimesI{
|
struct TimesI{
|
||||||
//Complex single
|
//Complex single
|
||||||
inline __m256 operator()(__m256 in, __m256 ret){
|
inline __m256 operator()(__m256 in){
|
||||||
__m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r
|
__m256 tmp =_mm256_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // i,r
|
||||||
return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r
|
return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r
|
||||||
}
|
}
|
||||||
//Complex double
|
//Complex double
|
||||||
inline __m256d operator()(__m256d in, __m256d ret){
|
inline __m256d operator()(__m256d in){
|
||||||
__m256d tmp = _mm256_shuffle_pd(in,in,0x5);
|
__m256d tmp = _mm256_shuffle_pd(in,in,0x5);
|
||||||
return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r
|
return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r
|
||||||
}
|
}
|
||||||
|
@ -271,14 +271,14 @@ struct Conj{
|
|||||||
|
|
||||||
struct TimesMinusI{
|
struct TimesMinusI{
|
||||||
//Complex single
|
//Complex single
|
||||||
inline __m512 operator()(__m512 in, __m512 ret){
|
inline __m512 operator()(__m512 in){
|
||||||
//__m512 tmp = _mm512_mask_sub_ps(in,0xaaaa,_mm512_setzero_ps(),in); // real -imag
|
//__m512 tmp = _mm512_mask_sub_ps(in,0xaaaa,_mm512_setzero_ps(),in); // real -imag
|
||||||
//return _mm512_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,1,0)); // 0x4E??
|
//return _mm512_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,1,0)); // 0x4E??
|
||||||
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
|
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
|
||||||
return _mm512_mask_sub_ps(tmp,0xaaaa,_mm512_setzero_ps(),tmp);
|
return _mm512_mask_sub_ps(tmp,0xaaaa,_mm512_setzero_ps(),tmp);
|
||||||
}
|
}
|
||||||
//Complex double
|
//Complex double
|
||||||
inline __m512d operator()(__m512d in, __m512d ret){
|
inline __m512d operator()(__m512d in){
|
||||||
//__m512d tmp = _mm512_mask_sub_pd(in,0xaa,_mm512_setzero_pd(),in); // real -imag
|
//__m512d tmp = _mm512_mask_sub_pd(in,0xaa,_mm512_setzero_pd(),in); // real -imag
|
||||||
//return _mm512_shuffle_pd(tmp,tmp,0x55);
|
//return _mm512_shuffle_pd(tmp,tmp,0x55);
|
||||||
__m512d tmp = _mm512_shuffle_pd(in,in,0x55);
|
__m512d tmp = _mm512_shuffle_pd(in,in,0x55);
|
||||||
@ -288,17 +288,16 @@ struct TimesMinusI{
|
|||||||
|
|
||||||
struct TimesI{
|
struct TimesI{
|
||||||
//Complex single
|
//Complex single
|
||||||
inline __m512 operator()(__m512 in, __m512 ret){
|
inline __m512 operator()(__m512 in){
|
||||||
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
|
__m512 tmp = _mm512_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
|
||||||
return _mm512_mask_sub_ps(tmp,0x5555,_mm512_setzero_ps(),tmp);
|
return _mm512_mask_sub_ps(tmp,0x5555,_mm512_setzero_ps(),tmp);
|
||||||
}
|
}
|
||||||
//Complex double
|
//Complex double
|
||||||
inline __m512d operator()(__m512d in, __m512d ret){
|
inline __m512d operator()(__m512d in){
|
||||||
__m512d tmp = _mm512_shuffle_pd(in,in,0x55);
|
__m512d tmp = _mm512_shuffle_pd(in,in,0x55);
|
||||||
return _mm512_mask_sub_pd(tmp,0x55,_mm512_setzero_pd(),tmp);
|
return _mm512_mask_sub_pd(tmp,0x55,_mm512_setzero_pd(),tmp);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// Gpermute utilities consider coalescing into 1 Gpermute
|
// Gpermute utilities consider coalescing into 1 Gpermute
|
||||||
|
666
Grid/simd/Grid_doubled_vector.h
Normal file
666
Grid/simd/Grid_doubled_vector.h
Normal file
@ -0,0 +1,666 @@
|
|||||||
|
/*************************************************************************************
|
||||||
|
|
||||||
|
Grid physics library, www.github.com/paboyle/Grid
|
||||||
|
|
||||||
|
Source file: ./lib/simd/Grid_vector_types.h
|
||||||
|
|
||||||
|
Copyright (C) 2015
|
||||||
|
|
||||||
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||||
|
|
||||||
|
This program is free software; you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation; either version 2 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License along
|
||||||
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
|
|
||||||
|
See the full license in the file "LICENSE" in the top level distribution directory
|
||||||
|
*************************************************************************************/
|
||||||
|
/* END LEGAL */
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
NAMESPACE_BEGIN(Grid);
|
||||||
|
|
||||||
|
template <class Scalar_type, class Vector_type>
|
||||||
|
class Grid_simd2 {
|
||||||
|
public:
|
||||||
|
typedef typename RealPart<Scalar_type>::type Real;
|
||||||
|
typedef Vector_type vector_type;
|
||||||
|
typedef Scalar_type scalar_type;
|
||||||
|
|
||||||
|
typedef union conv_t_union {
|
||||||
|
Vector_type v;
|
||||||
|
Scalar_type s[sizeof(Vector_type) / sizeof(Scalar_type)];
|
||||||
|
accelerator_inline conv_t_union(){};
|
||||||
|
} conv_t;
|
||||||
|
|
||||||
|
static constexpr int nvec=2;
|
||||||
|
Vector_type v[nvec];
|
||||||
|
|
||||||
|
static accelerator_inline constexpr int Nsimd(void) {
|
||||||
|
static_assert( (sizeof(Vector_type) / sizeof(Scalar_type) >= 1), " size mismatch " );
|
||||||
|
|
||||||
|
return nvec*sizeof(Vector_type) / sizeof(Scalar_type);
|
||||||
|
}
|
||||||
|
|
||||||
|
accelerator_inline Grid_simd2 &operator=(const Grid_simd2 &&rhs) {
|
||||||
|
for(int n=0;n<nvec;n++) v[n] = rhs.v[n];
|
||||||
|
return *this;
|
||||||
|
};
|
||||||
|
accelerator_inline Grid_simd2 &operator=(const Grid_simd2 &rhs) {
|
||||||
|
for(int n=0;n<nvec;n++) v[n] = rhs.v[n];
|
||||||
|
return *this;
|
||||||
|
}; // faster than not declaring it and leaving to the compiler
|
||||||
|
|
||||||
|
accelerator Grid_simd2() = default;
|
||||||
|
accelerator_inline Grid_simd2(const Grid_simd2 &rhs) { for(int n=0;n<nvec;n++) v[n] = rhs.v[n]; };
|
||||||
|
accelerator_inline Grid_simd2(const Grid_simd2 &&rhs){ for(int n=0;n<nvec;n++) v[n] = rhs.v[n]; };
|
||||||
|
accelerator_inline Grid_simd2(const Real a) { vsplat(*this, Scalar_type(a)); };
|
||||||
|
// Enable if complex type
|
||||||
|
template <typename S = Scalar_type> accelerator_inline
|
||||||
|
Grid_simd2(const typename std::enable_if<is_complex<S>::value, S>::type a) {
|
||||||
|
vsplat(*this, a);
|
||||||
|
};
|
||||||
|
|
||||||
|
/////////////////////////////
|
||||||
|
// Constructors
|
||||||
|
/////////////////////////////
|
||||||
|
accelerator_inline Grid_simd2 & operator=(const Zero &z) {
|
||||||
|
vzero(*this);
|
||||||
|
return (*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
// mac, mult, sub, add, adj
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
|
||||||
|
friend accelerator_inline void mac(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ a,
|
||||||
|
const Grid_simd2 *__restrict__ x) {
|
||||||
|
*y = (*a) * (*x) + (*y);
|
||||||
|
};
|
||||||
|
|
||||||
|
friend accelerator_inline void mult(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ l,
|
||||||
|
const Grid_simd2 *__restrict__ r) {
|
||||||
|
*y = (*l) * (*r);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend accelerator_inline void sub(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ l,
|
||||||
|
const Grid_simd2 *__restrict__ r) {
|
||||||
|
*y = (*l) - (*r);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void add(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ l,
|
||||||
|
const Grid_simd2 *__restrict__ r) {
|
||||||
|
*y = (*l) + (*r);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void mac(Grid_simd2 *__restrict__ y,
|
||||||
|
const Scalar_type *__restrict__ a,
|
||||||
|
const Grid_simd2 *__restrict__ x) {
|
||||||
|
*y = (*a) * (*x) + (*y);
|
||||||
|
};
|
||||||
|
friend accelerator_inline void mult(Grid_simd2 *__restrict__ y,
|
||||||
|
const Scalar_type *__restrict__ l,
|
||||||
|
const Grid_simd2 *__restrict__ r) {
|
||||||
|
*y = (*l) * (*r);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void sub(Grid_simd2 *__restrict__ y,
|
||||||
|
const Scalar_type *__restrict__ l,
|
||||||
|
const Grid_simd2 *__restrict__ r) {
|
||||||
|
*y = (*l) - (*r);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void add(Grid_simd2 *__restrict__ y,
|
||||||
|
const Scalar_type *__restrict__ l,
|
||||||
|
const Grid_simd2 *__restrict__ r) {
|
||||||
|
*y = (*l) + (*r);
|
||||||
|
}
|
||||||
|
|
||||||
|
friend accelerator_inline void mac(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ a,
|
||||||
|
const Scalar_type *__restrict__ x) {
|
||||||
|
*y = (*a) * (*x) + (*y);
|
||||||
|
};
|
||||||
|
friend accelerator_inline void mult(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ l,
|
||||||
|
const Scalar_type *__restrict__ r) {
|
||||||
|
*y = (*l) * (*r);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void sub(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ l,
|
||||||
|
const Scalar_type *__restrict__ r) {
|
||||||
|
*y = (*l) - (*r);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void add(Grid_simd2 *__restrict__ y,
|
||||||
|
const Grid_simd2 *__restrict__ l,
|
||||||
|
const Scalar_type *__restrict__ r) {
|
||||||
|
*y = (*l) + (*r);
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
// FIXME: gonna remove these load/store, get, set, prefetch
|
||||||
|
////////////////////////////////////////////////////////////////////////
|
||||||
|
friend accelerator_inline void vset(Grid_simd2 &ret, Scalar_type *a) {
|
||||||
|
for(int n=0;n<nvec;n++) vset(ret.v[n],a);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Vstore
|
||||||
|
///////////////////////
|
||||||
|
friend accelerator_inline void vstore(const Grid_simd2 &ret, Scalar_type *a) {
|
||||||
|
for(int n=0;n<nvec;n++) vstore(ret.v[n],a);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Vprefetch
|
||||||
|
///////////////////////
|
||||||
|
friend accelerator_inline void vprefetch(const Grid_simd2 &v) {
|
||||||
|
vprefetch(v.v[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Reduce
|
||||||
|
///////////////////////
|
||||||
|
friend accelerator_inline Scalar_type Reduce(const Grid_simd2 &in) {
|
||||||
|
return Reduce(in.v[0])+ Reduce(in.v[1]);
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////
|
||||||
|
// operator scalar * simd
|
||||||
|
////////////////////////////
|
||||||
|
friend accelerator_inline Grid_simd2 operator*(const Scalar_type &a, Grid_simd2 b) {
|
||||||
|
Grid_simd2 va;
|
||||||
|
vsplat(va, a);
|
||||||
|
return va * b;
|
||||||
|
}
|
||||||
|
friend accelerator_inline Grid_simd2 operator*(Grid_simd2 b, const Scalar_type &a) {
|
||||||
|
return a * b;
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////
|
||||||
|
// Divides
|
||||||
|
//////////////////////////////////
|
||||||
|
friend accelerator_inline Grid_simd2 operator/(const Scalar_type &a, Grid_simd2 b) {
|
||||||
|
Grid_simd2 va;
|
||||||
|
vsplat(va, a);
|
||||||
|
return va / b;
|
||||||
|
}
|
||||||
|
friend accelerator_inline Grid_simd2 operator/(Grid_simd2 b, const Scalar_type &a) {
|
||||||
|
Grid_simd2 va;
|
||||||
|
vsplat(va, a);
|
||||||
|
return b / a;
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Unary negation
|
||||||
|
///////////////////////
|
||||||
|
friend accelerator_inline Grid_simd2 operator-(const Grid_simd2 &r) {
|
||||||
|
Grid_simd2 ret;
|
||||||
|
vzero(ret);
|
||||||
|
ret = ret - r;
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
// *=,+=,-= operators
|
||||||
|
accelerator_inline Grid_simd2 &operator*=(const Grid_simd2 &r) {
|
||||||
|
*this = (*this) * r;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
accelerator_inline Grid_simd2 &operator+=(const Grid_simd2 &r) {
|
||||||
|
*this = *this + r;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
accelerator_inline Grid_simd2 &operator-=(const Grid_simd2 &r) {
|
||||||
|
*this = *this - r;
|
||||||
|
return *this;
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////
|
||||||
|
// Not all functions are supported
|
||||||
|
// through SIMD and must breakout to
|
||||||
|
// scalar type and back again. This
|
||||||
|
// provides support
|
||||||
|
///////////////////////////////////////
|
||||||
|
template <class functor>
|
||||||
|
friend accelerator_inline Grid_simd2 SimdApply(const functor &func, const Grid_simd2 &v) {
|
||||||
|
Grid_simd2 ret;
|
||||||
|
for(int n=0;n<nvec;n++){
|
||||||
|
ret.v[n]=SimdApply(func,v.v[n]);
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
template <class functor>
|
||||||
|
friend accelerator_inline Grid_simd2 SimdApplyBinop(const functor &func,
|
||||||
|
const Grid_simd2 &x,
|
||||||
|
const Grid_simd2 &y) {
|
||||||
|
Grid_simd2 ret;
|
||||||
|
for(int n=0;n<nvec;n++){
|
||||||
|
ret.v[n]=SimdApplyBinop(func,x.v[n],y.v[n]);
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
///////////////////////
|
||||||
|
// Exchange
|
||||||
|
// Al Ah , Bl Bh -> Al Bl Ah,Bh
|
||||||
|
///////////////////////
|
||||||
|
friend accelerator_inline void exchange0(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
|
||||||
|
out1.v[0] = in1.v[0];
|
||||||
|
out1.v[1] = in2.v[0];
|
||||||
|
out2.v[0] = in1.v[1];
|
||||||
|
out2.v[1] = in2.v[1];
|
||||||
|
}
|
||||||
|
friend accelerator_inline void exchange1(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
|
||||||
|
exchange0(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
|
||||||
|
exchange0(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void exchange2(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
|
||||||
|
exchange1(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
|
||||||
|
exchange1(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void exchange3(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
|
||||||
|
exchange2(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
|
||||||
|
exchange2(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void exchange4(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2){
|
||||||
|
exchange3(out1.v[0],out2.v[0],in1.v[0],in2.v[0]);
|
||||||
|
exchange3(out1.v[1],out2.v[1],in1.v[1],in2.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void exchange(Grid_simd2 &out1,Grid_simd2 &out2,Grid_simd2 in1,Grid_simd2 in2,int n)
|
||||||
|
{
|
||||||
|
if (n==3) {
|
||||||
|
exchange3(out1,out2,in1,in2);
|
||||||
|
} else if(n==2) {
|
||||||
|
exchange2(out1,out2,in1,in2);
|
||||||
|
} else if(n==1) {
|
||||||
|
exchange1(out1,out2,in1,in2);
|
||||||
|
} else if(n==0) {
|
||||||
|
exchange0(out1,out2,in1,in2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
// General permute; assumes vector length is same across
|
||||||
|
// all subtypes; may not be a good assumption, but could
|
||||||
|
// add the vector width as a template param for BG/Q for example
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
friend accelerator_inline void permute0(Grid_simd2 &y, Grid_simd2 b) {
|
||||||
|
y.v[0]=b.v[1];
|
||||||
|
y.v[1]=b.v[0];
|
||||||
|
}
|
||||||
|
friend accelerator_inline void permute1(Grid_simd2 &y, Grid_simd2 b) {
|
||||||
|
permute0(y.v[0],b.v[0]);
|
||||||
|
permute0(y.v[1],b.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void permute2(Grid_simd2 &y, Grid_simd2 b) {
|
||||||
|
permute1(y.v[0],b.v[0]);
|
||||||
|
permute1(y.v[1],b.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void permute3(Grid_simd2 &y, Grid_simd2 b) {
|
||||||
|
permute2(y.v[0],b.v[0]);
|
||||||
|
permute2(y.v[1],b.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void permute4(Grid_simd2 &y, Grid_simd2 b) {
|
||||||
|
permute3(y.v[0],b.v[0]);
|
||||||
|
permute3(y.v[1],b.v[1]);
|
||||||
|
}
|
||||||
|
friend accelerator_inline void permute(Grid_simd2 &y, Grid_simd2 b, int perm) {
|
||||||
|
if(perm==3) permute3(y, b);
|
||||||
|
else if(perm==2) permute2(y, b);
|
||||||
|
else if(perm==1) permute1(y, b);
|
||||||
|
else if(perm==0) permute0(y, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////////////
|
||||||
|
// Getting single lanes
|
||||||
|
///////////////////////////////
|
||||||
|
accelerator_inline Scalar_type getlane(int lane) const {
|
||||||
|
if(lane < vector_type::Nsimd() ) return v[0].getlane(lane);
|
||||||
|
else return v[1].getlane(lane%vector_type::Nsimd());
|
||||||
|
}
|
||||||
|
|
||||||
|
accelerator_inline void putlane(const Scalar_type &S, int lane){
|
||||||
|
if(lane < vector_type::Nsimd() ) v[0].putlane(S,lane);
|
||||||
|
else v[1].putlane(S,lane%vector_type::Nsimd());
|
||||||
|
}
|
||||||
|
}; // end of Grid_simd2 class definition
|
||||||
|
|
||||||
|
///////////////////////////////
|
||||||
|
// Define available types
|
||||||
|
///////////////////////////////
|
||||||
|
|
||||||
|
typedef Grid_simd2<complex<double> , vComplexD> vComplexD2;
|
||||||
|
typedef Grid_simd2<double , vRealD> vRealD2;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/////////////////////////////////////////
|
||||||
|
// Some traits to recognise the types
|
||||||
|
/////////////////////////////////////////
|
||||||
|
template <typename T>
|
||||||
|
struct is_simd : public std::false_type {};
|
||||||
|
template <> struct is_simd<vRealF> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vRealD> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vRealH> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vComplexF> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vComplexD> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vComplexH> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vInteger> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vRealD2> : public std::true_type {};
|
||||||
|
template <> struct is_simd<vComplexD2> : public std::true_type {};
|
||||||
|
|
||||||
|
template <typename T> using IfSimd = Invoke<std::enable_if<is_simd<T>::value, int> >;
|
||||||
|
template <typename T> using IfNotSimd = Invoke<std::enable_if<!is_simd<T>::value, unsigned> >;
|
||||||
|
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
// insert / extract with complex support
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline S getlane(const Grid_simd<S, V> &in,int lane) {
|
||||||
|
return in.getlane(lane);
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void putlane(Grid_simd<S, V> &vec,const S &_S, int lane){
|
||||||
|
vec.putlane(_S,lane);
|
||||||
|
}
|
||||||
|
template <class S,IfNotSimd<S> = 0 >
|
||||||
|
accelerator_inline S getlane(const S &in,int lane) {
|
||||||
|
return in;
|
||||||
|
}
|
||||||
|
template <class S,IfNotSimd<S> = 0 >
|
||||||
|
accelerator_inline void putlane(S &vec,const S &_S, int lane){
|
||||||
|
vec = _S;
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline S getlane(const Grid_simd2<S, V> &in,int lane) {
|
||||||
|
return in.getlane(lane);
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void putlane(Grid_simd2<S, V> &vec,const S &_S, int lane){
|
||||||
|
vec.putlane(_S,lane);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
// General rotate
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void vbroadcast(Grid_simd2<S,V> &ret,const Grid_simd2<S,V> &src,int lane){
|
||||||
|
S* typepun =(S*) &src;
|
||||||
|
vsplat(ret,typepun[lane]);
|
||||||
|
}
|
||||||
|
template <class S, class V, IfComplex<S> =0>
|
||||||
|
accelerator_inline void rbroadcast(Grid_simd2<S,V> &ret,const Grid_simd2<S,V> &src,int lane){
|
||||||
|
typedef typename V::vector_type vector_type;
|
||||||
|
S* typepun =(S*) &src;
|
||||||
|
ret.v[0].v = unary<vector_type>(real(typepun[lane]), VsplatSIMD());
|
||||||
|
ret.v[1].v = unary<vector_type>(real(typepun[lane]), VsplatSIMD());
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Splat
|
||||||
|
///////////////////////
|
||||||
|
|
||||||
|
// this is only for the complex version
|
||||||
|
template <class S, class V, IfComplex<S> = 0, class ABtype>
|
||||||
|
accelerator_inline void vsplat(Grid_simd2<S, V> &ret, ABtype a, ABtype b) {
|
||||||
|
vsplat(ret.v[0],a,b);
|
||||||
|
vsplat(ret.v[1],a,b);
|
||||||
|
}
|
||||||
|
|
||||||
|
// overload if complex
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void vsplat(Grid_simd2<S, V> &ret, EnableIf<is_complex<S>, S> c) {
|
||||||
|
vsplat(ret, real(c), imag(c));
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void rsplat(Grid_simd2<S, V> &ret, EnableIf<is_complex<S>, S> c) {
|
||||||
|
vsplat(ret, real(c), real(c));
|
||||||
|
}
|
||||||
|
|
||||||
|
// if real fill with a, if complex fill with a in the real part (first function
|
||||||
|
// above)
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void vsplat(Grid_simd2<S, V> &ret, NotEnableIf<is_complex<S>, S> a)
|
||||||
|
{
|
||||||
|
vsplat(ret.v[0],a);
|
||||||
|
vsplat(ret.v[1],a);
|
||||||
|
}
|
||||||
|
//////////////////////////
|
||||||
|
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
// Initialise to 1,0,i for the correct types
|
||||||
|
///////////////////////////////////////////////
|
||||||
|
// For complex types
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline void vone(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(1.0, 0.0));
|
||||||
|
}
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline void vzero(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(0.0, 0.0));
|
||||||
|
} // use xor?
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline void vcomplex_i(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(0.0, 1.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline void visign(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(1.0, -1.0));
|
||||||
|
}
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline void vrsign(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(-1.0, 1.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
// if not complex overload here
|
||||||
|
template <class S, class V, IfReal<S> = 0>
|
||||||
|
accelerator_inline void vone(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(1.0));
|
||||||
|
}
|
||||||
|
template <class S, class V, IfReal<S> = 0>
|
||||||
|
accelerator_inline void vzero(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, S(0.0));
|
||||||
|
}
|
||||||
|
|
||||||
|
// For integral types
|
||||||
|
template <class S, class V, IfInteger<S> = 0>
|
||||||
|
accelerator_inline void vone(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, 1);
|
||||||
|
}
|
||||||
|
template <class S, class V, IfInteger<S> = 0>
|
||||||
|
accelerator_inline void vzero(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, 0);
|
||||||
|
}
|
||||||
|
template <class S, class V, IfInteger<S> = 0>
|
||||||
|
accelerator_inline void vtrue(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, 0xFFFFFFFF);
|
||||||
|
}
|
||||||
|
template <class S, class V, IfInteger<S> = 0>
|
||||||
|
accelerator_inline void vfalse(Grid_simd2<S, V> &ret) {
|
||||||
|
vsplat(ret, 0);
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void zeroit(Grid_simd2<S, V> &z) {
|
||||||
|
vzero(z);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Vstream
|
||||||
|
///////////////////////
|
||||||
|
template <class S, class V, IfReal<S> = 0>
|
||||||
|
accelerator_inline void vstream(Grid_simd2<S, V> &out, const Grid_simd2<S, V> &in) {
|
||||||
|
vstream(out.v[0],in.v[0]);
|
||||||
|
vstream(out.v[1],in.v[1]);
|
||||||
|
}
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline void vstream(Grid_simd2<S, V> &out, const Grid_simd2<S, V> &in) {
|
||||||
|
vstream(out.v[0],in.v[0]);
|
||||||
|
vstream(out.v[1],in.v[1]);
|
||||||
|
}
|
||||||
|
template <class S, class V, IfInteger<S> = 0>
|
||||||
|
accelerator_inline void vstream(Grid_simd2<S, V> &out, const Grid_simd2<S, V> &in) {
|
||||||
|
vstream(out.v[0],in.v[0]);
|
||||||
|
vstream(out.v[1],in.v[1]);
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////
|
||||||
|
// Arithmetic operator overloads +,-,*
|
||||||
|
////////////////////////////////////
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> operator+(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] = a.v[0]+b.v[0];
|
||||||
|
ret.v[1] = a.v[1]+b.v[1];
|
||||||
|
return ret;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> operator-(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] = a.v[0]-b.v[0];
|
||||||
|
ret.v[1] = a.v[1]-b.v[1];
|
||||||
|
return ret;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Distinguish between complex types and others
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline Grid_simd2<S, V> real_mult(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] =real_mult(a.v[0],b.v[0]);
|
||||||
|
ret.v[1] =real_mult(a.v[1],b.v[1]);
|
||||||
|
return ret;
|
||||||
|
};
|
||||||
|
template <class S, class V, IfComplex<S> = 0>
|
||||||
|
accelerator_inline Grid_simd2<S, V> real_madd(Grid_simd2<S, V> a, Grid_simd2<S, V> b, Grid_simd2<S,V> c) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] =real_madd(a.v[0],b.v[0],c.v[0]);
|
||||||
|
ret.v[1] =real_madd(a.v[1],b.v[1],c.v[1]);
|
||||||
|
return ret;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// Distinguish between complex types and others
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> operator*(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] = a.v[0]*b.v[0];
|
||||||
|
ret.v[1] = a.v[1]*b.v[1];
|
||||||
|
return ret;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Distinguish between complex types and others
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> operator/(Grid_simd2<S, V> a, Grid_simd2<S, V> b) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] = a.v[0]/b.v[0];
|
||||||
|
ret.v[1] = a.v[1]/b.v[1];
|
||||||
|
return ret;
|
||||||
|
};
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// Conjugate
|
||||||
|
///////////////////////
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> conjugate(const Grid_simd2<S, V> &in) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
ret.v[0] = conjugate(in.v[0]);
|
||||||
|
ret.v[1] = conjugate(in.v[1]);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
template <class S, class V, IfNotInteger<S> = 0>
|
||||||
|
accelerator_inline Grid_simd2<S, V> adj(const Grid_simd2<S, V> &in) {
|
||||||
|
return conjugate(in);
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// timesMinusI
|
||||||
|
///////////////////////
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void timesMinusI(Grid_simd2<S, V> &ret, const Grid_simd2<S, V> &in) {
|
||||||
|
timesMinusI(ret.v[0],in.v[0]);
|
||||||
|
timesMinusI(ret.v[1],in.v[1]);
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> timesMinusI(const Grid_simd2<S, V> &in) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
timesMinusI(ret.v[0],in.v[0]);
|
||||||
|
timesMinusI(ret.v[1],in.v[1]);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
///////////////////////
|
||||||
|
// timesI
|
||||||
|
///////////////////////
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline void timesI(Grid_simd2<S, V> &ret, const Grid_simd2<S, V> &in) {
|
||||||
|
timesI(ret.v[0],in.v[0]);
|
||||||
|
timesI(ret.v[1],in.v[1]);
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> timesI(const Grid_simd2<S, V> &in) {
|
||||||
|
Grid_simd2<S, V> ret;
|
||||||
|
timesI(ret.v[0],in.v[0]);
|
||||||
|
timesI(ret.v[1],in.v[1]);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/////////////////////
|
||||||
|
// Inner, outer
|
||||||
|
/////////////////////
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> innerProduct(const Grid_simd2<S, V> &l,const Grid_simd2<S, V> &r) {
|
||||||
|
return conjugate(l) * r;
|
||||||
|
}
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> outerProduct(const Grid_simd2<S, V> &l,const Grid_simd2<S, V> &r) {
|
||||||
|
return l * conjugate(r);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <class S, class V>
|
||||||
|
accelerator_inline Grid_simd2<S, V> trace(const Grid_simd2<S, V> &arg) {
|
||||||
|
return arg;
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////
|
||||||
|
// copy/splat complex real parts into real;
|
||||||
|
// insert real into complex and zero imag;
|
||||||
|
////////////////////////////////////////////////////////////
|
||||||
|
accelerator_inline void precisionChange(vComplexD2 &out,const vComplexF &in){
|
||||||
|
Optimization::PrecisionChange::StoD(in.v,out.v[0].v,out.v[1].v);
|
||||||
|
}
|
||||||
|
accelerator_inline void precisionChange(vComplexF &out,const vComplexD2 &in){
|
||||||
|
out.v=Optimization::PrecisionChange::DtoS(in.v[0].v,in.v[1].v);
|
||||||
|
}
|
||||||
|
accelerator_inline void precisionChange(vComplexD2 *out,const vComplexF *in,int nvec){
|
||||||
|
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
|
||||||
|
}
|
||||||
|
accelerator_inline void precisionChange(vComplexF *out,const vComplexD2 *in,int nvec){
|
||||||
|
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
|
||||||
|
}
|
||||||
|
|
||||||
|
accelerator_inline void precisionChange(vRealD2 &out,const vRealF &in){
|
||||||
|
Optimization::PrecisionChange::StoD(in.v,out.v[0].v,out.v[1].v);
|
||||||
|
}
|
||||||
|
accelerator_inline void precisionChange(vRealF &out,const vRealD2 &in){
|
||||||
|
out.v=Optimization::PrecisionChange::DtoS(in.v[0].v,in.v[1].v);
|
||||||
|
}
|
||||||
|
accelerator_inline void precisionChange(vRealD2 *out,const vRealF *in,int nvec){
|
||||||
|
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
|
||||||
|
}
|
||||||
|
accelerator_inline void precisionChange(vRealF *out,const vRealD2 *in,int nvec){
|
||||||
|
for(int m=0;m<nvec;m++){ precisionChange(out[m],in[m]); }
|
||||||
|
}
|
||||||
|
|
||||||
|
NAMESPACE_END(Grid);
|
||||||
|
|
||||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user