1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-20 00:36:55 +01:00

Enough for tonight

This commit is contained in:
2019-02-13 21:48:35 +00:00
parent bf434b6bef
commit 11467a994d
6 changed files with 382 additions and 166 deletions

View File

@ -42,68 +42,79 @@ namespace Grid {
// which types are supported scalar types for Eigen::Tensor
template<typename T> struct is_eigen_tensor_scalar : std::integral_constant<bool,
std::is_arithmetic<T>::value || is_complex<T>::value> {};
// which types are grid tensors
template <typename T> struct is_grid_tensor : public std::false_type {
static constexpr unsigned int rank = 0;
static constexpr unsigned int dim = 1;
};
template <typename T> struct is_grid_tensor<iScalar<T>> : public std::true_type {};
template <typename T, int N> struct is_grid_tensor<iVector<T, N>> : public std::true_type {};
template <typename T, int N> struct is_grid_tensor<iMatrix<T, N>> : public std::true_type {};
std::is_arithmetic<T>::value || Grid::is_complex<T>::value> {};
// Rank and dimension of grid tensors, i.e. compositions of iScalar, iVector and iMatrix
template <typename T> struct grid_tensor_att {
static constexpr unsigned int depth = 0; // How many levels of Grid Tensor there are
static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used)
static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1
static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions)
typedef T scalar_type; // Type of the underlying scalar
static constexpr size_t scalar_size = sizeof(T); // Size of the underlying scalar in bytes
static constexpr size_t size = scalar_size * count; // total size of elements in bytes
// e.g. iScalar<iVector<Complex,1>>
// depth = 2
// rank = 1
// rank_non_trivial = 0
// count = 1
// e.g. iVector<iMatrix<Complex,3>,4>
// depth = 2
// rank = 3
// rank_non_trivial = 3
// count = 36
// e.g. iScalar<iVector<iMatrix<Complex,4>,3>>
// depth = 3
// rank = 3
// rank_non_trivial = 3
// count = 48
};
template <typename T> struct grid_tensor_att<iScalar<T>> {
static constexpr unsigned int depth = 1 + grid_tensor_att<T>::depth;
static constexpr unsigned int rank = 0 + grid_tensor_att<T>::rank;
static constexpr unsigned int rank_non_trivial = 0 + grid_tensor_att<T>::rank_non_trivial;
static constexpr unsigned int count = 1 * grid_tensor_att<T>::count;
typedef typename grid_tensor_att<T>::scalar_type scalar_type;
static constexpr size_t scalar_size = grid_tensor_att<T>::scalar_size;
static constexpr size_t size = scalar_size * count;
};
template <typename T, int N> struct grid_tensor_att<iVector<T, N>> {
static constexpr unsigned int depth = 1 + grid_tensor_att<T>::depth;
static constexpr unsigned int rank = 1 + grid_tensor_att<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + grid_tensor_att<T>::rank_non_trivial;
static constexpr unsigned int count = N * grid_tensor_att<T>::count;
typedef typename grid_tensor_att<T>::scalar_type scalar_type;
static constexpr size_t scalar_size = grid_tensor_att<T>::scalar_size;
static constexpr size_t size = scalar_size * count;
};
template <typename T, int N> struct grid_tensor_att<iMatrix<T, N>> {
static constexpr unsigned int depth = 1 + grid_tensor_att<T>::depth;
static constexpr unsigned int rank = 2 + grid_tensor_att<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + grid_tensor_att<T>::rank_non_trivial;
static constexpr unsigned int count = N * N * grid_tensor_att<T>::count;
typedef typename grid_tensor_att<T>::scalar_type scalar_type;
static constexpr size_t scalar_size = grid_tensor_att<T>::scalar_size;
static constexpr size_t size = scalar_size * count;
};
// Helper to allow iteration through an Eigen::Tensor (using a lambda)
template <typename ETensor, typename Lambda>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_grid_tensor<typename ETensor::Scalar>::value, void>::type
for_all( ETensor &ET, Lambda lambda )
{
using Scalar = typename ETensor::Scalar::scalar_type;
const std::size_t NumElements = ET.size();
assert( NumElements > 0 );
if( NumElements == 1 ) {
const auto MyRank{grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial};
std::vector<std::size_t> SubIndex(MyRank);
for( auto &idx : SubIndex ) idx = 0;
typename ETensor::Index n = 0;
for( Scalar &Source : * ET.data() ) {
lambda(Source, n++, &SubIndex[0] );
// Now increment SubIndex
for( auto i = MyRank - 1; i >= 0 && ++SubIndex[i] == 11/*ReducedDims[i]*/; i-- )
SubIndex[i] = 0;
}
}
else {
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
unsigned int TrivialDimCount{0};
std::vector<size_t> ReducedDims;
ReducedDims.reserve(ET.NumDimensions + grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial); // Make sure we only do one malloc
for(auto i = 0; i < ET.NumDimensions; i++ ) {
auto dim = ET.dimension(i);
if( dim <= 1 ) {
TrivialDimCount++;
assert( dim == 1 ); // Not expecting dimension to be <= 0
} else {
size_t s = static_cast<size_t>(dim);
assert( s == dim ); // check we didn't lose anything in the conversion
ReducedDims.push_back(s);
}
}
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
assert( ET.NumDimensions > TrivialDimCount );
// Now add the extra dimensions, based on object zero
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* ET.data());
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
const std::vector<size_t> & ExtraDims{f.getDim()};
assert(ExtraDims.size() == grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial);
size_t ExtraCount{1};
for( auto i : ExtraDims ) {
assert( i > 0 );
ExtraCount *= i;
ReducedDims.push_back(i);
}
assert(grid_tensor_att<typename ETensor::Scalar>::count == ExtraCount);
assert(grid_tensor_att<typename ETensor::Scalar>::size == sizeof( typename ETensor::Scalar ));
const unsigned int ReducedDimsSize = static_cast<unsigned int>(ReducedDims.size());
assert( ReducedDimsSize == ReducedDims.size() );
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
std::vector<std::size_t> SubIndex(ReducedDimsSize);
for( auto &idx : SubIndex ) idx = 0;
for( typename ETensor::Index n = 0; n < TotalNumElements; ) {
for( Scalar &Source : ET( MyIndex ) ) {
lambda(Source, n++, &SubIndex[0] );
// Now increment MyIndex
for( auto i = ET.NumDimensions - 1; i >= 0 && ++MyIndex[i] == ET.dimension(i); i-- )
MyIndex[i] = 0;
// Now increment SubIndex
for( auto i = ReducedDimsSize - 1; i >= 0 && ++SubIndex[i] == ReducedDims[i]; i-- )
SubIndex[i] = 0;
}
}
}
}
// Static abstract writer
template <typename T>
@ -128,24 +139,11 @@ namespace Grid {
template <typename U, int N>
void write(const std::string &s, const iMatrix<U, N> &output);
template <typename ETensor>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && (std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value), void>::type
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_eigen_tensor_scalar<typename ETensor::Scalar>::value, void>::type
write(const std::string &s, const ETensor &output);
template <typename ETensor/*, typename U, int N*/>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
&& is_grid_tensor<typename ETensor::Scalar>::value
//&& !(std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value)
/*&& ( std::is_base_of<typename ETensor::Scalar, iScalar<U> >::value
|| std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value
|| std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value )*/, void>::type
template <typename ETensor>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_grid_tensor<typename ETensor::Scalar>::value, void>::type
write(const std::string &s, const ETensor &output);
/*template <typename ETensor, typename U, int N>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
&& std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value, void>::type
write(const std::string &s, const ETensor &output);
template <typename ETensor, typename U, int N>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
&& std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value, void>::type
write(const std::string &s, const ETensor &output);*/
void scientificFormat(const bool set);
bool isScientific(void);
@ -254,18 +252,18 @@ namespace Grid {
// Eigen::Tensors of arithmetic/complex base type
template <typename T>
template <typename ETensor>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && (std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value), void>::type
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_eigen_tensor_scalar<typename ETensor::Scalar>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
std::cout << "Eigen::Tensors of arithmetic/complex base type" << std::endl;
const typename ETensor::Index NumElements{output.size()};
assert( NumElements > 0 );
if( NumElements == 1 )
upcast->writeDefault(s, * output.data());
else {
// We're not interested in trivial dimensions, i.e. dimensions = 1
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
unsigned int TrivialDimCount{0};
std::vector<size_t> ReducedDims;
ReducedDims.reserve(output.NumDimensions); // Make sure we only do one malloc
for(auto i = 0; i < output.NumDimensions; i++ ) {
auto dim = output.dimension(i);
if( dim <= 1 ) {
@ -277,43 +275,48 @@ namespace Grid {
ReducedDims.push_back(s);
}
}
assert( output.NumDimensions > TrivialDimCount > 0 ); // NB: NumElements > 1 implies this is not a scalar, so some dims should be left
// Create a single, flat vector to hold all the data
std::vector<typename ETensor::Scalar> flat(NumElements);
// Now copy all the data to my flat vector
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( int i = 0 ; i < output.NumDimensions ; i++ ) MyIndex[i] = 0;
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
flat[n] = output( MyIndex );
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
assert( output.NumDimensions > TrivialDimCount );
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
using Scalar = typename ETensor::Scalar;
const Scalar * pWriteBuffer;
Scalar * pCopyBuffer = nullptr;
if( !CopyData )
pWriteBuffer = output.data();
else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
pCopyBuffer = static_cast<Scalar *>(malloc(sizeof(Scalar) * NumElements));
pWriteBuffer = pCopyBuffer;
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
pCopyBuffer[n] = output( MyIndex );
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
}
}
upcast->template writeMultiDim<typename ETensor::Scalar>(s, ReducedDims, flat);
upcast->template writeMultiDim<typename ETensor::Scalar>(s, ReducedDims, pWriteBuffer, NumElements);
if( pCopyBuffer ) free( pCopyBuffer );
}
}
// Eigen::Tensors of iScalar<U>
// Eigen::Tensors of Grid tensors (iScalar, iVector, iMatrix)
template <typename T>
template <typename ETensor/*, typename U, int N*/>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
&& is_grid_tensor<typename ETensor::Scalar>::value
//&& !(std::is_arithmetic<typename ETensor::Scalar>::value || Grid::is_complex<typename ETensor::Scalar>::value)
/*&& ( std::is_base_of<typename ETensor::Scalar, iScalar<U> >::value
|| std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value
|| std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value )*/, void>::type
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value && is_grid_tensor<typename ETensor::Scalar>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
std::cout << "Eigen::Tensors of iScalar<U>" << std::endl;
const typename ETensor::Index NumElements{output.size()};
assert( NumElements > 0 );
if( NumElements == 1 )
upcast->writeDefault(s, tensorToVec(* output.data()));
else {
// We're not interested in trivial dimensions, i.e. dimensions = 1
// We're only interested in non-trivial dimensions (i.e. dimensions > 1)
unsigned int TrivialDimCount{0};
std::vector<size_t> ReducedDims;
ReducedDims.reserve(output.NumDimensions + grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial); // Make sure we only do one malloc
for(auto i = 0; i < output.NumDimensions; i++ ) {
auto dim = output.dimension(i);
if( dim <= 1 ) {
@ -325,60 +328,50 @@ namespace Grid {
ReducedDims.push_back(s);
}
}
assert( output.NumDimensions > TrivialDimCount > 0 ); // NB: NumElements > 1 implies this is not a scalar, so some dims should be left
// NB: NumElements > 1 implies this is not a scalar, so some dims should be left
assert( output.NumDimensions > TrivialDimCount );
// Now add the extra dimensions, based on object zero
typename TensorToVec<typename ETensor::Scalar>::type ttv = tensorToVec(* output.data());
Flatten<typename TensorToVec<typename ETensor::Scalar>::type> f(ttv);
const std::vector<size_t> & ExtraDims{f.getDim()};
assert(ExtraDims.size() == grid_tensor_att<typename ETensor::Scalar>::rank_non_trivial);
size_t ExtraCount{1};
for( auto i : ExtraDims ) {
assert( i > 0 );
ExtraCount *= i;
ReducedDims.push_back(i);
}
typedef typename ETensor::Scalar::scalar_type Scalar;
assert( sizeof( typename ETensor::Scalar ) == ExtraCount * sizeof( Scalar ) );
// Create a single, flat vector to hold all the data
assert(grid_tensor_att<typename ETensor::Scalar>::count == ExtraCount);
assert(grid_tensor_att<typename ETensor::Scalar>::size == sizeof( typename ETensor::Scalar ));
// If the Tensor isn't in Row-Major order, then we'll need to copy it's data
const bool CopyData{ETensor::Layout != Eigen::StorageOptions::RowMajor};
using Scalar = typename ETensor::Scalar::scalar_type;
const Scalar * pWriteBuffer;
Scalar * pCopyBuffer = nullptr;
const typename ETensor::Index TotalNumElements = NumElements * ExtraCount;
std::vector<Scalar> flat(TotalNumElements);
// Now copy all the data to my flat vector
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( int i = 0 ; i < output.NumDimensions ; i++ ) MyIndex[i] = 0;
for( typename ETensor::Index n = 0; n < TotalNumElements; ) {
const Scalar * p = reinterpret_cast<const Scalar *>( &output( MyIndex ));
for( auto j = 0; j < ExtraCount ; j++ )
flat[n++] = * p++;
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
if( !CopyData )
pWriteBuffer = output.data()->begin();
else {
// Regardless of the Eigen::Tensor storage order, the copy will be Row Major
pCopyBuffer = static_cast<Scalar *>(malloc(TotalNumElements * sizeof(Scalar)));
pWriteBuffer = pCopyBuffer;
Scalar * pCopy = pCopyBuffer;
std::array<typename ETensor::Index, ETensor::NumIndices> MyIndex;
for( auto &idx : MyIndex ) idx = 0;
for( typename ETensor::Index n = 0; n < NumElements; n++ ) {
// Copy the grid tensor
for( const Scalar &Source : output( MyIndex ) )
* pCopy ++ = Source;
// Now increment the index
for( int i = output.NumDimensions - 1; i >= 0 && ++MyIndex[i] == output.dimension(i); i-- )
MyIndex[i] = 0;
}
}
upcast->template writeMultiDim<Scalar>(s, ReducedDims, flat);
upcast->template writeMultiDim<Scalar>(s, ReducedDims, pWriteBuffer, TotalNumElements);
if( pCopyBuffer ) free( pCopyBuffer );
}
}
// Eigen::Tensors of iVector<U, N>
/*template <typename T>
template <typename ETensor, typename U, int N>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
&& std::is_base_of<typename ETensor::Scalar, iVector<U, N>>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
//upcast->writeDefault(s, tensorToVec(output));
std::cout << "I really should add code to write Eigen::Tensor (iVector) ..." << std::endl;
}
// Eigen::Tensors of iMatrix<U, N>
template <typename T>
template <typename ETensor, typename U, int N>
typename std::enable_if<std::is_base_of<Eigen::TensorBase<ETensor, Eigen::ReadOnlyAccessors>, ETensor>::value
&& std::is_base_of<typename ETensor::Scalar, iMatrix<U, N>>::value, void>::type
Writer<T>::write(const std::string &s, const ETensor &output)
{
//upcast->writeDefault(s, tensorToVec(output));
std::cout << "I really should add code to write Eigen::Tensor (iMatrix) ..." << std::endl;
}*/
template <typename T>
void Writer<T>::scientificFormat(const bool set)
{
@ -516,7 +509,7 @@ namespace Grid {
template <typename T>
static inline typename std::enable_if<std::is_base_of<Eigen::TensorBase<T, Eigen::ReadOnlyAccessors>, T>::value, bool>::type
CompareMember(const T &lhs, const T &rhs) {
Eigen::Tensor<bool, 0> bResult = (lhs == rhs).all();
Eigen::Tensor<bool, 0, T::Options> bResult = (lhs == rhs).all();
return bResult(0);
}
@ -526,7 +519,7 @@ namespace Grid {
const auto NumElements{lhs.size()};
bool bResult = ( NumElements == rhs.size() );
for( auto i = 0 ; i < NumElements && bResult ; i++ ) {
Eigen::Tensor<bool, 0> b = (lhs[i] == rhs[i]).all();
Eigen::Tensor<bool, 0, T::Options> b = (lhs[i] == rhs[i]).all();
bResult = b(0);
}
return bResult;

View File

@ -39,7 +39,7 @@ namespace Grid
typename std::enable_if<!element<std::vector<U>>::is_number, void>::type
writeDefault(const std::string &s, const std::vector<U> &x);
template <typename U>
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const std::vector<U> & DataRowMajor);
void writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements);
H5NS::Group & getGroup(void);
private:
template <typename U>
@ -104,31 +104,32 @@ namespace Grid
void Hdf5Writer::writeDefault(const std::string &s, const std::string &x);
template <typename U>
void Hdf5Writer::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const std::vector<U> & DataRowMajor)
void Hdf5Writer::writeMultiDim(const std::string &s, const std::vector<size_t> & Dimensions, const U * pDataRowMajor, size_t NumElements)
{
// Hdf5 needs the dimensions as hsize_t
std::vector<hsize_t> dim;
for (auto &d: Dimensions)
dim.push_back(d);
int rank = static_cast<int>(Dimensions.size());
std::vector<hsize_t> dim(rank);
for(int i = 0; i < rank; i++)
dim[i] = Dimensions[i];
// write to file
H5NS::DataSpace dataSpace(dim.size(), dim.data());
if (DataRowMajor.size() > dataSetThres_)
H5NS::DataSpace dataSpace(rank, dim.data());
size_t DataSize = NumElements * sizeof(U);
if (DataSize > dataSetThres_)
{
H5NS::DataSet dataSet;
H5NS::DSetCreatPropList plist;
plist.setChunk(dim.size(), dim.data());
plist.setChunk(rank, dim.data());
plist.setFletcher32();
dataSet = group_.createDataSet(s, Hdf5Type<U>::type(), dataSpace, plist);
dataSet.write(&DataRowMajor[0], Hdf5Type<U>::type());
dataSet.write(pDataRowMajor, Hdf5Type<U>::type());
}
else
{
H5NS::Attribute attribute;
attribute = group_.createAttribute(s, Hdf5Type<U>::type(), dataSpace);
attribute.write(Hdf5Type<U>::type(), &DataRowMajor[0]);
attribute.write(Hdf5Type<U>::type(), pDataRowMajor);
}
}
@ -145,7 +146,7 @@ namespace Grid
const auto &flatx = flat.getFlatVector();
for (auto &d: flat.getDim())
dim.push_back(d);
writeMultiDim<Element>(s, dim, flatx);
writeMultiDim<Element>(s, dim, &flatx[0], flatx.size());
}
template <typename U>

View File

@ -173,7 +173,37 @@ class iScalar {
return stream;
};
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline begin() const { return &_internal; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline begin() const { return _internal.begin(); }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline end() const { return (&_internal) + grid_tensor_att<iScalar<T>>::count; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline end() const { return _internal.begin() + grid_tensor_att<iScalar<T>>::count; }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, scalar_type *>::type
strong_inline begin() { return &_internal; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, scalar_type *>::type
strong_inline begin() { return _internal.begin(); }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, scalar_type *>::type
strong_inline end() { return (&_internal) + grid_tensor_att<iScalar<T>>::count; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, scalar_type *>::type
strong_inline end() { return _internal.begin() + grid_tensor_att<iScalar<T>>::count; }
};
///////////////////////////////////////////////////////////
// Allows to turn scalar<scalar<scalar<double>>>> back to double.
@ -303,6 +333,38 @@ class iVector {
// strong_inline vtype && operator ()(int i) {
// return _internal[i];
// }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline begin() const { return _internal; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline begin() const { return _internal[0].begin(); }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline end() const { return _internal + grid_tensor_att<iVector<T,N>>::count; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline end() const { return _internal[0].begin() + grid_tensor_att<iVector<T,N>>::count; }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, scalar_type *>::type
strong_inline begin() { return _internal; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, scalar_type *>::type
strong_inline begin() { return _internal[0].begin(); }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, scalar_type *>::type
strong_inline end() { return _internal + grid_tensor_att<iVector<T,N>>::count; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, scalar_type *>::type
strong_inline end() { return _internal[0].begin() + grid_tensor_att<iVector<T,N>>::count; }
};
template <class vtype, int N>
@ -458,6 +520,38 @@ class iMatrix {
// strong_inline vtype && operator ()(int i,int j) {
// return _internal[i][j];
// }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline begin() const { return _internal[0]; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline begin() const { return _internal[0][0].begin(); }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline end() const { return _internal[0] + grid_tensor_att<iMatrix<T,N>>::count; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, const scalar_type *>::type
strong_inline end() const { return _internal[0][0].begin() + grid_tensor_att<iMatrix<T,N>>::count; }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, scalar_type *>::type
strong_inline begin() { return _internal[0]; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, scalar_type *>::type
strong_inline begin() { return _internal[0][0].begin(); }
template <typename T = vtype>
typename std::enable_if<!is_grid_tensor<T>::value, scalar_type *>::type
strong_inline end() { return _internal[0] + grid_tensor_att<iMatrix<T,N>>::count; }
template <typename T = vtype>
typename std::enable_if<is_grid_tensor<T>::value, scalar_type *>::type
strong_inline end() { return _internal[0][0].begin() + grid_tensor_att<iMatrix<T,N>>::count; }
};
template <class v>

View File

@ -288,6 +288,79 @@ namespace Grid {
enum { value = sizeof(real_scalar_type)/sizeof(float) };
};
////////////////////////////////////////////////////////////////////////////
// Review with Peter - obvious (but partial) overlap with the above
// What of this is good and should be kept ... vs what functions should I really be using?
////////////////////////////////////////////////////////////////////////////
// Need some forward references or the below won't work
template <class vtype>
class iScalar;
template <class vtype, int N>
class iVector;
template <class vtype, int N>
class iMatrix;
// which types are grid tensors
template <typename T> struct is_grid_tensor : public std::false_type {};
template <typename T> struct is_grid_tensor<iScalar<T>> : public std::true_type {};
template <typename T, int N> struct is_grid_tensor<iVector<T, N>> : public std::true_type {};
template <typename T, int N> struct is_grid_tensor<iMatrix<T, N>> : public std::true_type {};
// Rank and dimension of grid tensors, i.e. compositions of iScalar, iVector and iMatrix
// This defines the bottom level - i.e. it's a description of the underlying scalar
template <typename T> struct grid_tensor_att {
static constexpr unsigned int depth = 0; // How many levels of Grid Tensor there are (TensorLevel)
static constexpr unsigned int rank = 0; // The rank of the grid tensor (i.e. how many indices used)
static constexpr unsigned int rank_non_trivial = 0; // As per rank, but excludes those of dimension 1
static constexpr unsigned int count = 1; // total number of elements (i.e. product of dimensions)
using scalar_type = T; // Type of the underlying scalar
static constexpr std::size_t scalar_size = sizeof(T); // Size of the underlying scalar in bytes
static constexpr std::size_t size = scalar_size * count; // total size of elements in bytes
// e.g. iScalar<iVector<Complex,1>>
// depth = 2
// rank = 1
// rank_non_trivial = 0
// count = 1
// e.g. iVector<iMatrix<Complex,3>,4>
// depth = 2
// rank = 3
// rank_non_trivial = 3
// count = 36
// e.g. iScalar<iVector<iMatrix<Complex,4>,3>>
// depth = 3
// rank = 3
// rank_non_trivial = 3
// count = 48
};
template <typename T> struct grid_tensor_att<iScalar<T>> {
static constexpr unsigned int depth = 1 + grid_tensor_att<T>::depth;
static constexpr unsigned int rank = 0 + grid_tensor_att<T>::rank;
static constexpr unsigned int rank_non_trivial = 0 + grid_tensor_att<T>::rank_non_trivial;
static constexpr unsigned int count = 1 * grid_tensor_att<T>::count;
using scalar_type = typename grid_tensor_att<T>::scalar_type;
static constexpr std::size_t scalar_size = grid_tensor_att<T>::scalar_size;
static constexpr std::size_t size = scalar_size * count;
};
template <typename T, int N> struct grid_tensor_att<iVector<T, N>> {
static constexpr unsigned int depth = 1 + grid_tensor_att<T>::depth;
static constexpr unsigned int rank = 1 + grid_tensor_att<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 1 : 0) + grid_tensor_att<T>::rank_non_trivial;
static constexpr unsigned int count = N * grid_tensor_att<T>::count;
using scalar_type = typename grid_tensor_att<T>::scalar_type;
static constexpr std::size_t scalar_size = grid_tensor_att<T>::scalar_size;
static constexpr std::size_t size = scalar_size * count;
};
template <typename T, int N> struct grid_tensor_att<iMatrix<T, N>> {
static constexpr unsigned int depth = 1 + grid_tensor_att<T>::depth;
static constexpr unsigned int rank = 2 + grid_tensor_att<T>::rank;
static constexpr unsigned int rank_non_trivial = (N>1 ? 2 : 0) + grid_tensor_att<T>::rank_non_trivial;
static constexpr unsigned int count = N * N * grid_tensor_att<T>::count;
using scalar_type = typename grid_tensor_att<T>::scalar_type;
static constexpr std::size_t scalar_size = grid_tensor_att<T>::scalar_size;
static constexpr std::size_t size = scalar_size * count;
};
}
#endif